
A Note on the IEEE Verilog Simulation Cy
leDavid M. Russino�September 28, 2005Abstra
tThe IEEE Verilog Standard 
ontains a number of ambiguities and in
onsisten-
ies with respe
t to the semanti
s of event s
heduling, 
reating diÆ
ulties for theprogrammer in predi
ting the behavior of a 
ompliant simulator. In this note, webring some of these issues to light and attempt to resolve them by outlining anabstra
t formulation of the Verilog simulation 
y
le, aimed at 
larifying the intentof the Verilog Standard Committee. We also observe that the degree of freedomallowed by the Standard in the interleaving of 
on
urrent pro
esses is impra
ti
al,and if fully exer
ised, would inevitably lead to ra
e 
onditions and unpredi
ableresults. Consequently, this aspe
t of the spe
i�
ation has been essentially ignoredby ta
it agreement between implementors and users. As a remedy, we propose tomodify the spe
i�
ation of the simulation 
y
le by imposing a simple restri
tionon the nondeterministi
 sele
tion of a
tive events. The suggested restri
tion wouldallow the programmer to eliminate ra
e 
onditions without inhibiting 
ompileroptimization.Introdu
tionThe Verilog simulation 
y
le|a model of the nondeterministi
 pro
edure by whi
h 
on-
urrent pro
esses are s
heduled and exe
uted|is 
entral to the semanti
s of the languageas spe
i�ed by IEEE Standard 1384 [4℄. Its de�nition, however, is poorly understood bythe Verilog user 
ommunity, espe
ially with regard to two questions:(1) When does a pro
ess be
ome enabled, i.e., eligible for exe
ution?(2) Under what 
ir
umstan
es may the simulator suspend the exe
ution of one enabledpro
ess in order to pass 
ontrol to another?Confusion surrounding the �rst question may be fairly attributed to ambiguities and in-
onsisten
ies in the Standard, as re
ounted below. With respe
t to the se
ond, however,the do
ument is quite 
lear (pp. 65-66):The freedom to 
hoose any a
tive event for immediate pro
essing is an es-sential sour
e of nondeterminism in the Verilog HDL ... At any time whileevaluating a behavior statement, the simulator may suspend exe
ution andpla
e the partially 
ompleted event as a pending a
tive event on the eventqueue. The e�e
t of this is to allow the interleaving of pro
ess exe
ution.Note that the order of interleaved exe
ution is nondeterministi
 and notunder 
ontrol of the user. 1



But 
ommer
ial Verilog implementations are generally quite 
onservative in their exer-
ise of this freedom. Moreover, programmers often rely on the simulator's restraint inthis regard, assuming, for example, that 
ontrol will never be passed from one pro
ess toanother until the �rst has either terminated or been halted by a timing 
ontrol. Simula-tors usually, but not always, 
onform to this assumption, whi
h may lead to unexpe
tedresults. In any 
ase, the e�e
tiveness of a language standard is 
ompromised when it issupplanted by impli
it 
onvention.The purpose of this note is twofold. First, we present a formulation of the simulation
y
le, restri
ting our attention to a small but pra
ti
al subset of Verilog, in whi
h weattempt to 
larify several points that are left ambiguous by the Standard. We are awareof one previous similar e�ort, by Mike Gordon [3℄, on behalf of the formal methods
ommunity. We �nd Gordon's work to be useful as a point of departure, but 
awed inits treatment of 
ertain aspe
ts of event s
heduling and delay.Se
ond, we suggest a pra
ti
al restri
tion of the nondeterministi
 sele
tion of enabledevents, intended to narrow the gap between the Standard and prevailing implementationpoli
ies while still providing opportunities for 
ompiler optimization through transfer of
ontrol between enabled pro
esses. We also formulate a simple 
oding guideline thateliminates ra
e 
onditions and guarantees predi
table behavior in the presen
e of thisrestri
tion.EventsOf the 
lasses of pro
esses supported by the Standard, we 
onsider only the two that areused most 
ommonly by designers of register-transfer logi
 (RTL): the pro
edural blo
kand the 
ontinuous assignment . A pro
ess may assign values to signals of a variety oftypes, but for simpli
ity, we shall assume that all signals de�ned by pro
edural blo
ksand 
ontinuous assignments are de
lared as registers and wires, respe
tively, and thatevery signal is a s
alar, i.e., assumes only single-bit values.A pro
edural blo
k 
onsists of either of the two keywords initial and always fol-lowed by a pro
edural statement, whi
h may be a 
ompound statement 
onsisting ofa sequen
e of statements bra
keted by the keywords begin and end . Of parti
ularinterest are the blo
king and nonblo
king assignment statements,v = #Æ E;and v <= #Æ E;respe
tively, where v is a register, E is an arbitrary expression, and #Æ is an optionalindi
ator of a delay of Æ � 0 time units. Any pro
edural statement may be pre
eded bya timing 
ontrol of any of three types:(1) a delay indi
ator, #Æ, where Æ is a natural number;(2) an edge-sensitive 
ontrol, either �(v), �(v1 or : : : or vk), �(posedge v), or�(negedge v), where v and vi, i = 1; : : : ; k, are signals;(3) a level-sensitive 
ontrol, wait(E), where E is an expression.2



