
A Formalization of a Subset of VHDL in the

Boyer-Moore Logic �

David M. Russino�

Computational Logic, Inc.

1717 West Sixth Street, Suite 290, Austin, TX 78703

russ@cli.com

September 20, 1994

Abstract

We present a mathematical de�nition of a hardware description language that
admits a semantics-preserving translation to a subset of VHDL. The language is
based on the VHDL model of event-driven simulation and includes behavioral and
structural circuit descriptions, the basic VHDL propagation delay mechanisms, and
both zero and nonzero delays. It has been formally encoded in the computational
logic of Boyer and Moore, which provides a LISP implementation as well as a
facility for mechanical proof-checking. We prove a number of basic properties of
the simulator, which we apply to the analysis of gate-level designs of a one-bit
adder and a d-ip-op.

1 Introduction

The VHSIC Hardware Description Language [3] (VHDL) has gained wide acceptance
as a tool for hardware design and simulation. However, the limitations of simulation as
a method of design validation are well known. A formal veri�cation system based on
VHDL would therefore have clear practical value. Naturally, a prerequisite for any such
system is a precise understanding of VHDL semantics. Unfortunately, VHDL was not
intended for formal analysis; it is not surprising that its semantics are complicated and
obscure.

The �rst objective of this paper is a rigorous exposition of a core subset of VHDL
that is small enough to admit a clear and simple semantic de�nition, but extensive
enough to provide realistic gate-level descriptions of interesting circuits. Thus, we avoid
complicated language constructs and focus on the VHDL models of time, signal behavior,
propagation delay, and event-driven simulation. Our subset includes only two types of
VHDL statements:

�This work was sponsored in part at Computational Logic, Inc. by National Aeronautics and Space
Administration Langley Research Center (NAS1-18878). The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the o�cial policies,
either expressed or implied, of Computational Logic, Inc., NASA Langley Research Center, or the
U.S. Government.

1

(1) concurrent signal assignment statements of the form

s(expr [transport] after n ps.;

where s is a port of mode out, expr is a Boolean expression involving only ports
of mode in, and n may be either 0 or positive;

(2) component instantiation statements of the form

label: component port map (s1; : : : ; sk);

where each si is either a port of mode in, out, or buffer, or a declared signal.

While other formalization e�orts (e.g., [2, 6, 8]) have addressed comparable or larger
VHDL subsets, relatively little progress has been reported in the formal veri�cation of
VHDL programs. Our second objective is to demonstrate how our approach provides
for the proof of correctness of interesting behavioral speci�cations of the programs in
our subset. To this end, we present some relevant general theorems, which we apply to
several example circuits.

Since we are not concerned with syntactic issues, our language de�nition is based on
an abstract syntax that is more amenable to direct formal analysis than that described
in [3]. The correspondence between the two is given by a translator from our language
to VHDL, which is described elsewhere [4]. Here, we concentrate on a mathematical
treatment of the abstract language. This begins in Section 3, where we present the
notions of time and waveform, on which the semantics of the language are based. We
also de�ne two waveform transformations that embody the main propagation delay
modes of VHDL, transport and inertial, and derive their fundamental properties.

In Section 4, we describe the form and execution of behavioral modules, which are
used to model gates and also to specify abstractly the behavior of circuits. Section 5
discusses structural modules, which provide hierarchical descriptions of circuits in terms
of connections among their components. For the purpose of illustration, we exhibit the
actual VHDL code generated by the translator for modules of both types.

The semantics of the language are given by an interpreter function, sim, which
produces a list of waveforms that represent the output generated by a module in response
to a given list of input waveforms. The de�nition of sim is presented in Section 6, along
with a number of basic results pertaining to its behavior. Finally, in Section 7, we derive
behavioral speci�cations of two modules: a one-bit adder and a d-ip-op.

The design of our language is based on S-expressions, the data objects of LISP,
which are de�ned in Section 2. This choice was motivated by our desire to support
its analysis with the use of the Nqthm system of Boyer and Moore [1]. Nqthm is
based on a constructive formal logic for which the intended model is the domain of
S-expressions. Thus, there is a correspondence between the formulas of this logic and
informal propositions about S-expressions. A user of the system may extend the logic by
adding axioms that correspond to de�nitions of computable functions over this domain.

Mechanical support for the Nqthm logic is provided by a LISP implementation that
includes (1) an evaluator that computes values of functions de�ned in the logic, and (2) a
theorem prover that may be used to derive logical consequences of the axioms. Since
these theorems may be interpreted as propositions about functions of S-expressions, the

2

prover may be used to verify (formally and mechanically) the correctness of properties of
these functions that have been derived by traditional (informal) mathematical methods.

All of the functions involved in the construction of our language, which we shall
describe informally, meet the computability requirement for encoding as Nqthm de�ni-
tions [1]. In fact, we have developed an Nqthm theory that formalizes these functions,
including the module recognizers that form the syntax of the language, the interpreter
that constitutes its semantics, and various procedures for deriving behavioral speci�ca-
tions of its programs. Thus, we have a complete LISP implementation of our language,
provided by the Nqthm evaluator.

Moreover, all of our results, which are justi�ed by informal (but mathematically
rigorous) proofs, correspond in a natural way to Nqthm formulas. Thus, these proofs
could, in principle, be checked mechanically by the Nqthm prover. At the time of this
writing, signi�cant progress has been made toward this objective; its completion remains
a goal of our research.

Another bene�t of the Nqthm formalization is that it provides a basis for a LISP
implementation of the translator from our language to VHDL [4]. This potentially
allows commercial VHDL synthesis tools to be used to implement our programs in
silicon. As another application of more immediate interest, we have actually executed
the translations of many of our programs using the Vantage VHDL simulator. For
the simulations that we have tested, which include all of those described herein, the
Vantage results were identical to those produced by our LISP-based interpreter. Since
the o�cial description of VHDL [3] is often ambiguous, this o�ers useful evidence that
we have achieved our goal of semantically capturing the VHDL subset in which we are
interested.

2 S-expressions

Along with the set N of natural numbers, we posit a set B = fT ;Fg and an in�nite set
L, the elements of which are called Boolean and literal atoms, respectively. These three
sets are assumed to be pairwise disjoint, and any element of their union is called an
atom. We further assume that no atom is an ordered pair of atoms, and we recursively
de�ne an S-expression to be an atom or an ordered pair of S-expressions. S denotes the
set of all S-expressions. Three basic operations on S are de�ned: If z = (x; y) 2 S � S,
then car(z) = x, cdr(z) = y, and cons(x; y) = z.

