
A Note on the IEEE Verilog Simulation CyleDavid M. Russino�September 28, 2005AbstratThe IEEE Verilog Standard ontains a number of ambiguities and inonsisten-ies with respet to the semantis of event sheduling, reating diÆulties for theprogrammer in prediting the behavior of a ompliant simulator. In this note, webring some of these issues to light and attempt to resolve them by outlining anabstrat formulation of the Verilog simulation yle, aimed at larifying the intentof the Verilog Standard Committee. We also observe that the degree of freedomallowed by the Standard in the interleaving of onurrent proesses is impratial,and if fully exerised, would inevitably lead to rae onditions and unprediableresults. Consequently, this aspet of the spei�ation has been essentially ignoredby tait agreement between implementors and users. As a remedy, we propose tomodify the spei�ation of the simulation yle by imposing a simple restritionon the nondeterministi seletion of ative events. The suggested restrition wouldallow the programmer to eliminate rae onditions without inhibiting ompileroptimization.IntrodutionThe Verilog simulation yle|a model of the nondeterministi proedure by whih on-urrent proesses are sheduled and exeuted|is entral to the semantis of the languageas spei�ed by IEEE Standard 1384 [4℄. Its de�nition, however, is poorly understood bythe Verilog user ommunity, espeially with regard to two questions:(1) When does a proess beome enabled, i.e., eligible for exeution?(2) Under what irumstanes may the simulator suspend the exeution of one enabledproess in order to pass ontrol to another?Confusion surrounding the �rst question may be fairly attributed to ambiguities and in-onsistenies in the Standard, as reounted below. With respet to the seond, however,the doument is quite lear (pp. 65-66):The freedom to hoose any ative event for immediate proessing is an es-sential soure of nondeterminism in the Verilog HDL ... At any time whileevaluating a behavior statement, the simulator may suspend exeution andplae the partially ompleted event as a pending ative event on the eventqueue. The e�et of this is to allow the interleaving of proess exeution.Note that the order of interleaved exeution is nondeterministi and notunder ontrol of the user. 1

But ommerial Verilog implementations are generally quite onservative in their exer-ise of this freedom. Moreover, programmers often rely on the simulator's restraint inthis regard, assuming, for example, that ontrol will never be passed from one proess toanother until the �rst has either terminated or been halted by a timing ontrol. Simula-tors usually, but not always, onform to this assumption, whih may lead to unexpetedresults. In any ase, the e�etiveness of a language standard is ompromised when it issupplanted by impliit onvention.The purpose of this note is twofold. First, we present a formulation of the simulationyle, restriting our attention to a small but pratial subset of Verilog, in whih weattempt to larify several points that are left ambiguous by the Standard. We are awareof one previous similar e�ort, by Mike Gordon [3℄, on behalf of the formal methodsommunity. We �nd Gordon's work to be useful as a point of departure, but awed inits treatment of ertain aspets of event sheduling and delay.Seond, we suggest a pratial restrition of the nondeterministi seletion of enabledevents, intended to narrow the gap between the Standard and prevailing implementationpoliies while still providing opportunities for ompiler optimization through transfer ofontrol between enabled proesses. We also formulate a simple oding guideline thateliminates rae onditions and guarantees preditable behavior in the presene of thisrestrition.EventsOf the lasses of proesses supported by the Standard, we onsider only the two that areused most ommonly by designers of register-transfer logi (RTL): the proedural blokand the ontinuous assignment . A proess may assign values to signals of a variety oftypes, but for simpliity, we shall assume that all signals de�ned by proedural bloksand ontinuous assignments are delared as registers and wires, respetively, and thatevery signal is a salar, i.e., assumes only single-bit values.A proedural blok onsists of either of the two keywords initial and always fol-lowed by a proedural statement, whih may be a ompound statement onsisting ofa sequene of statements braketed by the keywords begin and end . Of partiularinterest are the bloking and nonbloking assignment statements,v = #Æ E;and v <= #Æ E;respetively, where v is a register, E is an arbitrary expression, and #Æ is an optionalindiator of a delay of Æ � 0 time units. Any proedural statement may be preeded bya timing ontrol of any of three types:(1) a delay indiator, #Æ, where Æ is a natural number;(2) an edge-sensitive ontrol, either �(v), �(v1 or : : : or vk), �(posedge v), or�(negedge v), where v and vi, i = 1; : : : ; k, are signals;(3) a level-sensitive ontrol, wait(E), where E is an expression.2

