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Abstract—We present a comprehensive, self-contained, and redundant represention of partial remainders, which tffec
mechanically verified proof of correctness of a maximally re the requirements of the digit table by effectively doubling
dundant SRT design for floating-point division and square r®t s gpproximation error. Recently, we described a formal
extraction, supported by verified procedures that (a) test he -
admissibility of a proposed digit selection table, (b) detenine proof of Corre_ctness of a real SRT RTL deS|gn.that has been
the minimal dimensions of an admissible table for a given implemented in an AMD processor [15], but this was also a
arbitrary radix, and (c) generate these tables. For square oot radix-4 divider and, like earlier efforts, ours did not aelsk
extraction, we also provide a verified procedure for generahg the more complicated problem of square root extraction.
an initial approximation that meets the accuracy requirement The AMD processor code-nameSteamrolley currently

of the algorithm and ensures that the digit selection index . . . .
derived from successive partial roots remains static throghout under development, includes a radix-8 (three bits pertitara

the computation. A radix-8 instantiation of these algorithms has SRT floating-point module. This paper is a component of the
been implemented in the floating-point unit of the AMD procesor  formal verification of this module: a comprehensive analysi
code-namedSteamroller To ensure their correctness, all of our the SRT algorithm for both division and square root extaacti
results and procedures have been formalized and mechanidgl \ith arpitrary radix2. All results and procedures presented
checked by the ACL2 prover. We present evidence of the value here have been formalized in the ACL2 logic [1] and their
of this approach by comparing it to that of a more conventiona X .
published paper that reports similar results, which are shovn to ~ Correctness has been mechanically checked with the ACL2
be fatally flawed. theorem prover. The proof script, consisting of more thad 80

Index Terms—Interactive theorem proving, formal verification, lemmas, is provided as a supplement t(_) this paper (mainly
SRT division. for the purpose of demonstrating its existence), which also
includes an appendix containing more readable pseudo-code
definitions of the underlying procedures for generating and
verifying the required tables.

HE Sweeney-Robertson-Tocher (SRT) algorithm for divi- Since our main concern is the reliability of our results, we
sion and square root extraction is ubiquitous in conterhave ignored various well known opportunities for optimiza

porary microprocessor design [5], [7], [15] and notorigusltion in order to simplify the proof. In particular, our analy
prone to implementation error [13]. Nonetheless, most ré&s limited to the case of “maximal redundancy,” which allows
search on this topic has been limited to microarchitectamdl all quotient digit values in the s€tl —27,...,27 —1}.
performance concerns, ignoring the problem of correctfdss  In Section Ill, we generalize the results of [15] by defining
[8], [11]. Investigation of the algorithm itself has mainlya criterion for quotient digit selection tables of arbitlghigh
focused on establishing bounds on the dimensions of digitdix, which is proved necessary and sufficient to produce
selection tables without providing any explicit procedufer correct quotients and remainders. We also present a simple
generating these tables or verifying their correctnesperro procedure that determines whether there exists a tableef si
ties [2], [3], [12]. The rare inquiry that does purport to peo 2M x 2V that meets this criterion, for givep, M, and N,
correctness [10] is typically lacking in mathematical igmd and another that generates such a table if possible.
consequently, as we shall demonstrate below, susceptible tOne difference between the SRT algorithms for division
error. and square root extraction is that the latter requires dralini

The revelation of the 1994 Pentium FDIV bug sparked sonagproximation of the root to be used as input to the table.
interest in the application of interactive theorem provifig®?) That is, the first several iterations must be performed byesom
to the verification of SRT designs [4], [9], [14], but this waDther means before the table may be invoked on subsequent
limited to the special case of radix-4 division (two quotienterations. In Section IV, we establish a criterion for al¢ésthat
bits per iteration) and was based on a simple high-levelitirc may be used for square root extraction afféiiterations and
design [16] that failed to account for various features thahow that any table that satisfies this criterion for sdihalso
are common to commercial implementations, such as thatisfies the criterion for division. We also define complgtab
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procedures that determine the existence of a table of givelaim [11] that no such solution is possible. Since the mo-

dimensions that meets this criterion, and another thatrgéeee tivation for this endeavor was a desire to eliminate the need

it if possible. In Section V, we derive a formula for compugtin for “extensive searches to check the validity of a given $et o

the entries of a “seed table” through which an approximatigrarameters” [10], it is worth noting that a C++ implemerdati

of the square root, accurate fgp bits, is derived from an of our procedureExi st sSrt Tabl e (see supplementary

approximation of the radicand. appendix) performs this check for radices as large as 32 in
Applying our results to the case = 3, we find that the less than one second. Nonetheless, the problem is of some

smallest admissible table for division is given By = 7 theoretical interest.

and N = 3, and that the optimal parameters for square root The most obvious difference between [10] and the present

are M =7, N = 4, and K = 2. Thus, the digit selection paper is that the former exposition omits a number of clitica

table implemented in AMD’s Steamroller floating-point unitletails, especially pertaining to the analysis of the more

consists of 128x 16 3-bit entries and the square root seecomplicated square root operation and its combination with

table consists of 48 6-bit entries. division, some of which, as seen in the definitions and proofs
Another complication of the square root algorithm is thaif Section IV below, involve subtle analysis. A careful ex-

the digit selection index is derived from the partial roohigh amination of the proofs exposes serious deficiencies in the

changes on every iteration, instead of a fixed divisor. Trtatements of the theorems themselves, which are concealed

consequences of treating the leading bits of the partial rday these omissions.

as constant, which tends to simplify the digit selectionidog The analysis in [10] is based on the following parameters:

at the expense of increasing the table size, are investigate, 3 is the underlying radix of the computation (a power

in [3]. Here we pursue an alternative approach, as descitbed  of 2);

Section V, involving an adjustment of the initial approxiioa « a is the maximum element of the digit sét-a,...,a},

to ensure that the leading bits of the partial quotient dlgtua which Satisﬁesg <a<B;

remain constant. This requires an initial full-width conipan « p = 3% is the redundancy factor (note that we use the

to determine whether the approximation derived from thelsee  same symbol for a different purpose);

table is an underestimate of the square root, which adds g ¢ is the number of fractional bits of the shifted and

cycle of latency but simplifies the table access logic withou  truncated partial remainder (corresponding\to— p — 1

increasing the table size. This scheme is also implemented i in our notation);

the Steamroller processor. « u is the number of bits of the truncated divisor (corre-
The primary contribution of this paper is the level of math-  sponding toNV + 1 in our notation).