We also assume the existence of various distinct literal atoms, which we shall mention
as we proceed. Among these is the atom INFINITY. We de�ne a generalized number to
be an atom that is either INFINITY or an element of N. Both the order relation and the
addition operation on N are extended to the set of generalized numbers in the natural
manner: for any n 2 N, n < INFINITY and n+ INFINITY= INFINITY+ n = INFINITY.

A list is an S-expression that is either the literal atom NIL or an ordered pair z 2 S�S
such that cdr(z) is a list. The list NIL is denoted alternatively as (), and a non-NIL list
z is denoted as (a1 : : : an), where a1 = car(z) and (a2 : : : an) denotes cdr(z). In this
case, n is the length of z, and a1; : : : ; an are its members. For 1 � i � n, nth(i; z) is
de�ned to be ai. A list is a bit vector if each of its members is a Boolean atom.

A function f : Bn ! B is an n-ary Boolean function. The following Boolean func-
tions are called elementary: the 0-ary functions t0 and f0, with values T and F , respec-

3

tively; the unary function not1; the binary functions and2, or2, nand2, nor2, xor2; and
the ternary functions and3, or3, nand3, nor3, xor3. The de�nitions of these functions
are assumed to be understood.

For the purpose of encoding Boolean function calls, we also assume that each ele-
mentary Boolean function f is associated with a unique literal atom �f that is denoted
with the same name as f . Thus, the function not1 is associated with the literal atom
not1 = NOT1. We de�ne a Boolean term over a list L of distinct literal atoms to be an
S-expression that is either (a) a member of L, or (b) a list (�f �1 : : : �n), where f is an
n-ary elementary Boolean function and each �i is an Boolean term over L.

Let L = (s1 : : : sk) be a list of distinct literal atoms and let V = (v1 : : : vk) be a
bit vector. Then pairlist(L; V) is the list A = ((s1; v1) : : : (sk; vk)), which is called an
association list. If � is a Boolean term over L, then we de�ne eval(�; A) to be (a) vi, if
� = si, or (b) f(eval(�1; A); : : : ; eval(�n; A)), if � = (�f �1 : : : �n).

3 Waveforms

Let T be the quotient set determined by the equivalence relation on N [N�N that
identi�es each n 2 N with the pair (n; 0) 2 N � N. An element of T is called a
time object. Thus, any element of N or N�N denotes a unique time object, with the
understanding that for n 2 N, n and (n; 0) denote the same object.

The motivation for this ordered-pair model of time is the need to provide records
of the behavior of zero-delay devices. The components of a time object (n; k) may be
interpreted as follows: n represents the number of time units, which we arbitrarily take
to be picoseconds, that have elapsed since the start of a simulation; k represents the
number of successive delta cycles that have occurred during the current time unit.

Thus, T is ordered according to the lexicographic order onN�N, which is consistent
with the natural ordering of N: for time objects t1 = (n1; k1) and t2 = (n2; k2), t1 � t2
i� n1 � n2 and either n1 < n2 or k1 � k2. Thus the minimum element of T is the
time object that is denoted alternatively as 0 or (0; 0). For t1; t2 2 T, the interval
ft 2 T : t1 � t < t2g will be denoted as [t1; t2).

An event is an ordered pair e = (v; t), where v = value(e) 2 B and t = time(e) 2 T.
Let w = ((vn; tn) : : : (v0; t0)) be a list of events. If ti > ti�1 and vi 6= vi�1 for 0 < i � n,
and t0 = 0, then w is a waveform. Note that according to this de�nition, successive
events of a waveform must have di�erent values; in VHDL terminology, all transactions
are events. This restriction is consistent with the absence of implicit signals from our
subset: since there is no way to detect transactions other than events (e.g., by means of
the ACTIVE and TRANSACTION attributes), they may be ignored.

We de�ne ŵ : T ! B by ŵ(t) = vj , where j is the greatest value of i satisfying
ti � t; ŵ(t) is called the value of w at t. Note that ŵ1 = ŵ2 i� w1 = w2. If t = tj , then
we shall say that w has a new value at t. We also de�ne the history of w relative to t to
be the waveform hist(w; t) = ((vj ; tj) : : : (v0; t0)).

A packet is a list of waveforms, p = (w1 : : : wn), n � 0. For any t 2 T, the value of p
at t is the bit vector p̂(t) = (ŵ1(t) : : : ŵn(t)); p has a new value at t if any member of p
does. The history of p relative to t is the packet hist(p; t) = (hist(w1; t) : : : hist(wn; t)).

The behavior of each signal occurring in a circuit will be modeled as a waveform.
During the course of a simulation, these waveforms are updated at various times. When

4

a waveform is considered in the context of a current time t0, each of its members e is
viewed as a past, current, or future event, according to the relationship between time(e)
and t0. Past and present events are immutable, but future events are subject to deletion
as they are superceded by newly scheduled events, as described below.

Whenever a new event e is to be scheduled for a signal, time(e) is computed from
the current time t0 = (n; k) and a delay d 2 N that is associated with the signal, by
means of an addition operation from T�N to T, de�ned as follows:

(n; k)� d =

�
(n+ d; 0) if d 6= 0
(n; k + 1) if d = 0:

Thus, regardless of delay, when a new event e = (v; tv) is scheduled on a waveform
w at time t0, we have t0 < tv . The scheduling may be performed by either of two
procedures, corresponding to the transport and inertial delay modes of VHDL. Note that
the de�nitions of these procedures are somewhat di�erent from the processes described
in[3], due to our restricted notion of waveform.

Transport delay is the simpler of the two: each event (v0; t0) with t0 � tv is deleted
from w, and e is then consed to the result, unless that result already has value v at
tv. The updated waveform w0 is computed as the value of transport(w; v; tv), which is
de�ned recursively as follows:

(1) Let car(w) = (vf ; tf). If tf � tv , then w0 = transport(cdr(w); v; tv); otherwise:

(2) If vf = v, then w0 = w; otherwise:

(3) w0 = cons((v; tv); w).