A ontinuous assignment has the form of a single statement,assign #Æ v = E;where v is a wire and again, the delay indiator is optional.The state of a proedural blok omprises several omponents:(1) a program ounter (PC), whih may point either to a statement, referred to as theurrent statement of the blok, or to a timing ontrol;(2) an ative bit;(3) in the ase of an inative blok that has not been terminated, the time at whihthe blok is sheduled to resume;(4) in the event that the urrent statement is a delayed bloking assignment that hasalready been evaluated, a pending assignment value.Following Gordon [3℄, we distinguish between ative and enabled proesses. By de�-nition, a proedural blok is enabled if and only if it is ative and its PC does not pointto a timing ontrol. A ontinuous assignment is onsidered to be ontinuously ative,but may or may not be enabled, as determined by the value of an expliit enabled bitassoiated with the proess.During the ourse of simulation, a set of pending updates is maintained. Eah updateis identi�ed as either nonbloking or ontinuous (aording to the type of assignmentstatement from whih is was generated), and onsists of an ative bit, a value, a signalto whih the value is to be assigned, and a sheduled time of assignment. An assignmentupdate is enabled if and only if it is ative.All proesses (proedural bloks and ontinuous assignments) and assignment up-dates (nonbloking and ontinuous) are referred to as events.ExeutionThe state of a simulation onsists of(1) a nonnegative-integer-valued global variable C, representing the urrent time;(2) the urrent value of eah signal;(3) the state of eah proess as de�ned above;(4) the set of all pending updates.The period between suessive inrements of C is alled a simulation yle. At eahstep within a simulation yle, an enabled event (if any exists) is seleted for exeution.In this setion, we de�ne, for eah event type, the e�et of an exeution step on thesimulation state.In the ase of a proedural blok, exeution is determined by the urrent statementas follows:(1) v = E : Set the value of v to the result of evaluating E.3

(2) v = #Æ E : If there is a pending assignment value assoiated with the stateof this blok, update v with that value. Otherwise, evaluate E, set the pendingassignment value to the result, lear the ative bit, and shedule the proess toresume at time C + Æ.(3) v <= #Æ E : Add an inative nonbloking pending update for v, using the value ofE, with sheduled time of assignment C + Æ, overriding any other pending updatefor v that was previously sheduled for time C + Æ.(4) v <= E : This is equivalent to v <= #0 E.Exept for Case (2) with no pending value, the PC is then inremented or otherwiseadjusted aording to any indiated sequene ontrol onstrut. If this leaves the PCpointing to(a) a delay indiator #Æ, then the PC is adjusted further to point to the followingstatement; the proess beomes inative and is sheduled to resume at time C+ Æ;(b) a level-sensitive ontrol wait(E), then E is evaluated and if the result is nonzero,then the PC is inremented.If the seleted enabled event is a ontinuous assignment, then exeution proeeds asfollows, aording to whether or not a delay is indiated:(1) assign v = E : Set the value of v to the result of evaluating E.(1) assign #Æ v = E : Add an inative ontinuous pending update for v using theresult of evaluating E and time C + Æ. Delete any existing pending update for v.In either ase, the enabled bit of the ontinuous assignment is then leared. Notethat the sheduling of a delayed ontinuous assignment, unlike that of a nonblokingassignment, has the e�et of overriding any previously sheduled assignment to the samewire, regardless of the time for whih it was sheduled. This behavior is harateristiof inertial delay .Finally, if the seleted event is a pending update, then the signal is updated withthe indiated value and the event is retired.When the exeution of an event hanges the value of a signal, and the PC of someative proedural blok points to a timing ontrol, that timing ontrol is said to �reunder the following onditions:(1) �(v) or �(v1 or : : : or vk) : v or some vi hanges value;(2) �(posedge v) : the value of v hanges to 1;(3) �(negedge v) : the value of v hanges to 0;(4) wait(E) : the value of E hanges to 1.Similarly, a disabled ontinuous assignment �res whenever its right-hand side hangesvalue. 4

