A Mechanically Verified Commercial SRT Divider

David M. Russinoff
April 9, 2009

Abstract

We present a proof of correctness of a commercial implementation of the Sweeney-
Robertson-Tocher (SRT) division algorithm, namely the integer divider of the AMD
processor code-named “Llano”. The register-transfer logic (RTL) design of the di-
vider and its behavioral specification are both formalized in the ACL2 logic; the
proof has been formally checked by the ACL2 prover. The complexity of the prob-
lem is managed by modeling the design at successively lower levels of abstraction,
beginning with the SRT algorithm and ending with the RTL module. This ap-
proach is contrasted with earlier published work on this problem, which addresses
only the high-level algorithm.

1 Introduction

The Sweeney-Robertson-Tocher (SRT) division algorithm [9, 13], owing to its susceptibil-
ity to efficient hardware implementation, is ubiquitous in contemporary microprocessor
designs. It is also notoriously prone to implementation error. Analysis of the algorithm’s
most celebrated incarnation, the defective FDIV circuitry of the original Intel Pentium
floating-point unit [7], suggests that thorough verification of an SRT divider by testing
alone is a practical impossibility.

This development has been a boon to the enterprise of formal hardware verification.
One early response to the 1994 revelation of the Pentium bug was Bryant’s BDD-based
analysis [2], which established a critical invariant of an SRT circuit but was limited
by the practical constraints of the model-theoretic approach. More complete results
were subsequently achieved with the use of mechanical theorem provers by Kapur and
Subramanian [5]; Ruess, Shankar, and Srivas [8]; and Clarke, German, and Zhou [3].
All of these efforts shared the goal of demonstrating the effectiveness of a particular
prover in exposing a specific bug, and consequently focused on the relevant aspects of
the underlying algorithm. Moreover, although developed independently, all three were
coincidentally based on the same execution model, a high-level circuit design proposed
in 1981 by Taylor [12].

A different objective is pursued in the work reported here: a comprehensive machine-
checked proof of correctness of a commercial hardware design. The object of investi-
gation is a register-transfer logic (RTL) model of a radix-4 SRT integer divider, to be
implemented as a component of the AMD processor code-named “Llano”. The theorem
prover used in this project is ACL2 [1].

The required behavior of the module is concisely specified in terms of the integer
values X and Y (divisor and dividend) represented by the primary data inputs and the

corresponding values () and R (quotient and remainder) of the data outputs. Under
suitable input constraints, the following relations must be satisfied:

(1) Y =QX + R;
(2) |R| < |X];
(3) Either R =0, or R and X have the same sign.

Regrettably (from a verification perspective), the simplicity of this behavioral spec-
ification is not reflected in the design. In contrast to Taylor’s circuit, which uses only
five state-holding registers, the divider of the Llano processor uses fifty-six. In order to
address this complexity, the proof is divided into four parts, which model the design at
successively lower levels of abstraction.

At the highest level, as discussed in Section 2, we establish the essential proper-
ties of the underlying SRT algorithm. Our description of the algorithm is based on an
unspecified radix, 2”. In the case of interest, we have r = 2, which means that two
quotient bits are generated per cycle. The main result of this section pertains to the
iterative phase of the computation, which generates the sequences of partial remainders
Do, - - -, Pn, quotient digits myq, ..., m,, and resulting partial quotients Qo,...,Q,. We
also address several relevant issues that are ignored in the proofs cited above: (1) prescal-
ing of the divisor and dividend and postscaling of the remainder; (2) determination of
the required number n of iterations, which depends on the relative magnitudes of the
operands; (3) incremental (“on-the-fly”) computation of the quotient, which involves
the integration of positive and negative quotient digits; and (4) derivation of the final
remainder and quotient R and @, as specified above, from the results R’ and Q' of the
iteration, which are characterized by Y = Q'X + R’ and |R'| < |X]|.

In the radix-4 case, the quotient digits are confined to the range —3 < m; < 3. Each
my, is read from a table of 4 x 32 = 128 entries according to indices derived from the
normalized divisor d and the previous partial remainder p;_1, and is used to compute the
next partial remainder by the recurrence formula p;, = 4pg_1 — mpd. At the second level
of abstraction, in Section 3, we present the actual table used in our implementation,
which was adapted from the IBM 2990 [4], and prove that it preserves the invariant
o] < d].

At the third level, the algorithm is implemented in XFL, a simple formal language
developed at AMD for the specification of the AMDG64 instruction set architecture.
XFL is based on unbounded integer and arbitrary precision rational data types and
combines the basic constructs of C with the logical bit vector operations of Verilog, in
which AMD RTL designs are coded. The XFL encodings of the lookup table and the
divider are displayed in Appendices A and B. Like most XFL programs, this code was
automatically generated from a hand-coded C++ program, which has been subjected
to testing for the purpose of validating the model.

The XFL model is significantly smaller than the RTL, which consists of some 150
kilobytes of Verilog code, but it is designed to perform the same sequence of register-
transfer-level operations while avoiding low-level implementation concerns. Thus, much
of the complexity of the design is captured at this third level, including several essential
features that are absent from higher-level models such as Taylor’s circuit specification:

(1) A hardware implementation of Taylor’s model, which computes an explicit rep-
resentation of the partial remainder on each iteration, would require a time-
consuming full-width carry-propagate adder, resulting in a prohibitively long cycle

time. In contrast, a typical contemporary commercial implementation such as the
Llano divider stores the remainder in a redundant form, which may be computed
by a much faster carry-save adder. A single full-width addition is then performed
at the end of the iterative phase.

(2) The derivation of the final results R and @ from the intermediate values R’ and
Q' involves consideration of the special cases R = 0 and R’ = +X. Timing
considerations dictate that these conditions be detected in advance of the full-width
addition that produces R’'. This requires special logic for predicting cancellation.

(3) The module is also responsible for detecting overflow, i.e., a quotient that is too
large to be represented in the target format. This involves an analysis that is
performed concurrently with the final computation of the quotient.

Each of these complications introduces a possible source of design error that cannot be
ignored. In Section 4, we present a complete proof of the claim that the algorithm is
correctly implemented by the XFL model.

The lowest level of abstraction to be considered is that of the RTL itself. The proof
of equivalence between the RTL and XFL models represents a significant portion of the
overall effort, involving the analysis of a complex state machine, innumerable timing and
scheduling issues, and various other implementation concerns. However, this part of the
proof would be of relatively little interest to a general readership; moreover, neither
space nor proprietary confidentiality allows its inclusion here.