Alternatively, w0 may be described in terms of the function ŵ0:

ŵ0(t) =

�
v if t � tv
ŵ(t) if t < tv:

Inertial delay is somewhat more complicated: every event (v0; t0) with t0 > t0 is
deleted from w, and if ŵ(t0) 6= v, then a single event with value v is consed to the
result. If ŵ(tv) = v, then the time of this event is the time of the last event of w
that precedes tv; otherwise, it is tv. Note that this procedure takes the current time
t0 as an additional argument, and requires that t0 < tv. The recursive de�nition of
w0 = inertial(w; v; t0; tv) is given as follows:

(1) Let �w = hist(w; t0). If ŵ(t0) = v, then w0 = �w; otherwise:

(2) Let car(w) = (vf ; tf). If tf � tv , then w0 = inertial(cdr(w); v; t0; tv); otherwise:

(3) If vf = v, then w0 = cons((v; tf); �w); otherwise:

(4) w0 = cons((v; tv); �w).

The following is a useful summary of both propagation functions. Each result may
be proved by a straightforward induction. Note that (b) is consistent with our earlier
informal observation that past and present events are immutable:

5

Lemma 3.1 Let w be a waveform, let t0, t1, and tv be time objects with t0 < tv, and
let w0 be either transport(w; v; tv) or inertial(w; v; t0; tv). Then

(a) ŵ0(t) = v for t � tv;
(b) ŵ0(t) = ŵ(t) for t � t0;
(c) if t1 � t0 � t2 � tv and ŵ(t) = u for t 2 [t1; t2), then ŵ0(t) = u for t 2 [t1; t2).

A similar induction shows that both procedures are \idempotent" in the following
sense:

Lemma 3.2 If w is a waveform and t0, tv; t
0

0, t
0

v are time objects with t0 < tv, t
0

0 < t0v,
t0 < t00, and tv < t0v, then

(a) transport(transport(w; v; tv); v; t
0

v) = transport(w; v; tv);
(b) inertial(inertial(w; v; t0; tv); v; t

0

0; t
0

v) = inertial(w; v; t0; tv).

4 Behavioral Modules

The simplest programs of our language are the behavioral modules, which contain ex-
plicit information concerning propagation delay and the functional dependence of out-
puts on inputs.

A behavioral module is a list M = (BEHAV I O T P D), where

(1) BEHAV is the identifying literal atom for modules of this type;

(2) I = I(M) = (r1 : : : rm) is a list of literal atoms called the inputs of M ;

(3) O = O(M) = (s1 : : : sn) is a list of literal atoms called the outputs of M ;

(4) T = T (M) = (�1 : : : �n) is a list of elementary Boolean terms over I(M), called
the output terms of M ;

(5) D = D(M) = (d1 : : : dn) is a list of natural numbers, the delays of M ;

(6) P = P (M) = (p1 : : : pn) is a list of literal atoms called the propagation modes of
M , each of which is either TRANSPORT or INERTIAL.

The members of the list (r1 : : : rm s1 : : : sn) are required to be distinct and are called
the signals of M .

Note that each output is associated with a term, a mode, and a delay. If every term
is either an atom or a list of atoms, (i.e., contains no nested function calls), then M is
primitive.

Gates are generally modeled as primitive modules with inertial delays. For example,
we represent a simple 2-input nand gate as the primitive module nand2:

(BEHAV (A B) (C) ((NAND2 A B)) (2000) (INERTIAL))

We may de�ne a similar behavioral module, with n inputs and 1 output, corresponding
to each elementary n-ary Boolean function, arbitrarily taking the delay to be 2000 in
each case. In the sequel, we shall refer to these primitive modules without explicitly
listing their de�nitions.

Transport mode is often used to model wires along which pulses of arbitrarily small
duration are propagated to the delayed signal. For the purpose of illustration, the
following primitive module m is de�ned to have one output of each propagation mode:

6

ENTITY adder2 IS

PORT (a,b,c: IN BIT; l,h: OUT BIT)

END adder2;

ARCHITECTURE adder2 OF adder2 IS

ENTITY m IS COMPONENT nand

PORT(a,b: IN BIT; c,d: OUT BIT) PORT(a,b: IN BIT; l,h: OUT BIT);

END m; END COMPONENT;

SIGNAL t1,t2,t3,t4,t5,t6,t7: BIT;

ARCHITECTURE m OF m IS BEGIN

BEGIN I1: nand PORT MAP (a,b,t1);

c <= a NAND b AFTER 2 NS; I2: nand PORT MAP (a,t1,t2);

d <= TRANSPORT NOT a AFTER 5 NS; I3: nand PORT MAP (b,t1,t3);

END m; I4: nand PORT MAP (t2,t3,t4);

I5: nand PORT MAP (c,t4,t5);

I6: nand PORT MAP (c,t5,t7);

I7: nand PORT MAP (t5,t4,t6);

I8: nand PORT MAP (t5,t1,h);

I9: nand PORT MAP (t7,t6,l);

END adder2;

(a)

(b)

Figure 1: VHDL Code

(BEHAV (A B) (C D) ((NAND2 A B) (NOT1 A)) (2000 5000) (INERTIAL TRANSPORT))

The VHDL code corresponding to a behavioral module consists of

(a) an entity declaration, consisting of a port clause listing the input signals as ports
of mode IN and the output signals as ports of mode OUT, all of type BIT;

(b) an architecture body, consisting of a concurrent signal assignment statement cor-
responding to each output signal.

The code (generated by our translator) for the module m de�ned above is displayed in
Figure 1(a). Note that our time units are interpreted by the translator as picoseconds,
and hence the delays are expressed as 2 and 5 nanoseconds. Note also that there is no
mention of inertial delay in the translation, since this is the VHDL default mode.

Another example of a behavioral module is the 1-bit adder adder1:

(BEHAV (A B C) (L H)

((XOR3 A B C) (OR2 (AND2 A (OR2 B C)) (AND2 B C)))

(12000 10000)

(INERTIAL INERTIAL))

The two outputs of this module represent the 2-bit sum of the three input bits. Since
the higher-order \carry" output bit is not expressed as an elementary function of the
inputs, this is not a primitive module.

7

Let s = nth(j; O(M)) be an output of a behavioral moduleM . Let � = nth(j; T (M))
be the corresponding term. For any bit vector V of the same length as I(M), we de�ne
the combinational value of s w.r.t. V as cv(s; V;M) = eval(�; pairlist(I(M); V)).