The Simulation CyleIn the initial state of a simulation, C = 0, signal values are initialized as indiated, everyproedural blok is ative with PC reset to its initial statement or timing ontrol, everyontinuous assignment is disabled, and there are no pending updates. If any proeduralblok begins with a delay indiator #Æ, then its PC is adjusted to point to the followingstatement, its ative bit is leared, and it is sheduled to resume at time Æ. Simulationproeeds as follows:(1) If there are no enabled events, go to (3); otherwise, selet (nondeterministially)an enabled event and exeute it.(2) Inrement the PC of eah ative proess whose urrent instrution is a timingontrol that �res. Set the enabled bit of any ontinuous assignment that �res. Goto (1).(3) If there are no inative proesses or pending ontinuous assignment updates shed-uled for time C, then go to (4). Otherwise, ativate all suh events and go to (1).(4) If there are no pending nonbloking assignments sheduled for time C, then go to(5). Otherwise, ativate and exeute all suh assignments and go to (2).(5) Inrease C to the earliest time at whih some input hanges or for whih someevent is sheduled. Update the inputs and go to (2).This formulation of the algorithm reets a number of deisions onerning the res-olution of ambiguities in the Standard. For example, our treatment of ontinuous as-signment is at odds with following presription (p. 71):Assignments on [wires℄ shall be ontinuous and automati. This means thatthat whenever an operand in the right-hand side expression hanges value,the whole right-hand side shall be evaluated and if the new value is di�erentfrom the previous value, then the new value shall be assigned to the left-handside.This suggests that a ontinuous assignment must be exeuted immediately whenever itbeomes enabled, taking preedene over any other proess (even one that has alreadybegun exeution). This would require, for example, the following program to terminatewith the values x = y = z = 1:module MOD1;wire x;reg y, z;assign x = y;initial beginy = 0;#1 y = 1;z = x;end 5

endmoduleOn the other hand, we read elsewhere (p. 67) that a ontinuous assignment is to betreated as any other event:When the value of the expression hanges, it auses an ative update eventto be added to the event queue, using urrent values to determine the target.This learly implies that an enabled ontinuous assignment need not be exeuted imme-diately (p. 66):One soure of nondeterminism is the fat that ative events an be taken o�the queue and proessed in any order.Thus, the alternative result x = y = 1, z = 0 must be allowed. Sine this is indeed theobserved outome of a VCS trae of this program, we eleted to ignore the ontraditory\ontinuous and automati" diretive.Further onfusion surrounds the exeution of nonbloking assignment updates. Onthe one hand, it is lear that for a given simulation yle, these events are not to beativated until all other events sheduled for the same time have been exeuted. Whatis not lear is how these events, one ativated, are to be prioritized relative to any otherevents that may be generated by their exeution. Consider, for example, the followingode: module MOD2;reg x, y;initial beginx <= 1;y <= 1;endalways �(x) y = 0;endmoduleAfter the initial blok is exeuted and the two resulting nonbloking assignment up-dates are ativated, the �rst of the two is exeuted, and this enables the always blok.Now, whih is exeuted next: the nonbloking assignment update to y, or the blokingassignment? This would depend on one's interpretation of the diretive (p. 65) thatnonbloking assignment update events \shall be assigned ... after all the ative and in-ative events have been proessed." In Gordon's model [3℄, this statement has beengiven the stritest possible interpretation: any event generated by a nonbloking updatemust be exeuted before any remaining nonbloking updates. But this poliy is in diretonit with a later diretive (p. 122):When the simulator ativates the nonbloking assign update events, the sim-ulator updates the left-hand side of eah nonbloking assignment state-ment ... Nonbloking assignment events an reate bloking assignment events.6

