A Note on the IEEE Verilog Simulation Cycle

David M. Russinoff
September 28, 2005

Abstract

The IEEE Verilog Standard contains a number of ambiguities and inconsisten-
cies with respect to the semantics of event scheduling, creating difficulties for the
programmer in predicting the behavior of a compliant simulator. In this note, we
bring some of these issues to light and attempt to resolve them by outlining an
abstract formulation of the Verilog simulation cycle, aimed at clarifying the intent
of the Verilog Standard Committee. We also observe that the degree of freedom
allowed by the Standard in the interleaving of concurrent processes is impractical,
and if fully exercised, would inevitably lead to race conditions and unpredicable
results. Consequently, this aspect of the specification has been essentially ignored
by tacit agreement between implementors and users. As a remedy, we propose to
modify the specification of the simulation cycle by imposing a simple restriction
on the nondeterministic selection of active events. The suggested restriction would
allow the programmer to eliminate race conditions without inhibiting compiler
optimization.

Introduction

The Verilog simulation cycle a model of the nondeterministic procedure by which con-
current processes are scheduled and executed is central to the semantics of the language
as specified by IEEE Standard 1384 [4]. Its definition, however, is poorly understood by
the Verilog user community, especially with regard to two questions:

(1) When does a process become enabled, i.e., eligible for execution?

(2) Under what circumstances may the simulator suspend the execution of one enabled
process in order to pass control to another?

Confusion surrounding the first question may be fairly attributed to ambiguities and in-
consistencies in the Standard, as recounted below. With respect to the second, however,
the document is quite clear (pp. 65-66):

The freedom to choose any active event for immediate processing is an es-
sential source of nondeterminism in the Verilog HDL ... At any time while
evaluating a behavior statement, the simulator may suspend execution and
place the partially completed event as a pending active event on the event
queue. The effect of this is to allow the interleaving of process execution.
Note that the order of interleaved execution is nondeterministic and not
under control of the user.



But commercial Verilog implementations are generally quite conservative in their exer-
cise of this freedom. Moreover, programmers often rely on the simulator’s restraint in
this regard, assuming, for example, that control will never be passed from one process to
another until the first has either terminated or been halted by a timing control. Simula-
tors usually, but not always, conform to this assumption, which may lead to unexpected
results. In any case, the effectiveness of a language standard is compromised when it is
supplanted by implicit convention.

The purpose of this note is twofold. First, we present a formulation of the simulation
cycle, restricting our attention to a small but practical subset of Verilog, in which we
attempt to clarify several points that are left ambiguous by the Standard. We are aware
of one previous similar effort, by Mike Gordon [3], on behalf of the formal methods
community. We find Gordon’s work to be useful as a point of departure, but flawed in
its treatment of certain aspects of event scheduling and delay.

Second, we suggest a practical restriction of the nondeterministic selection of enabled
events, intended to narrow the gap between the Standard and prevailing implementation
policies while still providing opportunities for compiler optimization through transfer of
control between enabled processes. We also formulate a simple coding guideline that
eliminates race conditions and guarantees predictable behavior in the presence of this
restriction.

Events

Of the classes of processes supported by the Standard, we consider only the two that are
used most commonly by designers of register-transfer logic (RTL): the procedural block
and the continuous assignment . A process may assign values to signals of a variety of
types, but for simplicity, we shall assume that all signals defined by procedural blocks
and continuous assignments are declared as registers and wires, respectively, and that
every signal is a scalar, i.e., assumes only single-bit values.

A procedural block consists of either of the two keywords initial and always fol-
lowed by a procedural statement, which may be a compound statement consisting of
a sequence of statements bracketed by the keywords begin and end . Of particular
interest, are the blocking and nonblocking assignment statements,

v =# E;
and

v <= # FE;

respectively, where v is a register, F is an arbitrary expression, and #J is an optional
indicator of a delay of 4 > 0 time units. Any procedural statement may be preceded by
a timing control of any of three types:

(1) a delay indicator, #5, where § is a natural number;

(2) an edge-sensitive control, either @(v), @(v; or ... or v), @(posedge v), or
@(negedge v), where v and v;, 2 = 1,...,k, are signals;

(3) a level-sensitive control, wait (E), where E is an expression.