Thus, the purpose of this paper is an exposition of the proof of correctness of the
Llano divider as represented by the XFL model. The presentation is confined to standard
mathematical notation, avoiding any obscure special-purpose formalism, but assumes
familiarity with the general theory of bit vectors and logical operations, making implicit
use of the results found in [10]. Otherwise, the proof is self-contained and surveyable,
with one exception: Lemma 3.1, which provides a set of inequalities that are satisfied
by the entries of the lookup table, involves machine-checked computation that is too
extensive to be carried out by hand.

We emphasize, however, that a comprehensive statement of correctness of the RTL
module itself has been formalized in the logic of ACL2 and its proof has been thoroughly
checked with the ACL2 prover. This includes a formalization of the proof presented
here, along with a detailed proof of equivalence between the XFL and RTL models. For
this purpose, the XFL model was re-coded directly in ACL2 and the RTL module was
translated to ACL2 by a tool that was developed for this purpose [11]. Thus, the validity
of the proof depends only on the semantic correctness of the Verilog-ACL2 translator
and the soundness of the ACL2 prover, both of which have been widely tested.

While the ultimate objective of formal verification is a proof of correctness, its utility
may best be demonstrated through the exposure of bugs that might otherwise have gone
undetected. In the present case, three bugs that had already survived extensive directed
testing were found through our analysis, at three distinct levels of abstraction. Once
identified, all three were readily corrected.

First, an entry of the lookup table (the one in the upper right corner of Figure 1)
was missing from the original design. This was strikingly similar to the original Pentium
bug insofar as the entry was thought to be inaccessible. The error was not exposed by
initial directed testing, which was designed to hit all accessible table entries on the first
iteration. Subsequent analysis and testing revealed that the entry can be reached, but
only after nine iterations.

A second problem was detected in connection with the same table entry. If the
partial remainder is close to —2, it appears to be possible (although no test case has
yet been constructed to confirm this possibility), as a result of the two’s complement
encoding scheme, for the approximation derived from the redundant representation to
be close to +2 instead. The original design did not account for this occurrence, which
would have resulted in a quotient digit with the wrong sign.

Finally, a timing problem was detected in the RTL implementation, related to the
possible cancellation and re-transmission of the divisor input. This issue, which of course
is not reflected in the algorithm or the XFL encoding, illustrates the inadequacy of a

correctness proof based solely on a high-level design model.

2 SRT Division

The description of a division algorithm is typically simplified by interpreting its param-
eters as fractions. Thus, our presentation begins with a normalized representation of

the divisor X,
d = 27€$p0(X)X=

where ezpo(X) is the integer defined by
2€TPOX) < | x| < 26TPOX)+1

and consequently, 1 < |d| < 2. The dividend Y is similarly shifted to produce the initial

partial remainder,
po = 276$p0(X)7rnY=

where 2" is the underlying radix of the computation and n, the number of iterations to
be performed, is chosen to ensure that |pg| < |d].

On each iteration, the current partial remainder pj_; is shifted by r bits and an
appropriate multiple of d is subtracted to form the next partial remainder,

pr = 2"pr_1 — myd,

where the multiplier m;, contributes the accumulated quotient. The invariant |pg| < |d|
is guaranteed by selecting my, from the interval

—1<m; < + 1.

2"pr—1 2"pg—1
d

For further motivation, refer to [6].

Lemma 2.1 Let X, Y, r, and n be integers such that X #0,r > 0,n >0, and |Y]| <
2" X |, Let d = 2 ¢TPOX) X | pg = 27 €IPOX) =y and Qo =0. Fork=1,...,n, let
Pk = 2"pr—1 — myd

and
Qr =2"Qr 1 +my,

where my, is an integer such that if |py_1| < |d|, then |py| < |d|. Let R = 26TP0(X)p,
and Q@ = Qn. ThenY = QX + R and |R| < |X]|.

ProOF: Clearly, 1 < |d| < 2, and
[po| = 27 AP0y | < 27 PO Y| = d].

It follows by induction that |pg| < |d| for all ¥ < n. We shall also show by induction
that

pe = 2" po — Qid.
The claim clearly holds for k£ = 0, and for 0 < k < n,
pr = 2'pr1 —mgd
= 2 (27’(1671)100 - qud) —myd
= 2"py — (2"Qk—1 + my)d
= 2"Fpy — Qud.

In particular,
Pn=2"po — Qnd,
and
Y = 26mP0(X)grny. = 2€TPOX) (Q d + p,) = QX + R,

where |R| = [267P0(X)p, | < |267P0(X)q| = |X|. O

A quotient and remainder that satisfy the conclusion of Lemma 2.1 may be easily
adjusted to satisfy the specification stated in Section 1.

Lemma 2.2 Let X, Y, ', and R' be integers such that X # 0, |R'| < |X|, and
Y =Q'X +R'. Let R and Q be defined as follows:

(a) If |IR'| < |X| and either R' =0 or sgn(R') = sgn(Y'), then R=R' and Q = Q’;
(b) If (a) does not apply and sgn(R') = sgn(X), then R=R' — X and Q = Q' + 1;
(¢) If (a) does not apply and sgn(R') # sgn(X), then R=R' + X and Q = Q' — 1.
ThenY = QX + R, |R| < |X|, and either R =0 or sgn(R) = sgn(Y').
ProoOF: We consider the three cases separately:
(a) In this case, the conclusion holds trivially.
(b) In this case,
Y =QX+R =Q +1)X+ (R -X)=QX+R

and sgn(R') = sgn(X). If |R'| = |X|, then R = X and R = 0. Otherwise, we
must have Y # 0 and sgn(R') # sgn(Y’). Since |R'| < |X]|, |[R| = |R' — X| =
|X|— |R'| < |X|. Moreover, sgn(R) # sgn(R'), which implies sgn(R) = sgn(Y").

(c) Here we have
V=Q'X+R =(Q"-1)X+(R+X)=QX+R

and sgn(R') # sgn(X). If |R'| = |X]|, then R' = —X and R = 0. Otherwise,
Y # 0 and sgn(R') # sgn(Y'). Since |R'| < |X|, |R| = |R'+ X| = | X|—|R'| < |X|.
Moreover, sgn(R) # sgn(R'), which implies sgn(R) = sgn(Y"). D

In an SRT implementation, the multiplier my of Lemma 2.1 represents a sequence of
r bits that are appended to the quotient during the Eth iteration. Although not required
for the proof of the lemma, it may be assumed that in practice, |mg| < 2". In particular,
in our radix-4 implementation, we have —3 < m;, < 3. This provides a bound on the

partial quotients.