A 
ontinuous assignment has the form of a single statement,assign #Æ v = E;where v is a wire and again, the delay indi
ator is optional.The state of a pro
edural blo
k 
omprises several 
omponents:(1) a program 
ounter (PC), whi
h may point either to a statement, referred to as the
urrent statement of the blo
k, or to a timing 
ontrol;(2) an a
tive bit;(3) in the 
ase of an ina
tive blo
k that has not been terminated, the time at whi
hthe blo
k is s
heduled to resume;(4) in the event that the 
urrent statement is a delayed blo
king assignment that hasalready been evaluated, a pending assignment value.Following Gordon [3℄, we distinguish between a
tive and enabled pro
esses. By de�-nition, a pro
edural blo
k is enabled if and only if it is a
tive and its PC does not pointto a timing 
ontrol. A 
ontinuous assignment is 
onsidered to be 
ontinuously a
tive,but may or may not be enabled, as determined by the value of an expli
it enabled bitasso
iated with the pro
ess.During the 
ourse of simulation, a set of pending updates is maintained. Ea
h updateis identi�ed as either nonblo
king or 
ontinuous (a

ording to the type of assignmentstatement from whi
h is was generated), and 
onsists of an a
tive bit, a value, a signalto whi
h the value is to be assigned, and a s
heduled time of assignment. An assignmentupdate is enabled if and only if it is a
tive.All pro
esses (pro
edural blo
ks and 
ontinuous assignments) and assignment up-dates (nonblo
king and 
ontinuous) are referred to as events.Exe
utionThe state of a simulation 
onsists of(1) a nonnegative-integer-valued global variable C, representing the 
urrent time;(2) the 
urrent value of ea
h signal;(3) the state of ea
h pro
ess as de�ned above;(4) the set of all pending updates.The period between su

essive in
rements of C is 
alled a simulation 
y
le. At ea
hstep within a simulation 
y
le, an enabled event (if any exists) is sele
ted for exe
ution.In this se
tion, we de�ne, for ea
h event type, the e�e
t of an exe
ution step on thesimulation state.In the 
ase of a pro
edural blo
k, exe
ution is determined by the 
urrent statementas follows:(1) v = E : Set the value of v to the result of evaluating E.3



(2) v = #Æ E : If there is a pending assignment value asso
iated with the stateof this blo
k, update v with that value. Otherwise, evaluate E, set the pendingassignment value to the result, 
lear the a
tive bit, and s
hedule the pro
ess toresume at time C + Æ.(3) v <= #Æ E : Add an ina
tive nonblo
king pending update for v, using the value ofE, with s
heduled time of assignment C + Æ, overriding any other pending updatefor v that was previously s
heduled for time C + Æ.(4) v <= E : This is equivalent to v <= #0 E.Ex
ept for Case (2) with no pending value, the PC is then in
remented or otherwiseadjusted a