We shall say that a list of waveforms is an input (resp., output) packet for a moduleM
if it has the same length as I(M) (resp., O(M)). The semantics of behavioral modules
are de�ned by a function exec of four arguments: (1) a module M , (2) an input packet
pin for M , (3) an output packet pout = (w1 : : : wn) for M , and (4) a time object t0.
The value of exec(M;pin; pout; t0) is the updated output packet p0out = (w0

1 : : : w0

n) that
results from \executing" M at t0. It is de�ned as follows: For i = 1; : : : ; n, let vi be the
combinational value of nth(i; O(M)) w.r.t. p̂in(t0), and let ti = t0�nth(i;D(M)). Then
w0

i is either transport(wi; vi; ti) or inertial(wi; vi; t0; ti), according to nth(i; P (M)).
Our �rst observation concerning the behavior of exec is that its value depends only

on the current values of the input:

Lemma 4.1 Let p1 and p2 be input packets and let pout be an output packet for a
behavioral module M . For any t0 2 T, if p̂1(t0) = p̂2(t0), then exec(M;p1; pout; t0) =
exec(M;p2; pout; t0).

Two other basic properties may be derived as consequences of Lemmas 3.1(b) and 3.2:

Lemma 4.2 Let pin and pout be an input packet and an output packet for a behavioral
module M . For any t0 2 T, hist(exec(M;pin; pout; t0); t0) = hist(pout; t0).

Lemma 4.3 Let pin and pout be an input packet and an output packet for a behavioral
module M and let t0 and t1 be time objects. If t0 < t1 and p̂in(t0) = p̂in(t1), then
exec(M;pin; exec(M;pin; pout; t0); t1) = exec(M;pin; pout; t0).

5 Structural Modules

Our language also includes modules that represent hierarchically constructed circuits.
These structures contain information concerning interconnections among the modules
of which they are composed.

A structural module is a list M = (STRUCT I O S LI LO), where

(1) STRUCT is the identifying literal atom for modules of this type;

(2) I = I(M) = (r1 : : : rm) is a list of literal atoms called the (global) inputs of M ;

(3) O = O(M) = (s1 : : : sn) is a list of literal atoms called the (global) outputs of M ;

(4) S = S(M) = (�1 : : : �k) is a list of (structural or behavioral) modules, called the
submodules of M ;

(5) LI = LI(M) = (A1 : : : Ak), where for j = 1; : : : ; k, Aj = (aj1 : : : ajmj
) is a list

of literal atoms called the jth local inputs of M , and mj is the length of I(�j);

(6) LO = (B1 : : : Bk), where for j = 1; : : : ; k, Bj = (bj1 : : : bjnj
) is a list of literal

atoms called the jth local outputs of M , and nj is the length of O(�j).

8

The members of the list (r1 : : : rm b11 : : : b1n1 : : : bk1 : : : bknk
), consisting of the global

inputs and all local outputs, are required to be distinct and are called the signals of M .
There is no such constraint on the global outputs or local inputs, but each local input
must be a signal of M , and each global output must be a local output.

Note that the local inputs and outputs of M correspond to its submodules. Thus,
intuitively, the submodules of a structure generate signals that are distinct from each
other and from the structure's inputs. Each signal may be connected to arbitrarily many
submodule inputs. A signal other than a global input may serve as any number of global
outputs, but global inputs and outputs are distinct.

One additional constraint must be imposed on structural modules: in order to ensure
that any simulation (as de�ned in the next section) of a module terminates, our struc-
tures are required to be free of zero-delay cyclic paths. Several preliminary de�nitions
will be needed in order to make this notion precise.

We shall de�ne a computable function that measures the (possibly in�nite) maximum
length of any path of signals within a structure along which the total delay is 0. The
de�nition will be based on an auxiliary function, �(M; s;E; L), the arguments of which
are to be understood as follows:

(1) M may be either the top-level structure or one of its components at any level of
the hierarchy;

(2) s is a signal of M ;

(3) E = (e1 : : : en) is a list of generalized numbers corresponding to O(M). For each
i, ei is intended to represent the maximum length of any path that starts at the
ith output and leads out of M . Such a list is called an environment for M ;

(4) L is a list of signals of M , each of which is known to lie on some in�nite path.

Under these assumptions, we may think of � = �(M; s;E; L) as the maximum length of
a path starting at s. It is computed recursively as follows:

(1) If s is a member of L, then � = INFINITY. Otherwise:

(2) Let �1 = maxfei : s = sig, where O(M) = (s1 : : : sn). (The maximum of the
null set is taken to be 0.)

(3) SupposeM is behavioral. Let D(M) = (d1 : : : dn). If s is an input ofM and some
di > 0, then let �2 = 1+maxfei : di = 0g; otherwise, �2 = 0.

(4) SupposeM is structural with S(M) = (�1 : : : �k). For 1 � i � k, let nth(i; LI(M))
= (ai1 : : : aimi

), nth(i; LO(M)) = (bi1 : : : bini
), I(�i) = (�i1 : : : �imi

), and
let Ei be the environment (�i1 : : : �ini

) for �i, where for 1 � k � ni, �ik =
�(M; bik; E; cons(s; L)). Let �ij = �(�i; �ij ; Ei; NIL) for i = 1; : : : ; k and j =
1; : : : ;mi. Let �2 = maxf�ij : s = aijg.

(5) � = max(�1;�2).

The function � is de�ned by by �(M; s;E) = �(M; s;E; NIL). Next, we de�ne the
relative �-depth of a module M with respect to an environment E to be the number �
computed as follows:

9

(1) Let D0 be the maximum value of �(M; s;E) over all signals s of M . If M is
behavioral, then � = D0. Otherwise:

(2) LetM be structural with S(M) = (�1 : : : �k). For 1 � i � k, let nth(i; LO(M)) =
(bi1 : : : bini

) and letDi be the relative �-depth of �i with respect to the environment
(�(M; bi1; E) : : : �(M; bini

; E)). Then � = max(D0; D1; : : : ; Dk).

Finally, we de�ne the �-depth of M to be its relative �-depth with respect to the
environment (0 : : : 0). This represents the length of the longest 0-delay path through
M . If it is not INFINITY, we shall say that M is �-acyclic. All structural modules in
our language are required to have this property.

Although we have gone to considerable e�ort to formalize the VHDL \delta delay"
mechanism, the examples in which we are interested exhibit only positive delays. Our
�rst example is the structural module adder2, composed of nine nand gates and intended
as a gate-level \implementation" of the behavioral module adder1:

(STRUCT (A B C) (L H)

(nand2 nand2 nand2 nand2 nand2 nand2 nand2 nand2 nand2)

((A B) (A T1) (B T1) (T2 T3) (C T4) (T5 T4) (C T5) (T5 T1) (T7 T6))

((T1) (T2) (T3) (T4) (T5) (T6) (T7) (H) (L)))

The VHDL code corresponding to a structural module consists of

(a) an entity declaration, consisting of a port clause listing the inputs as ports of mode
IN and each output as a port, either of mode BUFFER, if it occurs as a local input,
or of mode OUT, if it does not;

(b) an architecture body, consisting of a component declaration corresponding to each
module that occurs as a submodule, a signal declaration corresponding to each
local output that it not a global output (and hence does not already occur as a
port), and a component instantiation statement corresponding to each submodule.