Lemma 2.3 Let Qo =0 and for k=1,...,n, let Qr = 4Qyr_1 +my, where —3 < my, <
3. Then |Qy] < 4*.

ProoF: By induction,
|Qk| = [4Qk—1 + my| < |4Q_1| + |mi| <4 (4* ' —1) +4=4*.DO

If we could guarantee that mj > 0, then we could maintain a bit vector encoding
of the quotient simply by shifting in two bits at each step. In order to accommodate
my < 0 without resorting to a full subtraction, and simultaneously to provide an efficient
implementation of Lemma 2.2, we adopt a scheme that involves three separate bit vectors
representing the values Q, Qr — 1, and @ + 1. The following lemma will be used in
Section 4 to compute the final quotient. Note that each step in the computation may
be implemented as a simple two-bit shift.

Lemma 2.4 Let Qo = 0 and fork=1,...,n, let Qr = 4Qyr_1 +my, where —3 < my, <
3. Let N > 0. We define three sequences of bit vectors, Ey, E, , and E,j, all of width
N, as follows: Eqg =0, E; =2V —1, Eg' =1, and fork=1,...,n,

By (4Eg_1 +my)[N —1:0] if mp >0
4E, ;+mp+4)[N -1:0] ifmy <0,

o (4Eg—1+myp — 1)[N —1:0] ifmgp >0
k= (4E, ;+mp+3)[N-1:0] ifmy <0,

and

(4Ep_1+mp +1)[N —1:0] 4f -1<my <2
E,j: (4E,_; +mp+5)[N —1:0] ifm < -1
(4E} D[N -1:0] if mp = 3.
Then for k=0,...,n
Ek = Qk[_N, 1: 0]/
E; =(Qr—1)[N -1:0],
and
Ef =(Qr+1)[N—-1:0].

PROOF: The claim holds trivially for £ = 0. In the inductive step, there are seven
equations to consider. For example, if m; < —1, then

Ef = (4B, +my+5)[N —1:0]
(4(Qk—1 — D[N —1:0] + my +5)[N —1:0]
= (4Qr—1 —1)+my +5)[N—1:0]
(
(

4Qk—1 + mp + 1)[N —1:0]
Qr+1)[N —1:0].

The other six cases are handled similarly. O

The implementation is also responsible for supplying the integer n of Lemma 2.1,
which is required to satisfy |Y| < 227|X| and represents the number of iterations to be
performed. This may be accomplished by establishing an upper bound on the difference
expo(Y') — expo(X):

Lemma 2.5 Let X, Y, and B be integers such that X # 0 and ezpo(Y) — expo(X) < B.

Let
Lo LB+ ifB>0
“ 10 if B <0.

Then |Y| < 22" X].

Proor: If B > 0, then

(]2t n

so that 2n + ezpo(X) > B+ 1 + expo(X) > expo(Y) + 1 and

22n‘X| Z 22n+6$p0(X) Z 2€IEp0(Y)+1 > ‘Y‘
But if B < 0, then ezpo(Y) < expo(X) and

The most intensive computation performed in the execution of the algorithm is that
of the partial remainder, p, = 4pr_1 + mpd. In order for this to be completed in a
single cycle, py, is represented in a redundant form consisting of two bit vectors. Since
|mk| < 3, the term myd is conveniently represented by up to two vectors corresponding
to +d and £2d, depending on my. Thus, the computation of p is implemented as a
two-bit shift (multiplication by 4) of pr_; followed by a 4 2 compression. The details
are deferred to Section 4.

The most challenging task is the computation of the quotient digit my. This is the
subject of the next section.

3 Quotient Digit Selection

In this section, we define a process for computing the quotient bits my of Lemma 2.1
and prove that the invariant |py| < |d| is preserved. The problem may be formulated as
follows:

Given rational numbers d and p such that 1 < |d| < 2 and |p| < |d|, find an
integer m such that —3 < m < 3 and |[4p — dm| < |[d|.

We may restrict our attention to the case d > 0, since the inequalities in the above
objective are unaffected by reversing the signs of both d and m. Thus, we have 1 < d < 2
and —2 < p < 2. These constraints determine a rectangle in the dp-plane as displayed
in Figure 1, which is adapted from [4]. The rectangle is partitioned into an array of
rectangles of width % and height %. The columns and rows of the array are numbered

with indices ¢ and j, respectively, where 0 <4 < 4 and 0 < j < 32. Let R;; denote the
rectangle in column i and row j, and let (J;,7;) be its lower left vertex. Thus,

1 1
Rij:{(d,p)|5i§d<5i+zand7rj§p<7rj+§}.
The numbering scheme is designed so that if (d,p) € R;;, then i comprises the leading
two bits of the fractional part of d, and j comprises the leading 5 bits of the two’s
complement representation of p.
The contents of the rectangles of Figure 1 represent a function

m = ¢(i, j),

which is defined formally in Appendix A and may be implemented as a table of 4 x 32 =
128 entries. For a given pair (d, p), we derive an approximation (J;, 7;), which determines
the arguments of ¢ to be used to compute the corresponding value of m. Ideally, this
approximation would be simply determined by the rectangle R;; that contains (d,p),
i.e., i and j would be derived by extracting the appropriate bits of d and p. Since our
implementation generates the encoding of d explicitly, d may indeed be approximated
in this manner. Thus, i = d[-1: —2] = [4(d — 1)], which yields

0; <d<d; + 1
4
On the other hand, as noted in Section 2, p is represented redundantly as a sum of
two vectors. The index j may be derived by adding the high-order bits of these vectors,
but as a consequence of this scheme, as we shall see in Section 4, instead of the optimal
range of %, the accuracy of 7; is given by

1

mp <p<mj+ 1

Thus, in geometric terms, we may assume that (d,p) is known to lie within the square
S;; formed as the union of the rectangle R;; and the rectangle directly above it:

1 1
Sij:{(d7p)|6i§d<6i+1and7rj§p<7rj—l—z}.