ematical rigor that it brings to the subject of inquiry, wihic In the prelude to the main result of [10] pertaining to divisi

is a prerequisite for mechanical proof-checking. PUblﬂSh?Theorem 3), it is observed that for giveh a, andu such
results in this area are typically not amenable to formaliz

tion. Instead, like most mathematical claims, these result
(excluding those of the ITP efforts cited above) have gdhlyera p—
relied on the process of social review along with simulation 27" < 74— 0
based testing for the detection of possible errors. Expeée . P . . .
has demonstrated convincingly, however, that more rediakfhe. smalle;t value o.tffor.wh[ch there exists a “valid quotient
verification methods are required to ensure the correcufess digit selection function” is eithet, or to + 1, wherety is the
commercial floating-point design, and, in particular, thban Smallestt satisfying
SRT divider. Rigorous analysis of a high-radix digit seiect 1
table involves extensive computation that cannot be ahrrie 27t < (p— —) —(a—p)27".
out by hand. Some of the results that we shall require (e.g., 2
Lemmas 3.2 and 4.4) are most naturally proved by appédie following is established as a necessary and sufficient
to geometric intuition. Such proofs, however instinctivel condition for the existence of such a function for any given
satisfying, cannot provide an appropriate level of confa@en g3, a, u, and¢: For all d and k satisfyingl < d < « and
for our purpose. 2u=l < k< 2%,

In spite of the evident value of mechanical proof-checking
in this area, there remains a perpetual need to justify this
approach. To that end, in Section Il we present a compelling A(d, u,t, k)
illustration of the inadequacy of both informal proof ane th = |2%(d -1+ p)k—1] —[2"""“(d - p)(k +1)]
standard review process. > 0.

NIEg

It is also noted that for fixed, this inequality holds for alk
provided that the following condition is satisfied for soie

In a well known paper of 2005, Kornerup [10] aims taA(d, u,t, k) = 0 for 2* < k < k; andA(d, u,t, k1) > 0. The
provide an analytical solution to the problem of determgninconclusion drawn from these observations (Theorem 3) is tha
the minimal dimensions of a valid SRT digit selection tabléor given 3, a, u, andt = t,, if this condition is satisfied in
for a given radix and redundancy factor, citing a publishatie single casd = a for somek,, then a valid digit selection

Il. PITFALLS OF INFORMAL ANALYSIS



function exists. The details of this step of the argument awherem,, is an integer. Then for ak > 0,
among those that are omitted from the paper. &
. . : . . : pr = 2" (z — qid).
The first deficiency of this result is that it fails to deliver
the promised “analytical” solutioh.In fact, the number of Thus, ifd > 0 and—d < p;, < d, then
values of k for which the above inequality must be tested kT ko
is unknown and potentially as large @¢~'. But a more —2 < q I <27
serious complaint against the theorem is that it is falsee On

. _ Proof: The claim is trivial fork = 0, and fork > 0,
counterexample is the maximally redundant cgse= 16,

a =15, andu = 9. Here we have, = 2, A(15,9,2,k) =0 260 (x — qrd) = 2F°(x — (qr—1 +27FPmy)d)

for 2v=1 = 256 < k < 282, and A(15,9,2,282) = 1 (and = 2"z — gu_1d) — mud

indeed, consequently\(15,9,2,k) > 0 for all £k < 2% = _ 9r ~ed

512). However, A(14,9,2,265) = —1, and therefore, the Pk—1 =Mk

digit selection function is invalid. Similarly, in the mawally = Dk

redundant radix-32 case with= 11, we again have, = 2, -

and sinceA(31,11,2, k) = 0 for 1024 < k < 1074 and  The quotient digitny, is selected from the range— 2 <
A(31,11,2,1074) = 1, the stated criterion is claimed t0,, < 9, _ 1 and is required to preserve the invariani <
provide a valid selection function fot = t#o, but since " ; Thus, our objective may be formulated as follows:
A(30,11,2,1041) = A(28,11,2,1042) = —1, it does not. Given a positive integep and rationals! andp with

The other central result of the paper (Theorem 4), pertginin 1<d<?2and—d < p < d, find an integern such

to square root extraction, is similarly flawed. It might alz® th5t|m| < 2 and __dp< 2p’ —md < d

noted that the results produced in the earlier paper [1Xdnup =P '

which these results were explicitly intended to improveymaThe crux of the SRT algorithm is that the value of is

be shown to be correct read from a fixed table, using indices derived from truncated

Thus, the alleged theorems of [10] falsely guarantee tﬁ‘??hm)f'rg?t'ons op and Cé Let M gsz dent(_)telthsvwﬁths
existence of valid quotient digit selection functions fertain of the indices corresponding foandd, respectively. We have

N e . r
sets of parameters. This circumstance, which has appyarer{%tl appi%(lmatlon.s ofl, occurring at equj\e}l sub '”t.e“’"’?'s (of
ength2~) of the intervall < d < 2, and2™ approximations

gone unnoticed since the publication of the paper in 200, wi

; i — M
come as a surprise to those who believe that informal quagf-pr\(l)glcu;r'zg ai e2qual sub-intervals (of lengtfi™ ) of the
—2<p<2.

mathematical argument, when presented by a distinguisH@Ei . -

scientist and ratified by a process of expert review, ca}{} _S llustrated n Figure 1 for the cage= 2, M =5, and
ensure floating-point design correctness as reliably asdbr © " 2, .the sub-lnFervaIs ol <d < 2 are num]\l]:)ered from
machine-checked proof. Moreover, any radix-16 or -32 SFi ft to right. For givenX, an(_d forj = (_)’ : “32 — 1, we
hardware divider based on these results is likely to havega bt all denote the lower endpoint of sub-interyasd;. Thus,
very similar to that of the original Pentium FDIV instruatio 7 represents the fractional part 8f, i.e.,

§;j=1+2"Nj
I11. SRT DivVISION AND QUOTIENT DIGIT SELECTION .
The sub-intervals of-2 < p < 2 are numbered so that each