The code for adder2 is shown in Figure 1(b), and a circuit diagram appears in Fig-
ure 2(b). Later, we shall compare the behaviors of adder1 and adder2.

Of course, a signal path may be cyclic, provided that some signal in the path is
associated with a positive delay. This is an important feature of our language, as it
allows the modeling of state-holding devices. Figure 2(a) shows a clocked d-ip-op,
which is modeled by the structural module dff:

(STRUCT

(CLK D)

(Q QN)

(nand2 nand2 nand3 nand2 nand2 nand2)

((B2 B1) (A1 CLK) (B1 CLK B2) (A2 D) (B1 QN) (Q A2))

((A1) (B1) (A2) (B2) (Q) (QN) (A2)))

The submodules include �ve 2-input nand gates and a 3-input nand gate nand3, which
is similarly de�ned with an inertial delay of 2000.

We shall de�ne the semantics of structural modules by means of a function step, based
on the exec function of Section 4. Note that the notions of input and output packets
may be naturally applied to any module. For a structural module M , however, instead

10

CLK

D

A1

B1

A2

B2

Q

QN

C

B
A T1

T2

T3

T4

H

L

T7

T6

T5

Figure 2: (a) D-Flip-Flop (b) 1-Bit Adder

of a simple output packet, the third argument of step must be an object that consists of
a waveform corresponding to each signal generated by each component of M . Thus, for
any module M , we de�ne a bundle for M to be a list B such that (a) if M is behavioral,
then B is an output packet for M ; (b) if M is a structure with S(M) = (�1 : : : �k),
then B = (�1 : : : �k), where �i is a bundle for �i, i = 1; : : : ; k.

Let B be a bundle for a module M and let s be a signal of M that is not an input of
M . The waveform for s determined by B is the waveform w that is computed as follows:
(a) if M is behavioral and s = nth(j; O(M)), then w = nth(j; B); (b) if M is struc-
tural and s = nth(j; nth(i; LO(M))), then w is the waveform for nth(j; O(nth(i; S(M)))
determined by nth(i; B).

The output packet for M determined by B, denoted as outp(M;B), is de�ned as
follows: (a) if M is behavioral, then outp(M;B) = B; (b) if M is structural with
O(M) = (s1 : : : sn), then outp(M;B) = (w1 : : : wn), where for 1 � j � n, wj is the
waveform for sj determined by B.

Let M be a structural module with nth(i; LI(M)) = (ai1 : : : aini
). Let p be an

input packet and let B be a bundle for M . The ith input packet determined by p and
B, denoted as inp(i;M; p;B), is the input packet (w1 : : : wm) for nth(i; S(M)), where
for 1 � j � m, wj is computed as follows: (a) if sj is a global input nth(k; I(M)), then
wj = nth(k; p); (b) if sj is a local output, then wj is the waveform for sj determined by
B.

We may now de�ne step. Let p and B be an input packet and a bundle, respectively,
for an arbitrary moduleM , and let t 2 T. Then step(M;p;B; t) is the bundle B0, de�ned
as follows: (a) if M is behavioral, then B0 = exec(M;p;B; t) if p has a new value at t,
and B0 = B if not; (b) if M is structural with S(M) = (�1 : : : �k) and B = (�1 : : : �k),
then B0 = (�01 : : : �0k), where �

0

i = step(�i; inp(i;M; p;B); �i; t).
Thus, the execution of a structure at time t amounts to the execution of each behav-

ioral component for which the value of some input signal changes at t.
We have the following generalization of Lemma 4.1:

Lemma 5.1 Let p1 and p2 be input packets and let B be a bundle for a module M . Let
t0 2 T. If hist(p1; t0) = hist(p2; t0), then step(M;p1; B; t0) = step(M;p2; B; t0):

11

The history of a structural bundle (�1 : : : �k) relative to a time t is recursively de�ned
as hist(B; t) = (hist(�1; t) : : : hist(�k; t)). Lemma 4.2 may be generalized as follows:

Lemma 5.2 Let p and B be an input packet and a bundle for a module M . For any
t0 2 T, hist(step(M;p;B; t0); t0) = hist(B; t0).

6 Simulation

Let p and B be an input packet and a bundle for a module M . For any t 2 T, we de�ne
tnext(t; p; B;M) to be the minimum element of the set of all t0 2 T that occur as times
of events in the waveforms of p and B and that satisfy t0 > t, if this set is nonempty;
otherwise, tnext(t; p; B;M) is unde�ned.

A simulation of M consists of repeated applications of step, which are performed by
the function run. For t0; tf 2 T, we de�ne run(M;p;B; t0; tf) to be the bundle B

0 that
is computed recursively as follows: Let tnext = tnext(t0; p; B;M). If tnext is de�ned and
tnext � tf , then B0 = run(M;p; step(M;p;B; tnext); tnext; tf); otherwise, B

0 = B.
It is not obvious that this is a valid recursive de�nition, i.e., that it is satis�ed by a

unique function. This may be established by exhibiting some measure of the arguments
that decreases with each recursive call. More precisely, it su�ces to de�ne a function
meas such that under the assumptions imposed on the arguments of run,

meas(M;p; step(M;p;B; tnext); tnext; tf) � meas(M;p;B; t0; tf)

with respect to some well-founded order \�". (In fact, this is the requirement for
admissibility of Nqthm function de�nitions.)

We may construct an appropriate measure based on a function �(M;p;B) that com-
putes an upper bound on the delta component of any time object that occurs in any
waveform during the course of a simulation. For each signal s of M or any module
occurring in M , this function computes the sum of (a) the length of the longest 0-delay
path through M starting at s and (b) the largest delta component that occurs in the
waveform of p or B that corresponds to s. �(M;p;B) is the maximum of these sums.
(We omit the actual recursive de�nition of �, which parallels that of �-depth.)

Now, if t0 = (mi; ki) and tf = (mf ; kf), then we de�ne

meas(M;p;B; t0; tf) = (mf �mi; �(M;p;B)� ki):

It may be shown that with respect to the lexicographic order \�" onN�N, this function
satis�es the property stated above. Note that its de�nition, and hence that of run,
ultimately depends on the assumption that M is �-acyclic.