We would like to show that if (d,p) € S;; and m = ¢(i, j), then [4p — dm| < d, or

equivalently,
m—1 m+1

< =<
4 —d—- 4
We first present an informal argument, which will then be formalized and proved ana-
lytically.
The definition of ¢ is driven by the following observations:

(1) Since |p| < d, (d,p) lies between the lines p = d and p = —d. Therefore, if S;;
lies entirely above the line p = d, or entirely below the line p = —d, then m is
inconsequential and left undefined. In all other cases, m is defined.

(2) Since p < d, the upper bound
m+1

4
is satisfied trivially if m = 3. In order to guarantee that this bound holds generally,
it suffices to ensure that if m # 3, then S;; lies below the line p = (mj—l)d.

P <
o<

d=1 d=2 b—d
p=2 ottt | — | — | — | 3 Y
o110 | — | — | — |3 4
01101 3 3
01100 3 3
01011 3 3
01010 3 3 3 .
p= §d
01001 | 3 3 3
01000 |3 3 3
0011 3 3 2
00x10 3
010 3 2 .
100 1 p=qd
00 2
00010 | 1 1 1
T 1 1 1 1
00000 | 0O 0 0 0
11111 | © 0 0 0
0] 0 0 0 0
11101 | =t~=1 | -1 | -1
11 —1 | -1 [=141
011 2| -1] 21 .
1000 | —2 9 | =2 p=-ad
11801 3] -2 -2
11000 =3 -3 | -2
10111 N3 | 28] -2 | =2
10110 | —3] -3 3| -3 _ 1y
10101 | -3 N3 | —3N\.-3 P="3
10100 3] 3] >
10011 -3 N3] -3
10010 | — | — | =3 -3
10001 | — | — | =3 I\<3 Y
b 2 10000 | — | — | — | - !
00 01 10 11
p=—d
Figure 1: SRT Table

(3)

Similarly, since p > —d, the lower bound

-1
p,m
d— 4
is satisfied trivially if m = —3. In order to guarantee that this bound holds
generally, it suffices to ensure that if m # —3, then S;; lies above the line p =
(m—1)d
—

It is easily verified by inspection of Figure 1 that in all cases in which m is defined, the
conditions specified by (2) and (3) are satisfied and consequently, the desired inequality
holds. It should also be noted that in some cases, there is a choice between two acceptable
values of m. If S;; lies within the region bounded by p = 7d and p = mTHd, where
—3 < m < 2, then the inequality is satisfied by both m and m + 1. For example,
although we have assigned 3 as the value of ¢(11b, 01000b), since S11 01000 lies between
p= %d and p = %d, we could have chosen 2 instead.

The first step toward formalization is to express the conditions listed above in precise
analytical terms:

(1)

S;; lies entirely above the line p = d if and only if its lower right vertex, (d; + %,),
lies on or above that line, a condition expressed by the inequality

1
WJZ(SZ-i-Z

The condition that S;; lies entirely below the line p = —d is similarly determined

by the location of its upper right vertex, (J; + %, m; + 1), and is expressed by the

1
inequality

1 1 1
WJS<51+Z)Z=52'§-

Thus, m = ¢(i, j) is defined if and only if neither of these inequalites holds, i.e.,

1 1

The maximum value of the quotient % in S;; occurs at either the upper left or the

upper right vertex, depending on the sign of their common p-coordinate, m; + %.

Thus, S;; lies below the line p = W if and only if both vertices lie on or below
the line, i.e,

7Tj+%_47rj+1 m+1

0 46, — 4
and
7Tj+%_471'j+1 m+1
Si+1 45i+1 - 4
The minimum value of % in S;; occurs at either the lower left or the lower right
vertex, depending on the sign of ;. Thus, S;; lies above the line p = (mZ—l)d if

and only if both vertices lie on or above the line, i.e,

7rj>m71

5 = 4

10

and
T 4 m—1
= >
0; + % 40; +1 — 4

We shall also require analytical expressions for d; and 7; as functions of i and j. The
definition of §; is trivial:

Definition 3.1 For each integer i such that 0 < i < 4,

i
Since j is the five-bit two’s complement representation of the signed integer 8m;, we
have the following definition, in which the function SgndIntVal(w, z) computes the value
represented by a bit vector z with respect to a signed integer format of width w:

Definition 3.2 For each integer j such that 0 < j < 32,

if] < 16

m; = SgndIntVal(5, j) = { _32 ifj>16

00 [.00[%.

The formal statement of correctness of ¢ appears below as Lemma 3.2. The con-
straints on ¢ that were derived above are required in the proof. These are summarized
in Lemma 3.1, which is proved by straightforward exhaustive computation.

Lemma 3.1 Leti and j be integers, 0 <i < 4 and 0 < j < 32. Assume that —; — % <
mp < ;i + % and let m = ¢(i, j).

(a) If m # 3, then max (41’;1 477’_'+11) < T“;

(b) If m #3, then min (5, 577 > 2L,

Lemma 3.2 Let d and p be rational numbers, 1 < d < 2 and |p| < d. Let i and j be
integers, 0 < i <4 and 0 < j < 32, such that5i§d<6i—|—% and m; §p<7rj+i. Let
m = ¢(i,7). Then |[4p — dm| < d.

PROOF: First note that since

1
Wj§p§d<6i+z

and 1 1 1 1 1
j ——=2>2—d—=>—-|0i+—-)—-=-0;— 7,
I i d 17 <6+4> 1) 5
we may apply Lemma 3.1.
We must show that —d < 4p —dm < d, i.e.,

m—1 < P < m + 1.
4 —d— 4
First we establish the upper bound. Since
Poq_3+1
d— 4

we may assume m # 3. If m; > —i, then

7Tj+%<7rj+i_4ﬂ'j+1<m+1

d — & 46 — 4

p
d <

On the other hand, if 7; < —%, then

p<7rj+%<7l'j+%_4ﬂ'j+1 m+1
d d Si+1 4hi+1 - 47
As for the lower bound, since
Py o321
d— 4
we may assume m # —3. If 7; > 0, then
E>ﬂ> T _ 4m; m—1
d— _6i+% 46; +1 — 4
But if 7; < 0, then
P Mmoo
d—d —d— 4

4 Implementation

The results of this section refer to the values assumed by variables during a hypothetical
execution of the XFL function SRT, defined in Appendix B. With the exception of the
loop variables b and k, each variable of SRT belongs to one of two classes:

e Some variables assume at most one value during an execution. The value of such
a variable will be denoted by the name of the variable in italics, e.g., X, dEnc, and
YNB.

e Variables that are assigned inside the main for loop may assume only one value
during each iteration and may or may not be assigned an initial value before the
loop is entered. The value assigned to such a variable during the kth iteration
will be denoted with the subscript k, e.g., px, mAbs,, and addAj. If such a
variable is assigned an initial value outside of the loop, it will be denoted with the
subscript 0, e.g., po and QPart;. When convenient, the subscript may be omitted
and understood to have the value k. When replaced with an accent ('), it will be
understood to have the value k£ — 1. For example, in the statement of Lemma 4.7,
m and p' represent my and p;_1, respectively.