Let = and d be rational numbers, pre-scaled so that ; is the M-bit two's complement representation of the lower
d < 2 and|z| < d. Our objective is to compute a sequencendpointr; of sub-intervali. Thus, fori = 0,...,2" — 1,
of approximations that converges to the quotiéntThis is

. : . 22-M; if § <2M-1
achieved by an iterative process that generates a sequénce o = { 92-M; _ 4 it i > gM-1
partial remainders po = , p1, ..., pn, andpartial quotients tod ez :
@ = 0,q1...,g,. On each iteration, the current partialThese partitions produce 2/ x 2V matrix of rectangles in

remaindemp;,_; is shifted byp bits, where2” is the underlying the dp-plane, each of widtle=" and height2>~™. Let R;;

radix of the computation, and a multipte,d of the divisor denote the rectangle with lower left vertgk, 7;), and letS;;

is subtracted to form the next partial remainder, while thgenote the rectangle with the same lower left vertex andtwidt

quotient digitm;, contributes to the partial quotient: and twice the height, i.e., far < i < 2™ and0 < j < 2V,
Lemma 3.1:Given an integep and rational numberg and _N 9 M

z, letpg =z, o = 0, and fork > 0, Rij={(dp)|0;<d<d+2 " m<p<m+27M}

and

SZ] = {(d,p) | 53 S d< 6J +27N,7TZ‘ Sp < 7Ti+2371\4} .

Pr = 2pp—1 — mpd

and
The divisor d is approximated by someé; and at each

iteration, the partial remainderis approximated by some;.
IMoreover, it is evident that the claim put forth in [11] is fnigrpreted The index; is S|mply extracted from the Ieadlng fractional

here, as it clearly addresses optimality with respect tdémentation metrics Dbits of d, and hence the error is bounded by
(delay and area) rather than merely table dimensions. {Esdeen confirmed N
through private communication with the first author.) 0<d— 6j <27,

Q= qe_1 + 27 "my,,



Fig.1. p=2, M =5 N=2




The approximation ofp is more subtle because our im-The second case similarly depends on the location of theruppe
plementation does not compute explicitly. As a practical right vertex,(§; + 2=V, m; +23=M), and is characterized by
matter, a full carry-propagate addition cannot be execirted Y N
the same cycle as the table access, and consequenifly i+ 2 <=0 +277).

represented in a carry-save form, i.e., as a sum of two terM$iys, the constraint om(i, ;) is in force only if neither of
These terms are both truncated &6 bits and the results are iege inequalities holds, i.e.,

added to produce the approximationmf Thus, the resulting

error may approach twice the distance between successive —0; — 27N -2 M o <5 427N,

approximations:
PP Suppose that this condition holds for indiceand j and let

0<p—m<25°M, m = ¢(i, 7). Then all(d,p) € S;; with —d < p < d must
i.e., (d,p) is confined to thaincertainty rectangles;;. satisfy m—1 _p m+1
We shall develop a procedure for generating a table of 2 < 7 < o

minimal dimensions that provides a quotient digit= ¢(¢, j) . . - . i
satisfying—d < 2°p — md < d for all (d,p) € S;;. Note that Sincep < d, the upper bound is sa_t|_sf|ed tnwe_lly ihh =

this constraint is equivalent to 2°—1. Therefore, a necessary ar_ld suff|c_:|ent condition to ensure
that this bound holds generally is thatif # 2° — 1, thenS;;

£ does not intersect the region between the linesd andp =

2» T~ d 20 mt1d, or equivalently, thas;; lies entirely below the latter of
and therefore the sign of each table enfty, j) is determined the two. The maximum value of the quotiehtn .S;; occurs at

by that of 7; and need not be stored explicitly by an impleeither the upper left or the upper right vertex, dependinthen
mentation. Thus, such a table consists of at md5t" p-bit sign of their commorp-coordinatesr; + 23~ If ¢ < 2M-1
entries. ori=2M _1, thenm; + 23~M > 0 and the critical vertex is

The following definition presents a formulation of thethe upper left,(d;, m; + 237%), so the requirement is
table requirements that allows straightforward comporei
verification:

Definition 3.1: Let p, M, and N be positive integers and 0j -2
let ¢ be an integer-valued function of two integer variableg; on—1  ; < oM
Then¢ is an admissible radig? M x N SRT division table i
if forall i andj, if 0<i<2M,0<j <2V, and

—0; =2 N 23 M o <5 427N

m—1<p m+1

7 + 23— M < m—i—l'

— 1, thenn; < 0 and consideration of the
upper right vertex yields

7 + 23— M m—+1

05 + 2-N — 2r
then In all cases, the required upper bound is satisfied if and only
max(1 — 27, Li;) < ¢(i, ) < min(2” — 1,U;;), it m > Lij.
" Similarly, sincep > —d, the lower bound
where
. 2°( ,+23—M) X B > m—1
min (20 — 1, (2] - 1) if i< 2 Y
Lij = s ori=2"—1 s satisfied trivially ifm = 1—2°. To guarantee that this bound
min (2P —1, [t )] 1) otherwise holds generally, it must be shown thatrif # 1 — 2¢, then
! each point inS;; lies on or above the ling = mggld. The
and minimum value of% in S;; occurs at either the lower left or
max(1 — 27, L;,i);iNJ + 1) if i <oM-1 the lower right vertex, de_pendmg on the signmof .
Uij = vl v If m; > 0, then the critical vertex is the lower righty; +
max(1— 27, [55] + 1) if 4 > 2% 2-N ;) and the requirement is
Lemma 3.2:Let p, M, and N be positive integers and let ] S M= 1
¢ be an integer-valued function of two integer variables.fThe §;j+2=N = 20

¢ is an admissible radi2? M x N SRT division table if and

only if for all 4, j, p, andd, if 0 < i < 2M,0 < j < 2N If m; <0, then consideration of the lower left vertex yields

(d,p) € Sij, and—d < p < d, thenm = ¢(i,j) satisfies Ti m—1
-2/ <m <27 and—d < 2°p —md < d. 5, = 2

I_DroofziFwst note_ that if5;; lies eltheientlrely above In all cases, the required lower bound is satisfied if and only
the linep = d or entirely below the linep = —d, then no i m < U m
constraint is imposed om(i, 7). In the first case, the lower " 'S Yig . .
. N . The following is an immediate consequence of Lemmas 3.1
right vertex ofS;;, (6; 427", 7;), must lie on or above = d, and 3.2-

a condition expressed by the inequalit o
. XP y inequality Theorem 1:Let p, M, and N be positive integers and let

™ > 05 + 2N, ¢ be an admissible radi2? M x N SRT division table. Let



2 andd be rational numbers such that< d < 2 and|z| <d. m < 6 andm > 7. In fact, these indices are identified by
Let pg =z, o = 0, and fork > 0, executing the functiofexi st sDi vTabl e.