These bloking assignment events shall be proessed after the sheduled non-bloking events.This last statement also ontradits the one quoted above onerning nondeterminism,i.e., \ative events an be taken o� the queue and proessed in any order." However,it is onsistent with the VCS trae of MOD2, in whih the �nal value of y is 0, and istherefore reeted in our model.Restrited NondeterminismIn this setion, we investigate the onsequenes of the nondeterministi nature of thesimulation yle. As a pratial matter, we are espeially interested in an even morelimited lass of Verilog programs, typial of those used to model synhronous sequentialRTL. Thus, we shall heneforth further restrit our attention to programs onsistingonly of always bloks and ontinuous assignments, in whih the following onditions aresatis�ed:(1) Nonbloking assignments our only within bloks of the formalways �(posedge lk) begin : : : endwhere lk is an input.(2) Bloking assignments our only within bloks of the formalways �* begin : : : endwhere *, by onvention, represents the disjuntion of all signals appearing in theright-hand side of some assignment within the blok, alled the sensitivity list ofthe blok.(3) No other timing ontrols (in partiular, no delays) appear anywhere in the pro-gram.(4) No signal is assigned values by two distint proesses.(5) The program does not ontain any set of bloking or ontinuous assignments v0 =E0, : : :, vk = Ek , suh that vi ours in Ei�1 for i = 1; : : : ; k and vk = v0.Suh programs will be onsidered standard Verilog. It is not diÆult to onstrut astandard program that exhibits the same unpreditability that was seen in our earlierexample MOD1:module MOD3(input lk);reg w = 0, x = 0, y = 0, a = 0;wire z = 0;always �* beginx = ~a;y = z; 7

x = a;w = 0;endassign z = x;always �(posedge lk) a <= y;endmoduleIf the �rst proedural blok is interrupted in order to exeute the ontinuous assignmentto z in response to eah assignment to x, then the value of a will alternate on suessivelok yles; otherwise, a will remain onstant. Some ommerial Verilog ompilers, suhas VCS [1℄, do interrupt exeuting proesses in some situations in order to exeute aontinuous assignment that has just beome enabled, and are therefore liable to exhibita rae ondition here. On the other hand, we are told that no existing implementationwill ever interrupt one proedural blok in favor of another [2℄. Hene the followingvariation is more preditable:module MOD4(input lk);reg w = 0, x = 0, y = 0, z = 0, a = 0;always �* beginx = ~a;y = z;x = a;w = 0;endalways �* z = x;always �(posedge lk) a <= y;endmoduleOf ourse, it might be argued that both of the above ontain irularities that onstitute\bad programming pratie", and that their author therefore deserves whatever resultsare produed. In ontrast, the following exhibits only data dependenies of the sortommonly found in onventional RTL designs:module MOD5(input lk);reg w = 0, x = 0, y = 0, z = 0, a = 1;always �* beginx = ~a;y = x;end 8

always �* beginz = y;w = x;endalways �(posedge lk) a <= z;endmoduleIt may well be that every existing Verilog implementation would treat eah blok of thisprogram as atomi, thereby produing an exeution in whih the value of a alternates onsuessive yles as expeted. However, the Standard learly provides for a simulationin whih the bloks are interleaved, updating the signals in the order a, x, z, y, w, whihleads to a di�erent result, with the value of a settling at 0 after the �rst yle. Con-sequently, ommon design pratie must rely on the presumed behavior of ommerialsimulators to prevent rae onditions, while ignoring the freedom enouraged by theStandard.Here we propose a minor modi�ation of the Standard, a simple restrition on thenondeterministi seletion of enabled proesses that would eliminate the anomalous be-havior desribed above. This restrition would still allow a suÆient degree of freedomto provide for ompiler optimization, and is in fat onsistent with all major ommerialimplementations:Exeution of an enabled proess P may be suspended in order to pass ontrolto another enabled event, but only if that event is a proess Q, and onlyimmediately after Q beomes enabled. One the exeution of Q is terminatedor otherwise disabled, ontrol must be passed diretly bak to P.In order to modify our simulation algorithm to aommodate this restrition, we intro-due an additional data struture: an exeution stak of enabled events. When a proessor other event is seleted for exeution, it is pushed onto the stak (whih is empty in theinitial state). When the event at the top of the stak terminates or beomes disabled,it is popped from the stak. The revised simulation yle is as follows:(1) If the exeution stak is not empty, go to (2). If there is no enabled event, go to(4). Otherwise, selet an enabled event and push it onto the stak.(2) Exeute the event at the top of the stak. Unless that event is a proedural blokthat remains enabled, pop it from the stak. Inrement the PC of eah disabledative proess that points to a timing ontrol that �res, set the enabled bit of anyontinuous assignment that �res, and go (nondeterministially) to (3) or to (1).(3) If any proess was enabled by the last exeution step, then selet one suh proessand push it onto the stak. Go to (1).(4) If there are no inative proesses or pending ontinuous assignment updates shed-uled for time C, then go to (5). Otherwise, ativate all suh events and go to (1).(5) If there are no pending nonbloking assignments sheduled for time C, then go to(7). Otherwise, exeute all suh assignments.9