SRT has four input parameters:

e isSigned is a boolean indication of a signed or unsigned integer format;
e w is the format width, which is assumed to be 8, 16, 32, or 64;
e XFEnc is the signed or unsigned w-bit encoding of the divisor;

e YFEnc is the signed or unsigned 2w-bit encoding of the dividend.

12

Three values are returned:

e A boolean indication of whether the computation completed successfully;
e The signed or unsigned w-bit encoding of the quotient;

e The signed or unsigned w-bit encoding of the remainder.

The last two values are of interest only when the first is true, in which case they are the
values of the variables QQOut and RQOut, respectively.

Some of the variables of SRT do not contribute to the outputs, but are used only in
our analysis and in embedded assertions. Of these (listed in a preamble to the function),
X and Y are the integer values represented by XEnc and YEnc, and Q and R are the
quotient and remainder, which, unless X = 0, satisfy Y = QX + R, |R| < |X]|, and
either R = 0 or sgn(R) = sgn(Y").

Our objective is to show that success is indicated if and only if X # 0 and @ is
representable with respect to the indicated format, in which case () and R are the
integer values of QOut and ROut. Since this obviously holds when X = 0, we shall
assume X # 0 in the following. The main result is the theorem at the end of this
section.

The computation is naturally partitioned into three phases, which are described in
the following three subsections.

4.1 Analysis of Operands

In the first phase, the operands are analyzed and normalized in preparation for the
iterative computaion of the quotient and remainder, and the number n of iterations is
established.

The variable XNB represents the “number of bits” of X, derived by counting the
leading zeroes or ones:

Lemma 4.1 XNB = expo(X) + 1.

ProoF: If X > 0, then X = XEnc and XNB — 1 is the index of the leading 1 of X,
which implies 2XVB-1 < X < 2XNB 4nd the claim follows.

If XNegPower2 = 1, then XEnc[b] = 1 if and only if w > b > XNB — 1. It follows
that XEnc = 2% — 2XNB=1 anq

X = XEnc — 2% = 9w _9XNB-1 _gw _ _9XNB-1

In the remaining case, X < 0, XNB — 1 is the index of the leading 0 of XFEnc, and
XEnc[XNB—2:0] #0. It follows that

2w — 9XNB XEpe < 2w — 2XNB-1

which implies —2XMB <« X <« —2XNB-1 j o 2XNB-1 x| < 2XNB

The variable dEnc is an encoding of d = 2~ ¢ZPO(X) X .

Lemma 4.2 dEnc = (25°d)[67 : 0] = d[2 : —65].

13

PROOF: Since d = 2= P2 X and expo(X) < 63, 203d = 203-€TPOX) X ig an
integer and Qo) _ QXNE-1,
Clearly,
dEnc[65 : 66— XNB) = X Enc[XNB—1:0] = X[w—1: 0][XNB—1: 0] = X[XNB—1: 0]
and since | X | < 2XNB,

dEnc[66] = dEnc[67] = XSign = X[XNB] = X[XNB+ 1].
Thus, dEnc|[67 : 66 — XNB] = X[XNB+ 1: 0], and hence
dEnc = 20" XNBX[XNB+1:0

(256=XNBx)[67 : 0]
(2XNB*1+667XNBd) [67 : 0]

(25%d)[67 : (]
= d[2:-65]. 0

The next lemma gives an expression for ¢, the first argument of the table access
function ¢:

Lemma 4.3 i = |4(|d| — 1)].
ProOOF: If X > 0, then since 4 < 4d < 8,
i =dEnc|64 : 63] = d[—1: —2] = mod(|4d],4) = |4d] — 4 = [4(d —1)].
If XNegPower2 =1, then X = —2¢%P0(X) ' = _1, and
i=0=[4(|d| - 1)].

In the remaining case, X < 0, dEnc[66] = 1, dEnc[65] = 0, and dEnc[64 : 0] # 0.
Since 295d = 265-€?PO(X) X is an integer and 2%9d < 26

2°d = SgndIntVal(67, (25°d)[66 : 0])
= SgndIntVal(67, dEnc[66 : 0])
= dEnc[64 : 0] — 2%,

Thus, |d| = —d = 2 — 2755 dEnc[64 : 0] and
14(|d| — 1)] = |4 — 2 % dEnc[64 : 0] = |4 — dEnc[64 : 63] — 2~ 3 dEnc[62 : 0]].
Suppose that dEnc[62 : 0] = 0. Then dEnc[64 : 63] # 0, and
4(]d| — 1)] = 4 — dEnc[64 : 63].
An exhaustive case analysis (dEnc[64 : 63] = 1, 2, or 3) shows that

4 — dEnc[64 : 63] = (("dEnc[64] | ~dEnc[63]) << 1) | dEnc|63] = i.

14

Finally, suppose that dEnc[62 : 0] # 0. Then
[4(|d| —1)] = 3 — dEnc[64 : 63] = “dEnc[64: 63] =i. O

YNB is the “number of bits” of YV, including, in the negative case, the final trailing
sign bit:

Lemma 4.4 IfY > 0, then

2YNB*1 S Y < QYNB,

and if Y < 0, then
2YNB*2 < ‘Y‘ S 2YNB*1'

Consequently, in either case, YNB > expo(Y) + 1.
Proor: If Y > 0, then YNB — 1 is the index of the leading 1 of YEnc =Y, ie.,
expo(Y) = YNB-1.
IfY =—1, then YNB=1 and
gYNB—2 _ 1 _ V| =1=¥NB1
5 .
In the remaining case, Y < —1, YNB—2 is the index of the leading 0 of YEnc, which

implies
Quw _ 2YNB*1 S YEnc < Qu _ 2YNB72'

But since Y = YEnc — 2%,

_9YNB-1 oy _ _9YNB-2

and
2YNB*2 < |Y| S 2YNB*1. O

The number of iterations, n, satisfies the requirement of Lemma 2.1:
Lemma 4.5 |Y| < 2°"|X]|.