The function meas provides an induction scheme for deriving properties of run.
The following, for example, is proved by induction as an immediate consequence of
Lemma 5.2:

Lemma 6.1 Let p and B be an input packet and a bundle for a module M . For any
t0; tf 2 T, hist(run(M;p;B; t0; tf); t0) = hist(B; t0).

The next lemma, similarly proved by induction, provides for the decomposition of a
simulation interval:

12

Lemma 6.2 If p and B are an input packet and a bundle for a module M , and t0 �
t0 � tf , then run(M;p;B; t0; tf) = run(M;p; run(M;p;B; t0; t

0); t0; tf):

Another property of run that is important in the analysis of circuit behavior is the
following basic result, which describes the behavior of a structural module in terms of
that of its components. It is interesting that its proof requires the two properties of
step that are stated in Lemmas 5.1 and 5.2, namely that module execution is neither
predictive (with respect to input) nor retroactive (with respect to output).

Lemma 6.3 Let p and A = (�1 : : : �k) be an input packet and a bundle for a struc-
tural module M with S(M) = (�1 : : : �k). Let t0; t1 2 T and B = (�1 : : : �k) =
run(M;p;A; ; t0; t1). Then �i = run(�i; bi; �i; t0; t1); where bi = inp(i;M; p;B), i =
1; : : : ; k.

Proof: Let A0 = (�01 : : : �0k) = step(M;p;A; t0), where t0 = tnext(t0; p; A;M).
Then by de�nition of step, �0i = step(�i; ai; �i; t

0), where ai = inp(i;M; p;A), and
by de�nition of run, B = run(M;p;A0; t0; t1). By induction, we may assume that
�i = run(�i; bi; �

0

i; t
0; t1).

It follows from Lemmas 5.2 and 6.1 that hist(A; t0) = hist(B; t0). Consequently,
hist(ai; t

0) = hist(bi; t
0). By Lemma 5.1, �0i = step(�i; bi; �i; t

0). Thus, we have �i =
run(�i; bi; step(�i; bi; �i; t

0); t0; t1).
Let t00 = tnext(t0; bi; �i; �i). Clearly, if t

00 is de�ned, then t00 � t0. If t00 = t0, then

run(�i; bi; �i; t0; t1) = run(�i; bi; step(�i; bi; �i; t
00); t00; t1)

= run(�i; bi; step(�i; bi; �i; t
0); t0; t1) = �i:

In the remaining case,

run(�i; bi; �i; t0; t1) = run(�i; bi; �i; t
0; t1)

= run(�i; bi; step(�i; bi; �i; t
0); t0; t1) = �i: 2

The de�nition of our top-level simulation function sim depends on run as well as
a function init, which generates an initial bundle from a module and an input packet.
First, for a given module M , we de�ne the bundle B0(M):

(1) If M is behavioral, then B0(M) is the output packet (w0 : : : w0) for M , where
w0 = ((F ; 0)).

(2) If M is structural and S(M) = (�1 : : : �k), then B0(M) = (B0(�1) : : : B0(�k)):

Thus, every waveform of B0(M) is the trivial w0, which has the constant value ŵ0(t) =
F . Prior to simulation, each of these waveforms is updated by executing every behavioral
component of M . The result is the bundle init(M;p), de�ned as follows:

(1) If M is behavioral, then init(M;p) = exec(M;p;B0(M); 0);

(2) If M is structural with S(M) = (�1 : : : �k), then
init(M;p) = (init(�1; inp(1;M; p;B0(M))) : : : init(�k; inp(k;M; p;B0(M)))).

13

w

w

w

w
B

A C

D

10 20 21 60

30 70

12 72

6525 2615

Figure 3: Simulation of m

Now, given an input packet p for M and a time object t, we de�ne

sim(M;p; t) = run(M;p; init(M;p); 0; t):

We note the following restatements of Lemmas 6.2 and 6.3:

Lemma 6.4 If p is an input packet for a module M , and t1 � t2, then sim(M;p; t2) =
run(M;p; sim(M;p; t1); t1; t2):

Lemma 6.5 Let p be an input packet for a structural moduleM with S(M) = (�1 : : : �k).
Let t 2 T and B = (�1 : : : �k) = sim(M;p; t). Then �i = sim(�i; bi; t); where
bi = inp(i;M; p;B), i = 1; : : : ; k.

As a simple example, a simulation of the primitive module m is illustrated in Figure 3.
The waveforms corresponding to the inputs A and B are

wA = ((T ; 60000) (F ; 21000) (T ; 20000) (F ; 10000) (T ; 0))

and
wB = ((T ; 70000) (F ; 30000) (T ; 0));

respectively. These are shown along with the waveforms

wC = (((F ; 72000) (T ; 12000) (F ; 0)))

and
wD = ((F ; 65000) (T ; 26000) (F ; 25000) (T ; 15000) (F ; 0))

of the output sim(m; (wAwB); 80000) = (wC wD):
This example exhibits a fundamental di�erence between transport and inertial delay:

an input pulse of duration less than the delay, as occurs in wA, is not reected in an
inertial output.

All of the simulation results that we report herein were produced by the Nqthm
implementation of sim and have been matched with the output of the corresponding
Vantage simulations of the VHDL translations of these modules. One further observation
is warranted, however, in support of the claim that our language de�nition adheres to
the VHDL standard [3]. There is an apparent discrepancy between the de�nition of sim
and the standard: in our language, each output waveform of a behavioral module is
updated whenever there is a change in any input value. In VHDL, on the other hand,
in the absence of any instruction to the contrary (i.e., an explicit \sensitivity list"), a
signal's waveform is updated only in response to changes in those inputs on which the
signal is functionally dependent.

14

Consider, for example, the output D of the module m. The VHDL code corresponding
to this signal (Figure 1) is executed only in response to events of the input waveform
wA. However, according to our de�nitions of exec and step, its waveform is also updated
whenever the value of B changes, e.g., at time 30000 in our example.

Nonetheless, as illustrated in Figure 3, the behavior of this output signal is com-
pletely independent from that of B, in accordance with the VHDL standard. In or-
der to understand this, consider the waveform w that represents this signal before the
execution of m at time 21000. The updated waveform after this execution is w0 =
transport(w; T ; 26000). Although w0 is further updated when the value of B changes
at 30000, the value of (NOT1 A) remains T , and hence, by Lemma 3.2, the resulting
waveform is transport(w0; T ; 35000) = w0.