(6) Inrement the PC of eah disabled ative proess that points to a timing ontrolthat �res, set the enabled bit of any ontinuous assignment that �res, and go to (1).(7) Inrease C to the earliest time at whih either some input hanges or some proessis sheduled to resume. Update the inputs and ativate all suh proesses. Goto (6).Consider the e�et of this restrition on the behavior of MOD5. If the exeution of x =a results in a new value of x, then ontrol may be passed to the newly enabled seondblok. But if this ours, then the seond blok must be exeuted to termination. The�rst blok is then resumed. As it terminates, the seond blok is enabled one againand onsequently re-exeuted. Thus, the rae ondition is eliminated; the end result isas if the �rst blok had never been interrupted.MOD5 belongs to a lass of ayli standard programs, as de�ned below, whih are well-behaved under our restrited simulation yle. Our goal is to show that if a ontinuousor bloking assignment v = E of suh a program is exeuted under ertain onditionsduring a simulation yle, then at the end of the yle, the value of v is the same as thatof E.First, given two distint proesses P and Q, we de�ne P to be dependent on Q if anysignal in the sensitivity list of P is assigned by a statement in Q. A proedural blok P isdependent on itself if it ontains two assignments v = E and v0 = E0 suh that v0 oursin E and the assignment to v preedes the assignment to v0 with respet to programorder. An ayli program is one that ontains no set of proesses P0; : : : ; Pk suh thatP0 = Pk and for i = 1; : : : ; k, Pi is dependent on Pi�1.In the three examples in this setion, no proess is dependent on itself. MOD3 andMOD4 both ontain mutually dependent proesses; only MOD5 is ayli.Note that when a proess is pushed onto the stak, it must be dependent on everyother proess on the stak. During the exeution of an ayli program, therefore, noproess on the stak an be dependent on the proess at the top. Now let v = E be anassignment ourring in a proess P , and suppose that some signal v0 6= v that oursin E hanges value. If P itself is the proess that produes this hange (i.e., P is at thetop of the stak), then the assignment to v must appear later in P than the assignmentto v0. Otherwise, P must now be enabled and annot already be on the stak; hene, Pwill eventually be seleted for exeution later during the urrent yle. Thus, we havethe following result, whih preludes rae onditions of the sort that we observed above:Let v = E be a ontinuous or bloking assignment that appears in a proessP of an ayli standard program. Suppose that during a given simulationyle, this assignment is the last assignment to v to be exeuted during the�nal exeution of P . Then the �nal value of v for that yle oinides withthe �nal value of E.ConlusionNaturally, as the produt of a ommittee, the IEEE Verilog Standard represents a di-vergent set of views. It is important, however, that any resultant inonsistenies, suhas those disussed above, be resolved if the Standard is to serve its intended purpose asan unambiguous guide for implementors and users.10

Of further onern is the impratial degree of freedom that is permitted in theinterleaving of proesses and the resulting unpreditable behavior. Our �nal example,MOD5 of the preeding setion, suggests that it may be diÆult to write a Verilog programthat is both portable, as urrently de�ned by the Standard, and useful. If this situationis to be remedied, prevailing implementation poliies and programming praties mustbe onsidered more losely.This note is written with the hope that our observations and suggestions may be ofuse in the drafting of a future version of the Standard, espeially in a more ompleteformulation of the simulation yle than the outline presented here. Ultimately, thismight bene�t not only the implementor or experiened user of Verilog, but also thenovie who, like the author, is merely interested in gaining an understanding of its basifeatures.Referenes[1℄ Bui, Dinh K. (Synopsys, In.), Private ommuniation, July, 2004.[2℄ Cummings, Cli�ord E. (Sunburst Design, In.), Private ommuniation, July, 2004.[3℄ Gordon, Mike, \The Semanti Challenge of Verilog", Tenth Annual IEEE Sympo-sium on Logis in Computer Siene, 1995.[4℄ Institue for Eletrial and Eletroni Engineers, IEEE Standard Verilog HardwareDesription Language, Standard 1364, 2001.

11