PROOF: This is an immediate consequence of Lemmas 4.1, 4.4, and 2.5. O

The bit vector pEnc is an encoding of py = 2~ ¢7PO(X)—2ny",

Lemma 4.6

(a) If n =0, then

(264=YNBy)[67 : 0] if YNB[0] = XNB|0]

pEncHi, = { (265~ YNBy)[67: 0] if YNB|0] ; XNB[0].

(b) If n >0, then 2'%%py is an integer and

pEnc = (2'*pg)[131: 0] = po[2 : —129].

15

ProoOF: First consider the case YNB[0] = XNB[0]. We may assume YNB > 0;
otherwise, Y = 0 and the lemma is trivial.
Note that YNB < 128 and

pEnc[127 : 128 — YNB] = YEnc[YNB—1:0]=Y[YNB—1:0].
Therefore,
pEnc[127 : 0] = 2128 YNBy [yNB — 1: 0] = (2125 YNBy)[127 : 0).
Since Y < 2YNB for ¢ =128,...,131,
pEncll] = YSign = (2125~ YNBy)[q).

Thus,
pEnc = pEnc[131 : 0] = (2"~ YNBy)[131 : (].

If n = 0, then YNB < XNB < 64 and

pEnc = (21287 YNBy)[131 : 0] = 264(254~ YNBy)[67 : (]

3

which implies pEncHi, = (204~ YNBY)[67 : 0]
On the other hand, if n > 0, then

YNB — XNB
o | 05 00

J +1> = YNB— XNB+ 2 = YNB — expo(X) + 1

and
Po = 27€$p0(X)72nY — 27YNB?1Y.

Thus, 2'%p, = 2'28- YNBY i5 an integer and
pEnc = (225 YNBy)[131: 0] = (2'%°p0)[131 : 0].

The proof for the case YNB[0] # XNB[0] is similar, with every occurrence of 127 or
128 replaced by 128 or 129. Thus, we have

pEnc = (2!~ YNBy)[131: 0],
which, in the n = 0 case, leads to

pEncHiy = (2%~ YNBy)[67 : 0]. O

4.2 Iteration

The second phase is the iteration loop, in which the quotient digits are selected and the
partial remainder and quotient are updated accordingly. The main results pertaining to
the iterative computation of the partial remainder are given by Lemmas 4.7 and 4.9:

1) The quotient digit m is correctly computed as the value of ¢(i,j), as stated in
q g
Lemma 4.7;

(2) The partial remainder p, = 4py_1 — mgd is encoded by pEncHi, carryHi, and
pEncLo, as stated in Lemma 4.9.

16

The proof of (2) depends on (1), and that of (1) requires the assumption that (2) holds
on the preceding iteration:

Lemma 4.7 Let 0 < k < n. Suppose that |p'| < |d| < 2, 2'2%)" is an integer, and
(2'2p")[131 : 0] = 254(pEncHi' + carryHi')[67 : 0] + pEncLo’.
Then

_J #Gi,5) ifX>0
(a) m = { —¢(i,§) if X <0;

(b) 7T]'Spl<7T]’+%.

PRoOF: First suppose pEncHi' + carryHi > 2%8. Then pTop = 63; otherwise,

pEncHi + carryHi = 2%2pTop + pEncHi'[61 : 0] + carryHi'
< 202624262 14202 1
< 2%,

Consequently, j = pIndex = pTop[4 : 0] = 31, which implies m = ¢(i,j) = 0, and (a)
follows. To prove (b), we note that

(2'%p"[131:64] = (pEncHi + carryHi')[67 : 0]
pEncHi + carryHi' — 2%

268 + 262 _ 268
262

N

and therefore,
(2'29p")[131 : 0] < 26%(25% — 1) + 262 < 2126,

Since |2'#7p'| < 2131
2'29p" = SgndIntVal(132, (2'*p")[131 : 0]) = (2'*?p")[131 : 0]

and thus, 0 < 2'2%p' < 2126 and

1 1 1
We may assume, therefore, that pEncHi' + carryHi' < 2%% and hence
(2'%p")[131:0] = 2%(pEncHi' + carryHi')[67 : 0] + pEncLo’

= 25(pEncHi + carryHi') + pEncLo’

= 2'%pTop + 25 (pEncHi'[61 : 0] + carryHi') + pEncLo’
< 2126pT0p + 264(262 1 + 262 o 1) + 264
< 2%6(pTop + 2).

Suppose p' > 0. Then 2'*%p’ = (2'29p")[131 : 0] and

1 1 1
—pTop < p' < =pT -,
gpTop<p <2p 0p+4

17

Since pTop < 8p' < 16, j = pIndex = pTop and pSign = 0. Thus,
im| = mAbs = SRTLookup(i, j) = |6(i,)| = ¢(i, j)
and mSign = XSign, which implies (a). To prove (b), we need only observe that
SgndIntVal(5, j) = SgndIntVal(5, p Top) = pTop.
Now suppose p' < 0. Then 2!29p" = (2129p/)[131 : 0] — 2!3% and the above estimate

yields

1 L, 1

—(pTop — 64) <p' < =(pTop — 64) + —.

8 8 4
Thus, pTop > 8p' + 62 > —16 + 62 = 46, so pTop > 47. Let us assume that pTop > 48.
Then j = pIndex and |m| = |¢(i,j)| = —é(i,j). Thus, to establish (a), we need ounly
show that m and X have opposite signs. But this follows from mSign = XSign ~ pSign
and pSign = 1. To prove (b), it suffices to show that pTop = SgndIntVal(5, j) + 64. But

in this case, j = pTop[4 : 0] = pTop— 32 > 16, so SgndIntVal(5, j) = j —32 = pTop — 64.
There remains the special case pTop = 47. Since

1 1 17 1 15
< —(pTop—64) 4~ = —— 4 4= = =2
p<8(pop 6)+4 8-|-+4 3

2> |d| > |p'| > 2, which implies
dIndex =i = |4(|d| — 1)| = 3.

Thus,
|m| = mAbs = SRTLookup(3,15) = 3.

On the other hand, ¢(i,j) = ¢(3,16) = —3. But again, since pSign = 1, m and X have
opposite signs and (a) follows. To prove (b), note that SgndIntVal(5,j) = —16; hence,

;17 1 1
mi=2<p < ——+-<m+-.0

8 4 4
The computation of the partial remainder, as described in Lemma 4.9, involves a

“compression” that reduces four addends to two. This is performed by the serial opera-
tion of two carry-save adders, as described by the following basic result, taken from [10]:

Lemma 4.8 Given n-bit vectors x, y, and z, let

and
b=2(z&ylx&z|yk&z).