ording to any indi
ated sequen
e 
ontrol 
onstru
t. If this leaves the PCpointing to(a) a delay indi
ator #Æ, then the PC is adjusted further to point to the followingstatement; the pro
ess be
omes ina
tive and is s
heduled to resume at time C+ Æ;(b) a level-sensitive 
ontrol wait(E), then E is evaluated and if the result is nonzero,then the PC is in
remented.If the sele
ted enabled event is a 
ontinuous assignment, then exe
ution pro
eeds asfollows, a

ording to whether or not a delay is indi
ated:(1) assign v = E : Set the value of v to the result of evaluating E.(1) assign #Æ v = E : Add an ina
tive 
ontinuous pending update for v using theresult of evaluating E and time C + Æ. Delete any existing pending update for v.In either 
ase, the enabled bit of the 
ontinuous assignment is then 
leared. Notethat the s
heduling of a delayed 
ontinuous assignment, unlike that of a nonblo
kingassignment, has the e�e
t of overriding any previously s
heduled assignment to the samewire, regardless of the time for whi
h it was s
heduled. This behavior is 
hara
teristi
of inertial delay .Finally, if the sele
ted event is a pending update, then the signal is updated withthe indi
ated value and the event is retired.When the exe
ution of an event 
hanges the value of a signal, and the PC of somea
tive pro
edural blo
k points to a timing 
ontrol, that timing 
ontrol is said to �reunder the following 
onditions:(1) �(v) or �(v1 or : : : or vk) : v or some vi 
hanges value;(2) �(posedge v) : the value of v 
hanges to 1;(3) �(negedge v) : the value of v 
hanges to 0;(4) wait(E) : the value of E 
hanges to 1.Similarly, a disabled 
ontinuous assignment �res whenever its right-hand side 
hangesvalue. 4



The Simulation Cy
leIn the initial state of a simulation, C = 0, signal values are initialized as indi
ated, everypro
edural blo
k is a
tive with PC reset to its initial statement or timing 
ontrol, every
ontinuous assignment is disabled, and there are no pending updates. If any pro
eduralblo
k begins with a delay indi
ator #Æ, then its PC is adjusted to point to the followingstatement, its a
tive bit is 
leared, and it is s
heduled to resume at time Æ. Simulationpro
eeds as follows:(1) If there are no enabled events, go to (3); otherwise, sele
t (nondeterministi
ally)an enabled event and exe
ute it.(2) In
rement the PC of ea
h a
tive pro
ess whose 
urrent instru
tion is a timing
ontrol that �res. Set the enabled bit of any 
ontinuous assignment that �res. Goto (1).(3) If there are no ina
tive pro
esses or pending 
ontinuous assignment updates s
hed-uled for time C, then go to (4). Otherwise, a
tivate all su
h events and go to (1).(4) If there are no pending nonblo
king assignments s
heduled for time C, then go to(5). Otherwise, a
tivate and exe
ute all su
h assignments and go to (2).(5) In
rease C to the earliest time at whi
h some input 
hanges or for whi
h someevent is s
heduled. Update the inputs and go to (2).This formulation of the algorithm re
e
ts a number of de
isions 
on
erning the res-olution of ambiguities in the Standard. For example, our treatment of 
ontinuous as-signment is at odds with following pres
ription (p. 71):Assignments on [wires℄ shall be 
ontinuous and automati
. This means thatthat whenever an operand in the right-hand side expression 
hanges value,the whole right-hand side shall be evaluated and if the new value is di�erentfrom the previous value, then the new value shall be assigned to the left-handside.This suggests that a 
ontinuous assignment must be exe
uted immediately whenever itbe
omes enabled, taking pre
eden
e over any other pro
ess (even one that has alreadybegun exe
ution). This would require, for example, the following program to terminatewith the values x = y = z = 1:module MOD1;wire x;reg y, z;assign x = y;initial beginy = 0;#1 y = 1;z = x;end 5