A continuous assignment has the form of a single statement,

assign #J v = E;

where v is a wire and again, the delay indicator is optional.
The state of a procedural block comprises several components:

(1) a program counter (PC), which may point either to a statement, referred to as the
current statement of the block, or to a timing control;

(2) an active bit;

(3) in the case of an inactive block that has not been terminated, the time at which
the block is scheduled to resume;

(4) in the event that the current statement is a delayed blocking assignment that has
already been evaluated, a pending assignment value.

Following Gordon [3], we distinguish between active and enabled processes. By defi-
nition, a procedural block is enabled if and only if it is active and its PC does not point
to a timing control. A continuous assignment is considered to be continuously active,
but may or may not be enabled, as determined by the value of an explicit enabled bit
associated with the process.

During the course of simulation, a set of pending updates is maintained. Each update
is identified as either nonblocking or continuous (according to the type of assignment
statement from which is was generated), and consists of an active bit, a value, a signal
to which the value is to be assigned, and a scheduled time of assignment. An assignment
update is enabled if and only if it is active.

All processes (procedural blocks and continuous assignments) and assignment up-
dates (nonblocking and continuous) are referred to as events.

Execution
The state of a simulation consists of

1) a nonnegative-integer-valued global variable C, representing the current time;

2) the current value of each signal;

3) the state of each process as defined above;

(
(
(
(4

)
)
)
) the set of all pending updates.

The period between successive increments of C' is called a simulation cycle. At each
step within a simulation cycle, an enabled event (if any exists) is selected for execution.
In this section, we define, for each event type, the effect of an execution step on the
simulation state.

In the case of a procedural block, execution is determined by the current statement
as follows:

(1) v = E : Set the value of v to the result of evaluating E.



(2) v = #0 E : If there is a pending assignment value associated with the state
of this block, update v with that value. Otherwise, evaluate F, set the pending
assignment, value to the result, clear the active bit, and schedule the process to
resume at time C + 4.

(3) v <= #§ E: Add an inactive nonblocking pending update for v, using the value of
E, with scheduled time of assignment C' + 4, overriding any other pending update
for v that was previously scheduled for time C + 6.

(4) v <= E : This is equivalent to v <= #0 E.

Except for Case (2) with no pending value, the PC is then incremented or otherwise
adjusted according to any indicated sequence control construct. If this leaves the PC
pointing to

(a) a delay indicator #4, then the PC is adjusted further to point to the following
statement; the process becomes inactive and is scheduled to resume at time C + §;

(b) a level-sensitive control wait (E), then E is evaluated and if the result is nonzero,
then the PC is incremented.

If the selected enabled event is a continuous assignment, then execution proceeds as
follows, according to whether or not a delay is indicated:

(1) assign v = E : Set the value of v to the result of evaluating E.

(1) assign #0 v = E : Add an inactive continuous pending update for v using the
result of evaluating E and time C + . Delete any existing pending update for v.

In either case, the enabled bit of the continuous assignment is then cleared. Note
that the scheduling of a delayed continuous assignment, unlike that of a nonblocking
assignment, has the effect of overriding any previously scheduled assignment to the same
wire, regardless of the time for which it was scheduled. This behavior is characteristic
of inertial delay .

Finally, if the selected event is a pending update, then the signal is updated with
the indicated value and the event is retired.

When the execution of an event changes the value of a signal, and the PC of some
active procedural block points to a timing control, that timing control is said to fire
under the following conditions:

1

@(v) or @(v; or ... or wg) : v or some v; changes value;

2) @(posedge v) : the value of v changes to 1;

3) @(negedge v) : the value of v changes to 0;

(1)
(2)
(3)
(4) wait(E) : the value of E changes to 1.

Similarly, a disabled continuous assignment fires whenever its right-hand side changes
value.