Then
r+y+z=a+b.

Lemma 4.9 Ifn >0 and 0 < k <n, then |p| < |d| < 2, 2'*°p is an integer, and

(2'29p)[131: 0] = p[2 : —129] = 2°*(pEncHi + carryHi)[67 : 0] + pEncLo.

18

PRrROOF: The proof is by induction on k.
For k = 0, we have

‘p| — ‘27ezpo(X)72nY‘ < |2fezpo(X)X‘ — |d|
by Lemma 4.5, and since
254 (pEncHi + carryHi)[67 : 0] + pEncLo = pEnc,

the other two claims follow from Lemma 4.6.

In the inductive case, we shall derive the bound on |p| from Lemma 3.2. By
Lemma 4.3, since |d| < 1,0 < i < 4 and §; < |d| < 0; + %. Clearly, j < 32, and
by Lemma 4.6, m; < p < 7w + % and

_f #lig) X 20
m_{ —(i,j) if X <0.

Thus, applying Lemma 3.2, with the signs of d and m reversed if d < 0, we have
pl = [4p" — md| < d.

By induction, 2129p = 2131y’ — 21294 is an integer. The computation of (2!29p)[131 :
0] involves a 4 2 compressor with inputs addA, addB, addC, addD. We shall show that

(addA + addB + addC + addD)[67 : 0] = (2'*"p)[131 : 64].

The first two terms, addA and addB, if not 0, represent +2d and +d, respectively,
depending on the value of m. However, in the negative case, in order to avoid a full
67-bit addition, the simple complement of 2d or d is used in place of its negation, and
the missing 1 is recorded in the variable inject, which is more conveniently combined
later with addD. Thus, our first goal is to prove that

(addA + addB + inject)[67 : 0] = (—25°dm)[67 : 0].
If mSign =1, then
addA = mAbs[1] - (2 - dEnc)[67 : 0] = (2 - mAbs[1] - dEnc)[67 : 0],
addB = mAbs[0] - dEnc,
and inject = 0. Hence,

(addA + addB + inject)[67 : 0]

(2-mAbs[1] - dEnc + mAbs[0] - dEnc)[67 : 0]
((2- mAbs[1] + mAbs[0]) - dEnc)[67 : 0]

= (mAbs- dEnc)[67 : 0]
(
(

—dEnc-m)[67 : 0])
—25%dm)[67 : 0]).

On the other hand, if mSign = 0, then

addA = addA[67 : 0]
= mAbs[1] - (2("dEnc|66 : 0]) + 1)[67 : 0]
= mAbs[1] - (2(—dEnc — 1)[66 : 0]) + 1)[67 : 0]
= mAbs[1] - (—2dEnc — 2)[67 : 0]) + 1)[67 : 0]
= mAbs[l]- (=2 - dEnc — 1)[67 : 0]
= (—2-mAbs[l] - dEnc — mAbs[1])[67 : 0]

3

19

addB

mAbs[0] - ~dEnc[67 : 0]
mAbs[0] - (—dEnc — 1)[67 : 0]
= (—mAbs[0] - dEnc — mAbs[0])[67 : 0],

and inject = mAbs[0] + mAbs[1], so that

(addA + addB + inject)[67 : 0]

= (—2-mAbs[l] - dEnc — mAbs[1] — mAbs[0] - dEnc — mAbs[0] + mAbs[0] + mAbs[1])[67 : O]
(—(2 - mAbs[1] + mAbs[0]) - dEnc)[67 : 0]
(—m - dEnc)[67 : 0]
(7
(7

25%dm)[67 : 0])
2'29dm)[131 : 64]).

The remaining two terms, addC and addD, represent the shifted result of the previous
iteration, 4p’. Thus,
addC = 4 - pEncHi+ pEncLo[63 : 62],

addD = 2 - carryHi + inject,

and

(addC + addD — inject)[67 : 0]
= (4-pEncHi+ pEncLo[63 : 62] + 4 - carryHi + inject — inject)[67 : 0]
= (4(pEncHi+ carryHi)[67 : 0] + pEncLo[63 : 62])[67 : 0]
(4(25* (pEncHi + carryHi)[67 : 0] + 252 - pEncLo[63 : 62]))[131 : 64]

)
4(2%* (pEncHi + carryHi)[67 : 0] + 252 - pEncLo[63 : 62])[129 : 62]
(254 (pEncHi + carryHi)[67 : 0] + 252 - pEncLo[63 : 62] + pEncLo[61 : 0])[129 : 62]
[67 :
]

I
e~

= 4(2%(pEncHi+ carryHi)[67 : 0] + pEncLo)[129 : 62]
4(2"*%p")[131 : 0][129 : 62

4(2"*p")[129 : 62]

= (4-2"2%)[131: 64].

Combining these last two results, we have

(addA + addB + addC + addD)[67 : 0]
= ((addA + addB + inject)[67 : 0] + (addC + addD — inject)[67 : 0])[67 : 0]
((2'2%4p")[131 : 64] + (—2'2°dm)[131 : 64])[67 : 0].

Since (—2'*?dm)[63 : 0] = 0, this may be reduced to
((2"%(4p’ — dm))[131 : 64] = (2'**p)[131 : 64].
Two applications of Lemma 4.8 yield

addA + addB + addC + addD = suml + carryl + addD = sum2 + carry2,

20

and therefore,

(2'*p)[131 : 64]

sum2 + carry2)[67 : 0]

(262(sum2[67 62] + carry2[67 : 62]))[67 : 0] + sum2[61 : 0] + carry2[61 : 0])[67 : 0]
292 (sum2[67 : 62] + carry2[67 : 62])[5 : 0] + sum2[61 : 0] + carry2[61 : 0])[67 : 0]
pEncHi+ carryHi)[67 : 0].