endmoduleOn the other hand, we read elsewhere (p. 67) that a 
ontinuous assignment is to betreated as any other event:When the value of the expression 
hanges, it 
auses an a
tive update eventto be added to the event queue, using 
urrent values to determine the target.This 
learly implies that an enabled 
ontinuous assignment need not be exe
uted imme-diately (p. 66):One sour
e of nondeterminism is the fa
t that a
tive events 
an be taken o�the queue and pro
essed in any order.Thus, the alternative result x = y = 1, z = 0 must be allowed. Sin
e this is indeed theobserved out
ome of a VCS tra
e of this program, we ele
ted to ignore the 
ontradi
tory\
ontinuous and automati
" dire
tive.Further 
onfusion surrounds the exe
ution of nonblo
king assignment updates. Onthe one hand, it is 
lear that for a given simulation 
y
le, these events are not to bea
tivated until all other events s
heduled for the same time have been exe
uted. Whatis not 
lear is how these events, on
e a
tivated, are to be prioritized relative to any otherevents that may be generated by their exe
ution. Consider, for example, the following
ode: module MOD2;reg x, y;initial beginx <= 1;y <= 1;endalways �(x) y = 0;endmoduleAfter the initial blo
k is exe
uted and the two resulting nonblo
king assignment up-dates are a
tivated, the �rst of the two is exe
uted, and this enables the always blo
k.Now, whi
h is exe
uted next: the nonblo
king assignment update to y, or the blo
kingassignment? This would depend on one's interpretation of the dire
tive (p. 65) thatnonblo
king assignment update events \shall be assigned ... after all the a
tive and in-a
tive events have been pro
essed." In Gordon's model [3℄, this statement has beengiven the stri
test possible interpretation: any event generated by a nonblo
king updatemust be exe
uted before any remaining nonblo
king updates. But this poli
y is in dire
t
on
i
t with a later dire
tive (p. 122):When the simulator a
tivates the nonblo
king assign update events, the sim-ulator updates the left-hand side of ea
h nonblo
king assignment state-ment ... Nonblo
king assignment events 
an 
reate blo
king assignment events.6



These blo
king assignment events shall be pro
essed after the s
heduled non-blo
king events.This last statement also 
ontradi
ts the one quoted above 
on
erning nondeterminism,i.e., \a
tive events 
an be taken o� the queue and pro
essed in any order." However,it is 
onsistent with the VCS tra
e of MOD2, in whi
h the �nal value of y is 0, and istherefore re
e
ted in our model.Restri
ted NondeterminismIn this se
tion, we investigate the 
onsequen
es of the nondeterministi
 nature of thesimulation 
y
le. As a pra
ti
al matter, we are espe
ially interested in an even morelimited 
lass of Verilog programs, typi
al of those used to model syn
hronous sequentialRTL. Thus, we shall hen
eforth further restri
t our attention to programs 
onsistingonly of always blo
ks and 
ontinuous assignments, in whi
h the following 
onditions aresatis�ed:(1) Nonblo
king assignments o

ur only within blo
ks of the formalways �(posedge 
lk ) begin : : : endwhere 
lk is an input.(2) Blo
king assignments o

ur only within blo
ks of the formalways �* begin : : : endwhere *, by 
onvention, represents the disjun
tion of all signals appearing in theright-hand side of some assignment within the blo
k, 
alled the sensitivity list ofthe blo
k.(3) No other timing 
ontrols (in parti
ular, no delays) appear anywhere in the pro-gram.(4) No signal is assigned values by two distin
t pro
esses.(5) The program does not 
ontain any set of blo
king or 
ontinuous assignments v0 =E0, : : :, vk = Ek , su
h that vi o

urs in Ei�1 for i = 1; : : : ; k and vk = v0.Su
h programs will be 
onsidered standard Verilog. It is not diÆ
ult to 
onstru
t astandard program that exhibits the same unpredi
tability that was seen in our earlierexample MOD1:module MOD3(input 
lk);reg w = 0, x = 0, y = 0, a = 0;wire z = 0;always �* beginx = ~a;y = z; 7



x = a;w = 0;endassign z = x;always �(posedge 
lk) a <= y;endmoduleIf the �rst pro
edural blo
k is interrupted in order to exe
ute the 
ontinuous assignmentto z in response to ea
h assignment to x, then the value of a will alternate on su