The above argument is based on the simple observation that at the time of any
change in input during a simulation of a behavioral module, the output packet is the
result of executing the module at that time. In fact, an interesting property of our
simulator is that this holds true even when there is no input change, i.e, regardless of
whether the execution actually occurs:

Lemma 6.6 Let p be an input packet for a behavioral module M , let t 2 T, and let
B = sim(M;p; t). Then B = exec(M;p;B; t).

Proof: It is easily shown by induction and Lemma 4.3, that if B0 = exec(M;p;B0; t0)
and B1 = run(M;p;B0; t0; t1), then B1 = exec(M;p;B1; t1). The lemma is an instance
of this result, with t0 = t, B0 = init(M;p), t1 = t, and B1 = B. 2

7 Analysis of Circuit Behavior

We begin our analysis of circuit behavior by considering the outputs of a behavioral
module. In the case of transport delay, it may be shown that the value of an output
with delay d, at time t+ d, is simply the combinational value determined by the input
values at time t. For inertial delay, a similar prediction may be made only if the combi-
national value remains stable over an interval of length d. We have the following general
characterization:

Lemma 7.1 Let s = nth(j; O(M)) be the jth output of a behavioral module M , let
d = nth(j;D(M)) be the corresponding delay, and let w = nth(j; sim(M;p; tf)).

Assume that for all t 2 [t1; t2), the combinational value of s w.r.t. p̂(t) is v, where
t1 + d � t2 and t1 � tf . Then for all t 2 [t1 + d; t2 + d), ŵ(t) = v.

Proof: Let p1 = sim(M;p; t1). Then according to Lemma 6.6, p1 = exec(M;p; p1; t1).
It follows from Lemma 3.1(a) that the value of nth(j; p1) is v for all t � t1 + d.

We claim that if p0 is any output packet for M such that nth(j; p0) has value v

throughout [t1+d; t2+d), then so does nth(j; run(M;p; p0; t0; tf)), for any t
0 � t1. Once

this claim is proved, the lemma will follow from Lemma 6.4 upon substituting p1 and t1
for p0 and t0.

The claim is proved by induction. It su�ces to show that if p has a new value at t00 =
tnext(t

0; p; p0;M), and p00 = exec(M;p; p0; t00), then nth(j; p00) has value v throughout
[t1 + d; t2 + d).

15

adder2

A

B

C

input

L

H

H

L

adder1

32 44 64 72

70 88

10

32 52 92

90

8060

40

20

Figure 4: Simulation of adder1 and adder2

If t00 � t2, then the desired result follows from Lemma 3.1(c). Thus, we may assume
t00 < t2 and hence, the combinational value of s w.r.t. p̂(t00) is v. In this case, nth(j; p00)
has value v on [t1+d; t00+d) by Lemma 3.1(c), and on [t00+d; t2+d) by Lemma 3.1(a). 2

In Figure 4, we illustrate Lemma 7.1 with a simulation of the behavioral module
adder1. We also compare the result of this simulation with the corresponding output of
the combinational structure adder2. Note, for example, that the �rst output L of adder1,
with corresponding term (XOR3 A B C), has the combinational value F throughout the
interval from 40000 to 80000, and thus, since its delay is 12000, the actual value of the
signal is F from 52000 to 92000. The behavior of adder2 is somewhat more complicated,
although for stable inputs, the two modules eventually produce the same values.

It is possible to establish similar behavioral speci�cations of combinational (i.e.,
acyclic) structures, such as adder2. The hypothesis of Lemma 7.1 must be strengthened,
however, to require that each input maintain a constant value over a �xed interval, the
length of which is the total delay along the longest path that connects the output to
an input. The conclusion applies to the interval that results from shifting the lower
and upper endpoints of this interval by the delays along the longest and shortest paths,
respectively. In the case of adder2, these delays are 12000 and 4000 for output L, and
10000 and 4000 for output H. Thus, in the simulation displayed in Figure 4, for example,
the input is constant over the interval [20000; 40000), and hence the computed value of
L is valid on the interval [32000; 44000).

16

Proposition 7.1 Let p = (wA wB wC) be an input packet for adder2, let t1; t2; tf 2 T,
and let sim(adder2; p; tf) = ((wT1) (wT2) (wT3) (wT4) (wT5) (wT6) (wT7) (wH) (wL)):
Let t1 � 12000 � t2 � tf . Suppose that for all t 2 [t1; t2), ŵA(t) = vA, ŵB(t) = vB, and
ŵC(t) = vC. Then for all t 2 [t1 � 12000; t2 � 4000), ŵL(t) = xor3(vA; vB; vC); for all
t 2 [t1 � 10000; t2 � 4000), ŵH(t) = or2(and2(vA; or2(vB; vC)); and2(vB; vC)).

Proof: The proof is straightforward, involving successive applications of Lemma 7.1
to the signals along the various paths that connect inputs to outputs. We shall concen-
trate on wL; the analysis of wH is similar. We may assume t1 � 8000 � t2. Applying
Lemma 6.5 with i = 1, we have (wT1) = sim(nand2; (wA wB); tf). By Lemma 7.1, for
t 2 [t1 � 2000; t2 � 2000), ŵT1(t) = nand2(vA; vB). We abbreviate this value as vT1.
Similar applications of the same two lemmas yield the following:
ŵT2(t) = nand2(vA; vT1) = vT2 for t 2 [t1 � 4000; t2 � 2000);;
ŵT3(t) = nand2(vT1; vB) = vT3 for t 2 [t1 � 4000; t2 � 2000);
ŵT4(t) = nand2(vT2; vT3) = vT4 for t 2 [t1 � 6000; t2 � 4000);
ŵT5(t) = nand2(vT4; vC) = vT5 for t 2 [t1 � 8000; t2 � 2000);
ŵT6(t) = nand2(vT4; vT5) = vT6 for t 2 [t1 � 10000; t2 � 4000);
ŵT7(t) = nand2(vT5; vC) = vT7 for t 2 [t1 � 10000; t2 � 2000);
ŵL(t) = nand2(vT6; vT7) for t 2 [t1 � 12000; t2 � 4000).

Expansion of the abbreviations vT1; : : : ; vT7 yields an expression for nand2(vT6; vT7)
that may be shown to be tautologically equivalent to xor3(vA; vB; vC). 2

Similar reasoning may be applied to state-holding (i.e., cyclic) circuits, such as the
ip-op dff of Section 5. The intended behavior of this device depends on various
assumptions concerning the regularity of its inputs:

(1) The CLK input is expected to behave as a regular clock pulse, with minimum high
and low times (intervals during which the values T and F , respectively, must be
maintained) of 4 ns. and 6 ns.