The Simulation Cycle

In the initial state of a simulation, C = 0, signal values are initialized as indicated, every
procedural block is active with PC reset to its initial statement or timing control, every
continuous assignment, is disabled, and there are no pending updates. If any procedural
block begins with a delay indicator #§, then its PC is adjusted to point to the following
statement, its active bit is cleared, and it is scheduled to resume at time §. Simulation
proceeds as follows:

(1) If there are no enabled events, go to (3); otherwise, select (nondeterministically)
an enabled event and execute it.

(2) Increment the PC of each active process whose current instruction is a timing
control that fires. Set the enabled bit of any continuous assignment that fires. Go
to (1).

(3) If there are no inactive processes or pending continuous assignment updates sched-
uled for time C, then go to (4). Otherwise, activate all such events and go to (1).

(4) If there are no pending nonblocking assignments scheduled for time C, then go to
(5). Otherwise, activate and execute all such assignments and go to (2).

(5) Increase C' to the earliest time at which some input changes or for which some
event is scheduled. Update the inputs and go to (2).

This formulation of the algorithm reflects a number of decisions concerning the res-
olution of ambiguities in the Standard. For example, our treatment of continuous as-
signment is at odds with following prescription (p. 71):

Assignments on [wires] shall be continuous and automatic. This means that
that whenever an operand in the right-hand side expression changes value,
the whole right-hand side shall be evaluated and if the new value is different
from the previous value, then the new value shall be assigned to the left-hand
side.

This suggests that a continuous assignment must be executed immediately whenever it
becomes enabled, taking precedence over any other process (even one that has already
begun execution). This would require, for example, the following program to terminate
with the valuesx =y =z = 1:

module MQOD1;
wire x;
reg y, z;

assign x = y;

initial begin

y = 0;
#1 y = 1;

Z = X;
end



endmodule

On the other hand, we read elsewhere (p. 67) that a continuous assignment is to be
treated as any other event:

When the value of the expression changes, it causes an active update event
to be added to the event queue, using current values to determine the target.

This clearly implies that an enabled continuous assignment need not be executed imme-
diately (p. 66):

One source of nondeterminism is the fact that active events can be taken off
the queue and processed in any order.

Thus, the alternative result x = y = 1, z = 0 must be allowed. Since this is indeed the
observed outcome of a VCS trace of this program, we elected to ignore the contradictory
“continuous and automatic” directive.

Further confusion surrounds the execution of nonblocking assignment updates. On
the one hand, it is clear that for a given simulation cycle, these events are not to be
activated until all other events scheduled for the same time have been executed. What
is not clear is how these events, once activated, are to be prioritized relative to any other
events that may be generated by their execution. Consider, for example, the following
code:

module MOD2;
reg X, V;

initial begin

x <= 1;
y <=1
end

always Q@(x) y = 0;

endmodule

After the initial block is executed and the two resulting nonblocking assignment up-
dates are activated, the first of the two is executed, and this enables the always block.
Now, which is executed next: the nonblocking assignment update to y, or the blocking
assignment? This would depend on one’s interpretation of the directive (p. 65) that
nonblocking assignment update events “shall be assigned ... after all the active and in-
active events have been processed.” In Gordon’s model [3], this statement has been
given the strictest possible interpretation: any event generated by a nonblocking update
must be executed before any remaining nonblocking updates. But this policy is in direct
conflict with a later directive (p. 122):

When the simulator activates the nonblocking assign update events, the sim-
ulator updates the left-hand side of each nonblocking assignment state-
ment ... Nonblocking assignment events can create blocking assignment events.



These blocking assignment events shall be processed after the scheduled non-
blocking events.

This last statement also contradicts the one quoted above concerning nondeterminism,
i.e., “active events can be taken off the queue and processed in any order.” However,
it is consistent with the VCS trace of MOD2, in which the final value of y is 0, and is
therefore reflected in our model.

Restricted Nondeterminism

In this section, we investigate the consequences of the nondeterministic nature of the
simulation cycle. As a practical matter, we are especially interested in an even more
limited class of Verilog programs, typical of those used to model synchronous sequential
RTL. Thus, we shall henceforth further restrict our attention to programs consisting
only of always blocks and continuous assignments, in which the following conditions are
satisfied:

(1) Nonblocking assignments occur only within blocks of the form
always @(posedge clk) begin ... end

where clk is an input.