essive
lo
k 
y
les; otherwise, a will remain 
onstant. Some 
ommer
ial Verilog 
ompilers, su
has VCS [1℄, do interrupt exe
uting pro
esses in some situations in order to exe
ute a
ontinuous assignment that has just be
ome enabled, and are therefore liable to exhibita ra
e 
ondition here. On the other hand, we are told that no existing implementationwill ever interrupt one pro
edural blo
k in favor of another [2℄. Hen
e the followingvariation is more predi
table:module MOD4(input 
lk);reg w = 0, x = 0, y = 0, z = 0, a = 0;always �* beginx = ~a;y = z;x = a;w = 0;endalways �* z = x;always �(posedge 
lk) a <= y;endmoduleOf 
ourse, it might be argued that both of the above 
ontain 
ir
ularities that 
onstitute\bad programming pra
ti
e", and that their author therefore deserves whatever resultsare produ
ed. In 
ontrast, the following exhibits only data dependen
ies of the sort
ommonly found in 
onventional RTL designs:module MOD5(input 
lk);reg w = 0, x = 0, y = 0, z = 0, a = 1;always �* beginx = ~a;y = x;end 8



always �* beginz = y;w = x;endalways �(posedge 
lk) a <= z;endmoduleIt may well be that every existing Verilog implementation would treat ea
h blo
k of thisprogram as atomi
, thereby produ
ing an exe
ution in whi
h the value of a alternates onsu

essive 
y
les as expe
ted. However, the Standard 
learly provides for a simulationin whi
h the blo
ks are interleaved, updating the signals in the order a, x, z, y, w, whi
hleads to a di�erent result, with the value of a settling at 0 after the �rst 
y
le. Con-sequently, 
ommon design pra
ti
e must rely on the presumed behavior of 
ommer
ialsimulators to prevent ra
e 
onditions, while ignoring the freedom en
ouraged by theStandard.Here we propose a minor modi�
ation of the Standard, a simple restri
tion on thenondeterministi
 sele
tion of enabled pro
esses that would eliminate the anomalous be-havior des
ribed above. This restri
tion would still allow a suÆ
ient degree of freedomto provide for 
ompiler optimization, and is in fa
t 
onsistent with all major 
ommer
ialimplementations:Exe
ution of an enabled pro
ess P may be suspended in order to pass 
ontrolto another enabled event, but only if that event is a pro
ess Q, and onlyimmediately after Q be
omes enabled. On
e the exe
ution of Q is terminatedor otherwise disabled, 
ontrol must be passed dire
tly ba
k to P.In order to modify our simulation algorithm to a

ommodate this restri
tion, we intro-du
e an additional data stru
ture: an exe
ution sta
k of enabled events. When a pro
essor other event is sele
ted for exe
ution, it is pushed onto the sta
k (whi
h is empty in theinitial state). When the event at the top of the sta
k terminates or be
omes disabled,it is popped from the sta
k. The revised simulation 
y
le is as follows:(1) If the exe
ution sta
k is not empty, go to (2). If there is no enabled event, go to(4). Otherwise, sele
t an enabled event and push it onto the sta
k.(2) Exe
ute the event at the top of the sta
k. Unless that event is a pro
edural blo
kthat remains enabled, pop it from the sta
k. In
rement the PC of ea
h disableda
tive pro
ess that points to a timing 
ontrol that �res, set the enabled bit of any
ontinuous assignment that �res, and go (nondeterministi
ally) to (3) or to (1).(3) If any pro
ess was enabled by the last exe
ution step, then sele
t one su
h pro
essand push it onto the sta
k. Go to (1).(4) If there are no ina
tive pro
esses or pending 
ontinuous assignment updates s
hed-uled for time C, then go to (5). Otherwise, a
tivate all su
h events and go to (1).(5) If there are no pending nonblo
king assignments s
heduled for time C, then go to(7). Otherwise, exe
ute all su
h assignments.9