The admissibility of a division table may be checked
visually by examining the bold “staircases” that bound the
and regions of constant value. Suppose tihat and R(;_,); are

Qe = Qe_1 +27%Pmy, separated by a segment of such a staircase¢i(é.j) = m
) _ ) and ¢(: — 1,57) = m — 1. Since R;; is contained in both
wheremy, is an mFeger. Assume that for &> 0, if |[px_1| < S;; and Si;_y);, it must lie above the ling = m2_;ld and
2, thenmy, = (i, j), where(d,py—1) € Si;. Then for all pajqy,, m 4. That is, a staircase that separates the regions
k>0, [p| <2 and on whiché = m and ¢ = m — 1 must lie entirely above
9—kp < z < 9—kp. p= ’”2;1d, and when shifted up through one sub-interval, it
—d must still lie belowp = 4.

Definition 3.1 provides simple procedures that (a) deteemin
the existence of an admissible SRT table for given radix and |y, SRT SQUARE ROOT EXTRACTION AND DIGIT
dimensions and (b) construct one if possible: SELECTION

Lemma 3.3:Let p, M, and N be positive integers. There

. . . 1
exists an admissible rad® M x N SRT division table if Qve_n a rational number in the range; < r < 1, our
and only if for alli and j with 0 < i < 2M and0 < j < 2V objective is to construct a sequence pHrtial roots ¢p =

if 0,¢,..., that converge ta/x. Fork > 0,

Pr = 2°pp—1 — mid

—N 3—M —N
_6] -2 -2 << 53 + 2 y k= Q—1 + 2—/€pmk’

then L;; < Uj;. In this case, one such table is defined by \yhere2s is the underlying radix and theot digit my, is again

o(i,7) = max(1 — 27, Ly;). an integer in the intervat2” < m;, < 2”, selected to maintain
a bound on theartial remainders which may be defined as

These procedures are implemented by the functions

Exi st sDi vTabl e and SRTTabl eEntry, as displayed pe = 2" (z — q}),

in the appendix. By direct computation of the former,

is readily shown that forp = 2, the smallest admissible

division table has dimension/ = 5 and N = 2, and that P = 2°pp_1 — mi(2qr_1 + 27 %Pmy,).

for p = 3, the smallest table ha&/ = 7 and N = 3. These . ) ) )

two tables, as generated BRTTabl eEnt ry, are displayed The equivalence of these two expressions is establisheloeby t

in Figures 1 and 2, in which each valdi, j) is indicated llowing: _ _

by a label associated witR;;. Lemma 4.1:Let p be an integer and let be a rational
For each of these tables, the following conditions may Bg/mber. Letgy = 0, po = x, and fork > 0,

verified by inspection of the graph for each enty, j) = m:

(1) If S;; intersects the regiond < p < d, thenm is defined
and—2° < m < 2°. and .
(2) If m is defined andn # 2° — 1, then each point irb;; e = 2 pr—1 — mi(2qk—1 + 27 "Pmy,),
lies below the lingp = Zt1d.
(3) If m is defined andn # 1 — 27, then each point irb;;
lies on or above the ling = mg—gld.
As argued in the proof of Theorem 1, it follows thatis an 2"°(z — ¢2) = 2(z — (qu_1 + 27" my)?)
admissible rqdiXZP division SRT tablg. _ = 2P (p—(qP_ +2 P g my+ 272k m2))
Note that in some cases, there is a choice between two k 9 _k
. i : = 2"(x —qi_1) — mr(2qk—1 + 27 "Pmy)
acceptable values of.. If S;; lies within the region bounded k=1 :k
by p = 2d andp = "t1d, where—2? < m < 27, then the = 2%pr—1 — mp(2qk—1 +27""my)
required inequalities are satisfied by bethandm + 1. For = D
example, in the radix-4 table of Figure 1, although we have
assigned 2 as the value £00100, 10), since Spo100,10 lies o o
betweerp = ;d andp = }d, we could have chosen 1 instead, Our ct>bjlec2ve IS tf se(::ezcjkgozt digits that Siijer\\l/ve the
It is clear that a necessary and sufficient condition fdgvarnantss = g < 1 an P S VI — g <277 We
the existence of an admissibla/ x N radix2? table is derive two equivalent formulations of the latter inequalit

that eachS;; straddles at most one of the lings= 2d Lemma 4.2:Let p be an integer and let be a positive

m = 1—2°,...,2° — 1. For example, if we atterrﬁf:)t,to rational number. Lego = 0, po = =, and fork >0,

construct a6 x 3 radix-8 table, thereby doubling the height

of the rectangular elements shown in Figure 2, we find that
the uncertainty rectangl8yo1101,000 intersects bottp = %d and
andp = %d, requiring thatm = ¢(001101, 000) satisfy both e = 2°pp_1 — mi(2qr_1 + 27 Pmy,),

'Br alternatively by the recurrence formula

QG = Qr—1 + 27 "Pmy,

for some integern,,. Then fork > 0, pp = 2% (x — q,%).
Proof: The claim is trivial fork = 0, and fork > 0,

QG = Qr—1 + 27 "Pmy,



01111xx
01110xx
01101xx
01100xx
01011xx
01010xx
01001xx
01000xx E
00111x
00110x%
0010

00100
0001

000 1OxXX
00001TXX
00000xx

Ixx
0xX
10xx
LOOXX
041
11Q1TQX>
110041
11000x
10111xx
10110xx
10101xx
10100xx
10011xx
10010xx
10001xx f-:--

10000xx f[-f-4--
00x 01x 10x 11x

o TR

Fig.2. p=3, M=17N=3



for some integemy. Then fork > 0, if g, > % then the for some integenmn;. Assume tha% < qx_1 < 1 for some

following are equivalent: k> 1.
(@ qp — 2% < x < qp +27F7; @ Ifqp1—207Rr < /x < qp_1+207)7 then|p,_1| <
(b) —2qx < pr — 275 < 2q4; 2.
(c) mg,jl (2qk—1 + (mp — 1)27%) < pp_y < @ If g —27% < o < qi +27% and |my| < 27, then

MtL 9y 1 + (my 4+ 1)274) 1<q <1

Proof: The equivalence of (a) and (b) follows from Proof: Sincegy_1 = Zf;llripmi is an integral multi-
Lemma 4.1: sincey, > 277, ple of 20=F)e g1, i 1ki)mplies o1 <1— 2(1‘2“1)/’.k)

_ —k)p —R)p

& (gr—27")2 <a < (g +277)?