(2) Blocking assignments occur only within blocks of the form
always @* begin ... end

where *, by convention, represents the disjunction of all signals appearing in the
right-hand side of some assignment within the block, called the sensitivity list of
the block.

(3) No other timing controls (in particular, no delays) appear anywhere in the pro-
gram.

(4) No signal is assigned values by two distinct processes.

e program does not contain any set of blocking or continuous assignments vg =
5) Th d t tai t of blocki ti i t
Ey, ..., vy = Ej, such that v; occurs in E; | fori =1,...,k and v = vg.

Such programs will be considered standard Verilog. It is not difficult to construct a
standard program that exhibits the same unpredictability that was seen in our earlier
example MOD1:

module MOD3(input clk);
regw=0, x=0,y=0, a=0;
wire z = 0;

always @* begin
x = Ta;

y =2z



X = a;
w = 0;
end

assign z = x;
always Q(posedge clk) a <= y;

endmodule

If the first procedural block is interrupted in order to execute the continuous assignment
to z in response to each assignment to x, then the value of a will alternate on successive
clock cycles; otherwise, a will remain constant. Some commercial Verilog compilers, such
as VCS [1], do interrupt executing processes in some situations in order to execute a
continuous assignment that has just become enabled, and are therefore liable to exhibit
a race condition here. On the other hand, we are told that no existing implementation
will ever interrupt one procedural block in favor of another [2]. Hence the following
variation is more predictable:

module MOD4(input clk);
regw=0,x=0,y=0, z=0, a=0;

always @* begin

x = Ta;
y =2z
X a;
w = 0;

end

always Q@* z = x;
always Q@(posedge clk) a <= y;

endmodule

Of course, it might be argued that both of the above contain circularities that constitute
“bad programming practice”, and that their author therefore deserves whatever results
are produced. In contrast, the following exhibits only data dependencies of the sort
commonly found in conventional RTL designs:

module MOD5(input clk);
regw=0,x=0,y=0, z=0, a=1;

always @* begin
x = Ta;

y = X



always @* begin

zZ = y;
W= X;
end

always Q(posedge clk) a <= z;

endmodule

It may well be that every existing Verilog implementation would treat each block of this
program as atomic, thereby producing an execution in which the value of a alternates on
successive cycles as expected. However, the Standard clearly provides for a simulation
in which the blocks are interleaved, updating the signals in the order a, x, z, y, w, which
leads to a different result, with the value of a settling at 0 after the first cycle. Con-
sequently, common design practice must rely on the presumed behavior of commercial
simulators to prevent race conditions, while ignoring the freedom encouraged by the
Standard.

Here we propose a minor modification of the Standard, a simple restriction on the
nondeterministic selection of enabled processes that would eliminate the anomalous be-
havior described above. This restriction would still allow a sufficient degree of freedom
to provide for compiler optimization, and is in fact consistent with all major commercial
implementations:

Execution of an enabled process P may be suspended in order to pass control
to another enabled event, but only if that event is a process ), and only
immediately after () becomes enabled. Once the execution of () is terminated
or otherwise disabled, control must be passed directly back to P.

In order to modify our simulation algorithm to accommodate this restriction, we intro-
duce an additional data structure: an ezecution stack of enabled events. When a process
or other event is selected for execution, it is pushed onto the stack (which is empty in the
initial state). When the event at the top of the stack terminates or becomes disabled,
it is popped from the stack. The revised simulation cycle is as follows:

(1) If the execution stack is not empty, go to (2). If there is no enabled event, go to
(4). Otherwise, select an enabled event and push it onto the stack.

(2) Execute the event at the top of the stack. Unless that event is a procedural block
that remains enabled, pop it from the stack. Increment the PC of each disabled
active process that points to a timing control that fires, set the enabled bit of any
continuous assignment that fires, and go (nondeterministically) to (3) or to (1).

(3) If any process was enabled by the last execution step, then select one such process
and push it onto the stack. Go to (1).