(6) In
rement the PC of ea
h disabled a
tive pro
ess that points to a timing 
ontrolthat �res, set the enabled bit of any 
ontinuous assignment that �res, and go to (1).(7) In
rease C to the earliest time at whi
h either some input 
hanges or some pro
essis s
heduled to resume. Update the inputs and a
tivate all su
h pro
esses. Goto (6).Consider the e�e
t of this restri
tion on the behavior of MOD5. If the exe
ution of x =a results in a new value of x, then 
ontrol may be passed to the newly enabled se
ondblo
k. But if this o

urs, then the se
ond blo
k must be exe
uted to termination. The�rst blo
k is then resumed. As it terminates, the se
ond blo
k is enabled on
e againand 
onsequently re-exe
uted. Thus, the ra
e 
ondition is eliminated; the end result isas if the �rst blo
k had never been interrupted.MOD5 belongs to a 
lass of a
y
li
 standard programs, as de�ned below, whi
h are well-behaved under our restri
ted simulation 
y
le. Our goal is to show that if a 
ontinuousor blo
king assignment v = E of su
h a program is exe
uted under 
ertain 
onditionsduring a simulation 
y
le, then at the end of the 
y
le, the value of v is the same as thatof E.First, given two distin
t pro
esses P and Q, we de�ne P to be dependent on Q if anysignal in the sensitivity list of P is assigned by a statement in Q. A pro
edural blo
k P isdependent on itself if it 
ontains two assignments v = E and v0 = E0 su
h that v0 o

ursin E and the assignment to v pre
edes the assignment to v0 with respe
t to programorder. An a
y
li
 program is one that 
ontains no set of pro
esses P0; : : : ; Pk su
h thatP0 = Pk and for i = 1; : : : ; k, Pi is dependent on Pi�1.In the three examples in this se
tion, no pro
ess is dependent on itself. MOD3 andMOD4 both 
ontain mutually dependent pro
esses; only MOD5 is a
y
li
.Note that when a pro
ess is pushed onto the sta
k, it must be dependent on everyother pro
ess on the sta
k. During the exe
ution of an a
y
li
 program, therefore, nopro
ess on the sta
k 
an be dependent on the pro
ess at the top. Now let v = E be anassignment o

urring in a pro
ess P , and suppose that some signal v0 6= v that o

ursin E 
hanges value. If P itself is the pro
ess that produ
es this 
hange (i.e., P is at thetop of the sta
k), then the assignment to v must appear later in P than the assignmentto v0. Otherwise, P must now be enabled and 
annot already be on the sta
k; hen
e, Pwill eventually be sele
ted for exe
ution later during the 
urrent 
y
le. Thus, we havethe following result, whi
h pre
ludes ra
e 
onditions of the sort that we observed above:Let v = E be a 
ontinuous or blo
king assignment that appears in a pro
essP of an a
y
li
 standard program. Suppose that during a given simulation
y
le, this assignment is the last assignment to v to be exe
uted during the�nal exe
ution of P . Then the �nal value of v for that 
y
le 
oin
ides withthe �nal value of E.Con
lusionNaturally, as the produ
t of a 
ommittee, the IEEE Verilog Standard represents a di-vergent set of views. It is important, however, that any resultant in
onsisten
ies, su
has those dis
ussed above, be resolved if the Standard is to serve its intended purpose asan unambiguous guide for implementors and users.10



Of further 
on
ern is the impra
ti
al degree of freedom that is permitted in theinterleaving of pro
esses and the resulting unpredi
table behavior. Our �nal example,MOD5 of the pre
eding se
tion, suggests that it may be diÆ
ult to write a Verilog programthat is both portable, as 
urrently de�ned by the Standard, and useful. If this situationis to be remedied, prevailing implementation poli
ies and programming pra
ti
es mustbe 
onsidered more 
losely.This note is written with the hope that our observations and suggestions may be ofuse in the drafting of a future version of the Standard, espe
ially in a more 
ompleteformulation of the simulation 
y
le than the outline presented here. Ultimately, thismight bene�t not only the implementor or experien
ed user of Verilog, but also thenovi
e who, like the author, is merely interested in gaining an understanding of its basi
features.Referen
es[1℄ Bui, Dinh K. (Synopsys, In
.), Private 
ommuni
ation, July, 2004.[2℄ Cummings, Cli�ord E. (Sunburst Design, In
.), Private 
ommuni
ation, July, 2004.[3℄ Gordon, Mike, \The Semanti
 Challenge of Verilog", Tenth Annual IEEE Sympo-sium on Logi
s in Computer S
ien
e, 1995.[4℄ Institue for Ele
tri
al and Ele
troni
 Engineers, IEEE Standard Verilog HardwareDes
ription Language, Standard 1364, 2001.

11