_ _ _ _ Pro1 > —2q5—1 + 20707 > 2
& @G- 427k << g 42l Reg 4272k

& 2427k < 2kp(:c - q,g) < 2qp + 27k and
& 25 +27% <ppp < 2q + 27 Pre-1 < 2qr—1 + 2077 < 2(1 — 2070y 4 olke < o,
To show that (b) is equivalent to (c), note that since Now supposey, — 27" < \/x < g, + 27 and|m,,| < 2.
Then
2k + 27" = 2(qu_1 4+ 27"my) +27F°
Qe (qr—1 k) 2 G = oy 2 Pmy <1 — 20-Rp 4 g-kep,
= 2qk—1+ (2mg +1)27%°
. < 1—290=klp | 9—kpgp
= (mk+1) (2qe—1 + (my +1)27°) o

—m(2qk—1 + 27 "my,),
_ _ If gv—1 < %, theng, < 1 —27% < \/z—27F7 contradicting
the upper boungy, < 2¢; 4+ 27% is equivalent to our assumption. -
- With 2¢;_; replaced byl in Lemma 4.2 (c), our objective
2kt — mk(2qk—1 + 27" Pmy) b qullpd f)ﬁi : “ l
D@ it 1)2_kp) may be formulated as follows:
< (e + q’“‘l_k k Given positive integerg and K and rational num-
—mg(2qk—1 + 27 "my,) bersd andp such thatl < d < 2 and|p| < 2, find
an integerm such that—2” < m < 2# and for all

or .
me + 1 - k>K,if —d+20-Fr <p<d+420-%r then
Pho1 < ’;p (251 + (my + 1)27%) .
m—1 _k
(d+ (m—1)27")
Similarly, the lower boungy, > —2¢;+2~%* may be replaced 2°
by < p
my — 1 m+1 —kp
DPk—1 2 k2p (2qk,1 + (my — 1)2*’6;)) ) < 2 (d—i- (m+1)2 ) )

We have the following formulation of the requirements of
§8quare root digit selection table for a given iteration
gnalogous to Definition 3.1:

Definition 4.1: Let p, M, N, andk be positive integers and
let ¢ be an integer-valued function of two integer variables.

heng is an admissible radig? M x N SRT square root table

We shall once again pursue a table-based approach to
selection ofmy. As suggested by the similarity between th
partial remainder recurrence formulas for division andasqu
root, and between the boundsi < p;,, < d and Condition (b)
of Lemma 4.3, we shall find that in various cases of interest, = "~ ™ ) , L oM N
the same table may be used for both, with the varidgle; '°" iteration if for all @ andj, if 0 <@ < 2%, 0<j <27,
used for the table index in the square root computation inqolak > K, and
of the constand. This imposes a bound, however, @rf2-*7, —0; — 2N _93-M 4 9(-F)p . < 5+ 2~ N 4 o(=k)p,
the term that distinguishes the two formulas. Consequghty ) i o
table is used to deriveu, for k > K, for somek, after the then the following conditions hold fom = ¢(i, j):

first K iterations are performed by some other method. (@) =2 <m < 2.
The following lemma guarantees thatjf< qx < 1, then (b) If m # 27 —1, then
the same bounds are satisfied by all subseqggrand that mEL (§; + (m + 1)27F0)
forall k > K, [py| <2 5o if i <2M~tori=2M -1
Lemma 4.3:Let p be a positive integer and let be a ™+ 2 < m+1 (5j +27N 4 (m + 1)2*’6/))
rational number,% <x <1 Letgy =0, po = z, and for z?f OM—1 < j < oM _ 1
k>0,

(c) If m#£1—2°, then

oo [ S (027N A+ (m = 1)27) i i < 2V
and T B (64 (m—1)27k0) if i >2M-1,
P = 27pr—1 — mk(2qk—1 + 27 P my),

QG = Qr—1 +27"Pmy,

3




Lemma 4.4:Letp, M, N, andk be positive integerg; > 1,

and both vertices lie above the line. If the slope is non-

and lety be an integer-valued function of two integer variablesiegative, then the critical vertex is the upper left. In eith
Theng is an admissible radig? M x N SRT square root table case, a necessary and sufficient condition is that

for iterationk if and only if or all4, 7, p, andd, if 0 < i < 2,

0<j<2N, k>K,(d,p) €S, and—d < p—20-Fr < g,

thenm = ¢(i, j) satisfies—2? < m < 2° and

m—1
20

(d + (m— 1)24“’)) < p
m+ 1
20
Proof: Consider the following four lines in thép-plane:
2% p=d+ 2(1=k)p
ly:p=—d+ 2(1=k)p
ly:p =2 (d+ (m+1)27F°

2P
ly:p =" (d+ (m—1)27).

(d+(m+1)27%).

For given: andj, the constraints of the lemma hold vacuousl

if S;; lies either entirely above the ling or entirely below
{5, as determined by the lower right vertéx; + 2~ r;), or
the upper right vertex(d; + 2=, m; + 23-M), respectively.
Thus, the constraints are in force only if

—0; = 27N 23 M L 9=k < 5, 427N 20 -R)p,

We may assume that this condition holds.
We must show that the upper bound
m+1
20

is satisfied by everyd,p) € S;; with —d +20-Fr < p <
d+ 20-Fr je., belowl; and on or above,, if and only

p< (d+ (m+1)27%)

if Condition (b) of Definition 4.1 holds. Since the bound is

satisfied trivially if m = 2° — 1, we may assume that <

2¢ — 1. Of the two lines¢; and /s, ¢; has the greater slope

andp-intercept and therefore lies abo¥gfor d > 0. But for
d>1andk > 2,
m+1
20

m—+1
20
1-—2°
20
9—p
2(1*k)p’

> +1

(d+ (m+1)27") +d

>

+1

>

and hencé; lies abovels in the region of interest. It follows
that the required upper bound holds for @il p) € S;; with
—d 4 20-Rr < p < d 4 20-Fr if and only if S;; lies

—m o m+1 _
7Ti+23 M < “or (6_j+(m+1)2 kp).