(4) If there are no inactive processes or pending continuous assignment updates sched-
uled for time C, then go to (5). Otherwise, activate all such events and go to (1).

(5) If there are no pending nonblocking assignments scheduled for time C, then go to
(7). Otherwise, execute all such assignments.



(6) Increment the PC of each disabled active process that points to a timing control
that fires, set the enabled bit of any continuous assignment that fires, and go to (1).

(7) Increase C to the earliest time at which either some input changes or some process
is scheduled to resume. Update the inputs and activate all such processes. Go
to (6).

Consider the effect of this restriction on the behavior of MOD5. If the execution of x =
a results in a new value of x, then control may be passed to the newly enabled second
block. But if this occurs, then the second block must be executed to termination. The
first block is then resumed. As it terminates, the second block is enabled once again
and consequently re-executed. Thus, the race condition is eliminated; the end result is
as if the first block had never been interrupted.

M0OD5 belongs to a class of acyclic standard programs, as defined below, which are well-
behaved under our restricted simulation cycle. Our goal is to show that if a continuous
or blocking assignment v = E of such a program is executed under certain conditions
during a simulation cycle, then at the end of the cycle, the value of v is the same as that
of E.

First, given two distinct processes P and ), we define P to be dependent on @ if any
signal in the sensitivity list of P is assigned by a statement in Q. A procedural block P is
dependent on itself if it contains two assignments v = E and v’ = E’ such that v’ occurs
in F and the assignment to v precedes the assignment to v’ with respect to program
order. An acyclic program is one that contains no set of processes Py, ..., P such that
Py = P and fori=1,...,k, P; is dependent on P;_;.

In the three examples in this section, no process is dependent on itself. MOD3 and
MOD4 both contain mutually dependent processes; only MOD5 is acyclic.

Note that when a process is pushed onto the stack, it must be dependent on every
other process on the stack. During the execution of an acyclic program, therefore, no
process on the stack can be dependent on the process at the top. Now let v = E be an
assignment occurring in a process P, and suppose that some signal v' # v that occurs
in E changes value. If P itself is the process that produces this change (i.e., P is at the
top of the stack), then the assignment to v must appear later in P than the assignment
to v'. Otherwise, P must now be enabled and cannot already be on the stack; hence, P
will eventually be selected for execution later during the current cycle. Thus, we have
the following result, which precludes race conditions of the sort that we observed above:

Let v = E be a continuous or blocking assignment that appears in a process
P of an acyclic standard program. Suppose that during a given simulation
cycle, this assignment is the last assignment to v to be executed during the
final execution of P. Then the final value of v for that cycle coincides with
the final value of E.

Conclusion
Naturally, as the product of a committee, the IEEE Verilog Standard represents a di-
vergent set of views. It is important, however, that any resultant inconsistencies, such

as those discussed above, be resolved if the Standard is to serve its intended purpose as
an unambiguous guide for implementors and users.

10



Of further concern is the impractical degree of freedom that is permitted in the
interleaving of processes and the resulting unpredictable behavior. Our final example,
MOD5 of the preceding section, suggests that it may be difficult to write a Verilog program
that is both portable, as currently defined by the Standard, and useful. If this situation
is to be remedied, prevailing implementation policies and programming practices must
be considered more closely.

This note is written with the hope that our observations and suggestions may be of
use in the drafting of a future version of the Standard, especially in a more complete
formulation of the simulation cycle than the outline presented here. Ultimately, this
might benefit not only the implementor or experienced user of Verilog, but also the
novice who, like the author, is merely interested in gaining an understanding of its basic
features.

References

[1] Bui, Dinh K. (Synopsys, Inc.), Private communication, July, 2004.
[2] Cummings, Clifford E. (Sunburst Design, Inc.), Private communication, July, 2004.

[3] Gordon, Mike, “The Semantic Challenge of Verilog”, Tenth Annual IEEE Sympo-
sium on Logics in Computer Science, 1995.

[4] Institue for Electrical and Electronic Engineers, IEEE Standard Verilog Hardware
Description Language, Standard 1364, 2001.

11