(2) The value of the D input may not change too close to a rising edge (i.e., a time
when CLK assumes the value T). Speci�cally, a setup time (interval of stability
preceding a rising edge) of 4 ns. and a hold time (interval of stability following a
rising edge) of 2 ns. must be respected.

Under these conditions, an output event can occur only during a short interval following
a rising edge. The value assumed by Q following a rising edge is the value of D at the
edge, and the new value of QN is its negation.

In the sample simulation shown in Fig. 5, rising edges occur at multiples of 20 ns.
During the �rst cycle, the behavior of Q is erratic as the circuit reaches a settled state.
Over the next two cycles, Q behaves as described above. The behavior becomes erratic
again during the cycle following the rising edge at 60 ns, because a change in D occurs
too close to the edge.

A precise speci�cation of dff is given by the following. Its proof is an elaboration of
the informal argument found in [7]:

Proposition 7.2 Let p = (wCLK wD) be an input packet for dff. Assume that

ŵCLK(t) =

�
F for t 2 [t�; t+) [[t0

�
; t0+)

T for t 2 [t+; t
0

�
);

17

D

CLK

Q

40 80

Figure 5: Simulation of dff

where t� � 6000 � t+, t+ � 4000 � t0
�
, and t0

�
� 2000 � t0+. Assume also that

ŵD(t) = v for t 2 [td; t+ � 2000);

where td � 4000 � t+. Let sim(dff; p; tf) = ((wA1) (wB1) (wA2) (wB2) (wQ) (wQN)),
where tf � t0+. Then ŵQ(t) = v and ŵQN(t) = not1(v) for t 2 [t+ � 6000; t0+ � 4000):

Proof: Applying Lemmas 7.1 and 6.5, we have ŵA2(t) = ŵB1(t) = T for t 2 [t� �
2000; t+ � 2000) and for t 2 [t0

�
� 2000; t0+ � 2000). Let t1 = max(t� � 2000; td). Then

t1 � 4000 � t+. Applying the same two lemmas again, we have ŵB2(t) = not1(v) for
t 2 [t1 � 2000; t+ � 4000), and hence ŵA1(t) = v for t 2 [t1 � 4000; t+ � 4000).

We shall consider the case v = F ; the case v = T is similar. In this case, ŵB1(t) = T
for t 2 [t1 � 6000; t+ � 6000), and ŵA2(t) = F for t 2 t+ � 2000; t+ � 6000).

Let t2 be the least time such that t2 > t+ � 2000 and some waveform in the set
fwA1; wB1; wA2; wB2g assumes a new value at t2. Then ŵA1(t) = ŵA2(t) = F and
ŵB1(t) = ŵB2(t) = T for t 2 [t+ � 2000; t2). Since t2 � t+ � 4000, it follows that
ŵB1(t) = ŵB2(t) = T and ŵA1(t) = F for t 2 [t+ � 4000; t2 � 4000). Similarly,
ŵA2(t) = F for t 2 [t+� 4000;min(t2� 4000; t0

�
� 2000)). Thus, only wA2 can possibly

assume a new value at t2, and this requires that t2 � t0
�
� 2000.

Thus, ŵB1(t) = T and ŵA2(t) = F for t 2 [t+ � 2000; t0
�
� 2000). It follows that

ŵQN(t) = T for t 2 [t+ � 4000; t0
�
� 4000), and hence ŵQ(t) = F for t 2 [t+ � 6000; t0

�
�

6000). Let t3 be the least time such that t3 > t+ � 6000 and either wQ or wQN assumes
a new value at t3. By an argument similar to the above, it is easily shown that t3 �
t0+ � 4000. 2

8 Discussion

The examples treated in the preceding section illustrate how the informal reasoning
that is commonly employed by hardware designers in the analysis of circuits may be
precisely formulated in our VHDL formalization. In a sequel to this paper [5], we
further develop our proof methodology and systematically apply it to several signi�cant
classes of circuits. The generalization of Proposition 7.1 to arbitrary combinational
circuits, for example, is straightforward. We also treat an interesting class of synchronous
sequential circuits, based on a variation of the d-ip-op and its characterization given

18

by Lemma 7.2. As an application, we present a proof of a behavioral speci�cation of
a circuit consisting of two independently clocked processors that achieve asynchronous
communication by means of a well known protocol.

We have attempted to capture accurately some of the basic semantic notions of
VHDL. One consequence of our commitment to adhere to the VHDL standard is a
faithful formalization of the \delta delay" mechanism, which provides for the simulation
of zero-delay devices. Our exposition could be shortened signi�cantly if we were to
require all delays to be positive. In particular, the de�nitions of time object, structural
module, and the simulator itself are greatly complicated by the delta delay feature.

On the other hand, in order to simplify the analysis, we have concentrated thus
far on a subset of the language that is so limited as to be of little practical value for
hardware engineers. In the future, we plan to extend this subset to include features that
will allow more realistic designs: bidirectional ports, signal resolution, general waveform
transactions, complex signal types, and sequential statements. We hope to show that
our speci�cation and veri�cation methods may be e�ectively applied to these designs.

References

[1] Boyer, R. S. and Moore, J, A Computational Logic Handbook, Academic Press,
Boston, 1988.

[2] Damm, W., A Formal Semantics for VHDL based on Interpreted Petri Nets, Tech-
nical Report, University of Oldenburg, 1992.

[3] Institute of Electrical and Electronic Engineers, Draft Standard VHDL Language
Reference Manual, 1993.

[4] Kaufmann, M., A Translator from an HDL of David Russino� to VHDL, Internal
Note 278, Computational Logic, Inc., July 1993.

[5] Russino�, D., \Speci�cation and Veri�cation of Gate-Level VHDL Models of Syn-
chronous and Asynchronous Circuits", to appear in Speci�cation and Validation
Methods, edited by Egon B�orger, Oxford University Press, 1994; also available as
Technical Report 99, Computational Logic, Inc., May 1994.

[6] Sanchez, L. and Kloos, C. D., \Functional Description of VHDL", in Segundo Con-
greso de Programacion Declarativa PRODE 93, Spain, September 1993.

[7] Taub, H. and Schilling, D., Digital Integrated Electronics, McGraw-Hill, New York,
1977.

[8] Van Tassel, J., A Formalization of the VHDL Simulation Cycle, Technical Report
249, University of Cambridge Computer Laboratory, June 1992.

19