On the other hand, BM ! < i < 2M —1, thenm;+23~M <
0. If the slopem + 1 is positive, then every poir(id, p) € S;;

lies below/s, since

< w423 M

< 0

; m—+1
S o

m+1
20

nd if m + 1 < 0, then the critical vertex is the upper right.
hus, a necessary and sufficient condition is

m—+1
20
The analysis of the lower bound,
S m- 1
b= o0
is similar. Since the bound is satisfied triviallysif = 1 — 27,
we may assumen > 1 —2°. Ford > 1, {4 lies below/;,

))

p

(6 + (m + 1)27%)

IN

(d+ (m+1)27),

m+ 20 M < (0 +27N + (m+1)27).

(d + (m— 1)2*’“’)) ,

-1
d+20-kr _ mT(d + (m —1)27%)

m—1 m—1
_ _ (1-Fk)p _
= (1 T ) d+2 <1 ( T

m—1
2

> 1-

0,

and/, lies abovel,, since

-1

m2p (d+ (m — 1)27%°) — (—d + 20-k)e)
m—1
- _9(1=k)p

- (1Y)
2—2°

> 1+ —92F
2p

- 9r

> 0.

entirely below/s, or eq_uivalently, both upper vertices lie ONconsequently, the bound is satisfied for @il p) € S;; with
or below /3. Suppose first that < 2M_‘1 ori = oM _ 1, SO _g<p—20Me < qif and only if each point inS;; lies on
that; +2°~™ > 0. If the slopem + 1 is negative, then since o, abovery, as determined by its lower vertices.il& 21,

5+ (m+1)27F > 1 —2r27kr =1 _ 2(=R)r >
we have
m+28M > 0
> m;; L3+ (m+ 1)27)
mQ—J,fl (0;+27N + (m+1)27%)

i.e.,m; > 0, then since
5,4 (m—1)27F > 1 —2r9kr — 1 _ 9=k > ¢
if m —1 <0, then for all(d, p) € S,;,

m—1
20

(d+ (m+1)27),

> m =02

P (5j + (m+ 1)2*]“”)
m—1

2p

Y
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and if m — 1 > 0, then the critical vertex is the lower right.which impliesm > L;;. Similarly, if m # 1 — 2#, then
Therefore, the requirement is .
a { me (6 +27N) i< 2M!
T > z 5 /

P
m—1 o M-1
55 0j if 1>2 R

m—1 _ _
Wi27(5j+2 N+(m—1)2 kp).

If 7; <0, then a similar argument yields the condition which impliesm < U;;. u
m—1 While Definition 4.1 provides a procedure to determine
i 2 55 (6; + (m —1)277). whether a square root table is admissible for a given itmati

k, we would like a procedure for determining admissibility fo

The preceding results of this section may be summarizea!I suffigigntly Ia.rgek. This is provided by t.h_e fqllowing:
Theorem 2:Let p, M, N, andK be positive integers and let Definition 4.2: Let p, M, N, andK be positive integers and

¢ be an admissible radi22 M x N SRT square root table for let ¢ be_ an integer_-va_lued fur_1cti0n of two integer vgriables.
every iterationt > K. Letx be a rational numbel}I, <z <l Th§n¢ 'S, gK—adm|55|]l?4le fad",@p ]\{VX N SRT table if for
Letgo =0, po =z, and fork=1,....n all 7 andj, if 0 <i<2™,0<j<2%, and

Gk = Q1 + 27"y, —0; = 27N 23 M <5 427N p oK
and then the following conditions hold fom = ¢(%, 5):
Pk = 27pr—1 — my(2q—1 + 27 my), (@) —2° < m < 2°.
wheremy, is an integer. Assume thaf < qx < 1, gx — (0) m = Li;.
27K < /T < qig +2 %7, and fork > K, if 1 <¢,_; <1 () If m#1-2° then
and |pr—1| < 2, thenmy = ¢(4, ), wheriek(qu_l,pk_l) € m2_;1 (6j 12N 4 (m— 1)2_(K+1),,)
;ijk.pThen forallk > K, |px] < 2and—27% < /o — q;, < s if i < oM-1

o Z Y meL (64 (m - 1)2 (K+Dp)
Proof: We shall prove by induction that fok > K, 2if P> oM-1
L < g <1andg, — 2% < /& < g + 2. Suppose that = '
these conditions hold fok — 1. Then —2¢;_; + 2(1=Fr < A K-admissible table is essentially one that is admissible

P11 < 2qu_1 + 20757 by Lemma 4.2,lpr_1] < 2 by for every iterationk > K:

Lemma 4.3, and consequently, for soimendj, m = 6(4, 5) Lemma 4.6:Let p, M, N, and K be positive integers and
and(2qx—1,pr—1) € Sij. Therefore, by hypothesign,| < 2 let ¢ be an integer-valued function of two integer variables.
and (@) If ¢ is a K-admissible radix2” M x N SRT table, then
my — 1  \o—kp for all k > K, ¢ is an admissible SRT square root table
20 (2%_1 + (mi = 1)277) | for iteration k.
< Pkt (b) Let¢ be an admissible radi22 M x N SRT square root
m;;:- 1 (2%71 + (i + 1)27@) ' table for iterationk for all k¥ > K and let
. . 1-20 if —§; —27N —23"M < g,

By Lemma 14.2,qk —27% < Vxr < g + 27", and by &' (i, 5) = < —§;—27N —23-M 4 o= Kp
Lemma 4.3 < g < 1. u ¢(i,j) otherwise

We shall develop a procedure for generating a table for a
given radix that meets the requirements of both division and Then¢' is a K-admissible radix@” M x N SRT table.
square root, of minimal dimensions and with mininfal In Proof: Suppose thap satisfies Definition 4.2. Let > K
Section V, we turn to the problem of generating the initisdnd

artial quotient and remaindeyi andpg.
P First(\q/ve note that any tabl?that m]e?zets the requirements ford; — 2~ —2°7 " + 2070 <y < 6+ 27N 4 2070e,
square root extraction may be used for division as well:

Lemma 4.5:If ¢ is an admissible radig? M x N square

root table for all iterations: > K, then¢ is an admissible —0; =27 N M o <5 27N p 27
radix2? M x N division table. . ) o
Proof: Suppose that Of the conditions imposed by Definition 4.1, (a) and (c)
N s N follow from the corresponding conditions of Definition 4T

—0; =277 =2 <m <0277, establish (b), note that if» # 2° — 1, then we haven > L,

where0 < i < 2M, 0 < j < 2V. Then for somek’, where

5, — 27N 93 M 90=Re <527 N o1k 2@ i i<2Mlori=2M 1

for all k > K'. Letm = ¢(i, 7). For all k > maxk,K'), (PO ) o1 i oM << M

Conditions (a), (b), and (c) of Definition 4.1 hold. It follew  *
that if m # 27 — 1, then which implies

mp23 M < { mtls; if i <2M-lorj=2M _1 b2 M < { mils, if i < 9M—1 grj—9M_1

2p p
mal (g;+27N) if 2Ml << 2M mal (g; +27N) if 2M < < 2Mp
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Now supposes is an admissible SRT square root table foand

L , :
every iterationk > K and let¢’ be defined as above. Let Ly >1-2°

—0; =27 N M <5 27N p 27K

for somei and j and letm — ¢/(i. 7). If 7 < —5; — 2N (whereL;; is defined as in Definition 3.1), then
= »J) i S —05 — -

3—M —Kp
s > Lzt (5427 N 4 (Ly—1)2- K+ f § < oM
L w v = Lgp_l (6j+(Lij—1)2_(K+1)p) if 4 >oM-1,
* 5j +2-N
< 2°(—6; — 27N + 27Kp) In this case, one such table is defined by
- 5j +2-N
2(1-K)p o0 #(i,j) = max(1 — 27, L;;).
= 5. fo-N
%5t Proof: Let 0 <i <2M,0<j < 2", and
< 1 - 2P — ’ — 1
- m —5.7' — 9N _93—M < < 6j + 9—N + 9—Kp.

and Definition 4.2 is satisfied. In the remaining case,
Suppose that ifL;; > 1 — 27, then the conclusion of the

—N 3—M —-K —N —-K . .
=0y =277 =2+ 2T <0277 4277 lemma holds. Then clearly, the requirements of Definitich 4.

and the three conditions of Definition 4.1 must hold fofre satisfied byn = max(1 — 27, Li;).

k = K + 1. Since (a) and (c) coincide with the corresponding Conversely, suppose that some satisfies Definition 4.2
conditions of Definition 4.2, we need only show that> L;;. and thatL;; >1—2°. ThenL;; <m <2 andm; > f(m),
Since this is clearly true ifn = 2° — 1, we may assume thatWhere
m < 2P — 2. Supposer; > §;. Theni < 2M-1 and it follows

m=L (65 + 27N + (m—1)2-EHDe) jf § < 2M—1
from (b) that = 2° ( J X
( ) , .f(m) { 7712;1 (6_] + (m_1)2—(K+1)p) if 7> 2M—1,
oM < ML DTy ey
- o0 Y 20 and we need only show that > f(L;;). But note thatf is
< (1 —=277)8; +27r20= K an increasing function ofr for m > —2°, since
= 6 +2P0=Kp _s.
< b+ 2—pE1 - 1) ! 2(f(m+1) = f(m)) > &+ (2m —1)27 K+
: 57 > 14 (1 _ 2P+1)2—(K+1)p
- > 1-—2l-Kr
a contradiction. Therefore, we may also assume ;. But > 0

then for allk > K,

;= 27N 93 M 4 oU=Re < 7y < §; + 27N 420k Thereforer; > f(m) > f(Lij). [
If ¢(i,7) = m for a K-admissible table), then as noted

and hence in the proof of Lemma 4.4,5;; must lie above the line
L (854 (m+ 1)27]”’13[ p = 2L (d+ (m—1)27%r). Consequently, in addition to
23 M < if i < 2Mil ori=2 —} the criterion given in Section Ill, the staircase that sapes
! =) (s + 27N 4 (m+1)27F) the regionsp = m and$ = m — 1 must lie above that line.
if 271 <4 <2M 1. Consider the5 x 2 division table of Figure 1. Since
Consequently, the lower left vertex of Rijp10,00 lies onp = —1id,
this point does not lie above = —1 (d—4'~%); there-

20

ML (g5 4+27N) if 2M-t < g < 2Mop,

fore, this is not aK-admissible square root table for any
positive K. Moreover, the same is true of evefy x N
which impliesm > L;;. m radix-4 table for everyN. There does, however, exist a
Thus, for giverp, M, N, andK, Definition 4.2 may be used 6 x 2 2-admissible table. This is confirmed by execu-
to determine whether there exists a table that is admisalbletion of the functionExi st sDi vSqrt Tabl e, displayed in
square root iterations > K, and consequently for division the appendix, which implements the procedure specified by
as well. If such a table does exist, then it may be generate@mma 4.7. Such a table may be generated by executing
by the same procedure that was developed for division tabl&RTTabl eEnt ry.
Lemma 4.7:Let p, M, N, and K be positive integers. Now consider th& x 3 radix-8 table of Figure 2. Since the
There exists al{-admissible radix3” M x N SRT table if lower right vertex of Rop11110,001 lies on the linep = %d,
and only if for alli andj with 0 <4 < 2™ and0 < j < 2V, this table cannot be used for the square root. As confirmed
if by Exi st sDi vSgrt Tabl e, however, there exist bothx 3
5= 2N M o <5 27N 27K and7 x 4 2-admissible radix-8 tables.

423 M < { mils; if i <2M-1ori=2M-1



V. SQUARE ROOT SEED TABLES

In order to employ aK -admissible SRT table to compute

square roots as described in Theorem 2, we shall require
efficient method of deriving, for a given radicandthe initial
root digitsmy, . .., mg to be used in the iterative computatio
of px andqg, which must satisfy the constraints of the the
rem. Our strategy is to read thié p)-bit integerS = 257 gy
from a table using the€ K p)-bit integer¢ = [2X7x]| as an

index. Lemma 5.1 (a) below provides a set of conditions on

the table entryS at index /¢ that ensures thajx meets its
requirements.

As noted in Section I, we would like to arrange for the
column of the digit selection table that is determined by the

partial rootq; to be independent of for k£ > K. Thus, we
would like to ensure that the most significa¥it+ 1 bits of ¢,
consisting of the leading 1 and tlé-bit table index, coincide
with the corresponding bits af. If we assume{p > N +1,
as in the case of intereft = 2, p = 3, N = 4, then a
sufficient condition is that the leading p — 1 bits match, i.e.,
for all £ > K,

L2Kp—1qu _ |_2Kp_1QKJ-

Lemma 5.1 (b) provides a formula for deriving an adjusted

value S’ from the seed table entty that retains the properties

12

Proof: (a) The bounds oid) hold trivially. To derive the
bounds on,/z — @, note that substituting”“»Q for S in the

r<]:ond hypothesis yields

(Q—27Kr2 <o Krp <27 Kr(p 4 1) < (Q+275°)2

se
al

:)ginceTKPE <z < 27K°({ 4+ 1), this implies

(Q-275") <z < (Q+2770)%,
and the claim follows.
(b) We may assumg’ = S—1, for otherwiseS’ = S, Q’
Q, and the claims follow immediately. Sin€g@ > /z > %
S = 2KrQ > 2Kr=1 and henceXr-1 < &' < 2K» which
lies1 < Q" < 1. Moreover,

V-2 <27 =Q <Q < Vz+27F,

e, Q —27Kr < \Jr <Q +27Kr,
(c) First note that folk > K, qi, = Q' + Zf:KH 27 m,,
where|m;| < 2 — 1, and hence

imp

k
-l - |3 zwmi‘
i=K+1
< 2—(K+1)p(2p_1)22—ip
=0
= 27K,

of gk required by Theorem 2 and, as established by (c), satis-

fies this additional condition as well. Note that this detiva
requires a full-width comparison gfx andqx, which may be
implemented by reading the value 6% from a parallel table
and comparing it withe during the pre-processing phase.

As a simplifying assumption, we ignore the case= p =
1, which is of no practical interest:

Lemma 5.1:Let p and K be positive integers witlip > 1.
Let = be rational,; <z < 1, and/ = |2%rz].

(&) LetS be an integer satisfying
ofr=t < g < 2Kr
and
27 KPS 1) <t<t+1<27EP(S+1)?
and letQ =27%7S. Theni < Q <1 and

Q-27Fr < Jxr<@Q+27Kr

|

andQ’ =2"%r5". Then] < Q' <1 and

(b) Let

S
S—1

if S'is odd ory/z > Q
if S is even and/z < Q

Q —278r <z <Q +27Kr

(c) Letgx = Q" andforallk > K, letq, = qu—_1+2"""my,
where m;, is an integer andmy| < 2°. Then for all
k> K, if g —27F < /x < qi+ 2%, then

(2577 ] = [25°71Q').

[250q,) < 2%0qp < 250(Q"+2757) = 8"+ 1,

we have|2X7q,.| < §' = 2KrQ’ and
(2577 ] = {BK;quJ < VK;)Q/J = [2f01Q').

For the reverse inequality, we may assuge< Q’. We may

/

also assume/z < Q; otherwise, Q' = @ and sinceg, and
Q' are both integral multiples af—*#,
n<Q -2 =Q-27" < Vz-27",
contradicting/z < g, + 27%°. It follows that S’ is odd.
Therefore, sincey > Q' — 27 X7,
1 S8 1
2Kp71 2Kp71 r_ - 2 - _ — 2Kp71 /
which implies|25°=1q,. | > [25K,71Q’]. [
The next lemma establishes the existence of a compliant
seed table and gives a formula for computing its entries,
implemented by the functioBeed, specified in the appendix:
Lemma 5.2:Let p and K be positive integers and let
P(l) = [«/21@(5 + 1)] — 1, where2Kr=2 < ¢ < 27 Then
2= < ap(e) < 2Kr
and

27K () —1)2 <l < b4+ 1< 27KP(y(0) +1)2

Proof: Under the assumption that(¢) is an integer, its
definition is equivalent to

2KP(0 4 1) — 1 < p(0) < /2Kp(L +1).
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The lower bound yields In particular,

2K (0 4-1) < (1p(€) +1)?

J2Ee( 1) —1
> /2Kp(2Kp—2 + 1) -1 [1]
[2]

V2Ep2Kp=2 ]

2fr=t 1, [3]

and

¥(0)

Y

\%

which impliesy(¢) > 2K7=1, From the upper bound, we have [4]

Y(l) < \[2KP(L+1) < V2Kr2Kp = 2Kp 5]
and, sincet? > 2Kr,
2KP(0 1) — V2Kl <S40 +1) — Va2

Wl+1)+1-Vae 7]
2 +1—20

(6]

A

1 8]
which implies

[0
Y(l) < y/2Kr(l+1) < v2Krl+1

and hence, [10]
(p(6) —1)* < 2%7¢. [11]

B (12

Along with the initial approximation g, the corresponding e
partial remaindempy is required to initiate the iterative ap-(13
proximation of/x. While this may be computed directly as
prx = 25°(x — ¢%), an iterative computation is likely to be
more efficient. For example, jf = 3 and K = 2, a two-cycle
iteration using existing hardware is preferable to a comort  [15)
involving a (6 x 6)-bit multiplication. In any case, to apply
Theorem 4.4, it must be observed thatis actually generated
by the recurrence formula from the root digits extracteariro[i]
the table entry:

Lemma 5.3:Let p, K, andS be positive integers witly <
257 and letQ = 27575, Letqy =0, and fork =1,..., K,

]

QG = qe—1 + 27" my,,

wheremy = S[(K —k+1)p—1: (K —k)p]. Thengx = Q.
Proof: By induction, forl < k < K,

g =27"S[Kp—1: (K —k)pl,

for if
Q1 =207PS[Kp —1: (K — k +1)p],
then
g = 207MPS[Kp—1:(K —k+1)p]+ 2 Pm,

qr =27 KPS[Kp—1:0]=2"5r5 = Q.
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