(
(
(
(

But by Lemma 4.2,

(2'%9p)[63:0] = (2'*(4p' — md))[63 : (]

(2”94p)[63 0] + (—254m25°d)[63 : 0])[63 : 0]
2129451[63 : 0]

4 -pEncLo")[63 : 0]

= pFEnclLo,

(
(
(
(

and thus,

(2'2°p)[131: 0] = 2%4(2'%p)[131 : 64] + (2'*p)[63 : 0]
254 (pEncHi + carryHi)[67 : 0] 4+ pEnclLo. O

As aresult of the iterative shifting of the partial remainder, pEncLo = 0 upon exiting
the loop. This is proved recursively:

Lemma 4.10 Ifn >0 and 0 < k <n, then pEncLo[63 — 2(n — k) : 0] = 0).

ProOF: The proof is by induction on k. For k = 0, since pEncLo[127T—YNB : 0] = 0,
we need only show that 127 — YNB > 63 — 2n, or 2n > YNB — 64. But

=2 QMJ +1> > YNB— XNB+ 1> YNB — 63.

For k£ > 0,

pEncLo[63 — 2(n — k) : 0] (4 - pEncLo')[63 — 2(n — k) : (]
= 4-pEncLo'[63 —2(n—k+1):0]

= 0.0

The partial quotient QPart is encoded by QO0FEnc. Its computation, as described in
Lemma 2.4, is facilitated by simultaneously maintaining encodings of QPart =+ 1:

Lemma 4.11 For 0 < k <n,
QO0Enc = QPart[66 : 0],

QMEnc = (QPart — 1)[66 : 0],

and
QPEnc = (QPart + 1)[66 : 0].

21

PROOF: We shall invoke Lemma 2.4 with N = 67 and Qy = QPart. We need only
show that Q0Enc = Ey, QMEnc = E, , and QPEnc = E,j The claim is trivial for
k = 0. For k > 0, it may be readily verified by examining each value of m, —3 < m < 3.
For example, if m = —1, then mSign =1, mAbs =1,

QO0Enc = (4- QOEnc')[66 : 0] = (4E,_1)[66 : 0] = (4Ej_1 +my — 1)[66 : 0] = EF,
QMEnc = (4- Q0Enc)[66:0] |2
(4B, ,)[66:0] | 2
— (4B, |2)[66:0]
(4E,_, +2)[66: 0]
(4E,_, +my, + 3)[66 : 0]
- B,

and

QPEnc = (4- QOEnc)[66:0] |3
(4E;_,)[66:0] |3
(4E,_, | 3)[66 : 0]
(4E;_, +3)[66 : 0]

(4E, | + my + 4)[66 : 0]
= Ef.O

4.3 Final Computation

In the final phase of the computation, a full addition is performed to generate an explicit
(non-redundant) representation of the remainder. This result is then adjusted, along
with the quotient, to produce the final results as specified by Lemma 4.18.

The next lemma refers to the quotient and remainder before the correction step:

Lemma 4.12 Y = QPre- X + RPre and |RPre| < | X]|.

ProoF : This is an immediate consequence of Lemma 2.1, with r = 2, Qr = QParty,
R = RPre, and Q = QPre. We need only note that the condition |pg| < |d| is ensured
by Lemma 4.9. O

RPre is encoded by REncPre:

Lemma 4.13

(266-XNBRPre)[66: 0] if n >0
REncPre=1{ (2~ YNBRPre)[66: 0] if n =0 and YNB[0] = XNB[0]
(265=YNBRPre)[66 : 0] if n =0 and YNB|0] # XNB[0].

22

ProOF: If n > 0, then by Lemmas 4.9 and 4.1,

REncPre = (pEncHi, + carryHi,)[66 : 0]
212991130 : 64]

(
(
(264205—€ZPOLX) R Pre)[130 : 64]
(
(

266=€IPO(X) R Pre)[66 : 0]
206 XNB R pre)[66 : 0].

On the other hand, if n = 0, then REncPre = pEncHiy[66 : 0] and the lemma follows
from Lemma 4.6. O

The encoding REnc of the final remainder, which is derived from REncPre, depends
on the signs of RPre and Y and the special cases RPreis 0 or £X. Timing considerations
dictate that these conditions must be detected before the full addition that produces
REncPre is actually performed. This requires a technique for predicting cancellation,
which is provided by the following result, found in [10]:

Lemma 4.14 Given n-bit vectors a and b and a one-bit vector c, let
=a"~b "~ (2alb)+c).

If 0 <k < mn, then
(a+b+0)k:00=0&7[k:0]=0.

Lemma 4.14 is used in the proofs of the following three lemmas:
Lemma 4.15 RIs0 is true if and only if RPre = 0.

Proor: By Lemma 4.14, RIs0 is true if and only if REncPre = 0. If n > 0, then by
Lemma 4.13, REncPre = (26°~ ¢7P%(X) R Pre)[66 : 0]. But by Lemma 4.12,

|2657€Ip0(X)RPTe‘ < ‘26576.’Ep()(X)X| < 266}
and it follows that REncPre = 0 if and only if RPre = 0.
Now suppose n = 0. Then RPre = 262P0(X)p, — Y and |Y| < 2YNB < 2XNB-1 <
| X|. By Lemma 4.13, REncPre = (2°~ YNBRPre)[66 : 0], where e = 64 or 65. Thus,
‘257YNBRP7“€| < |2657YNBY‘ < ‘2647637]30(3/)}/‘ < 2657
and again, REncPre = 0 if and only if RPre= 0. O
Lemma 4.16 RNegX is true if and only if RPre = —X.
PrOOF: First note that by Lemma 4.2,
dEnc[66 : 0] = (295d)[66 : 0] = (205~ #P°(X) x[66 : 0).
Now by Lemma 4.8,
(RNegXSum+ RNegXCarry)[66 : 0] = (pEncHi+ CarryHi+ dEnc)[66 : 0]
= (REncPre+ dEnc)[66 : 0];

23

hence, by Lemma 4.14,

RNegX=1 & (RNegXSum+ RNegXCarry)[66:0] =0
< (REncPre+ dEnc))[66 : 0] =0

& (REncPre + 265¢200(X) x)[66 : 0] = 0.
If n > 0, then we have
RNegX = 1 & (2 €2P0(X)(Rpre 4+ X))[66 : 0] = 0,
where
‘26576.’Ep()(X)(RPTe+ X)| < |265fe:npo(X)(2X)‘ < |2657€Ip0(X)2ezpo(X)+2‘ — 967,

and the result follows.
If n = 0, then since |RPre| = |Y| < |X|, we must show that RNegX = 0. By
Lemma 4.15, REncPre = (2" YNBY)[66 : 0], where e < 65 and as noted above,

2= YNBy| < 965 1f RNegX = 1, then (26~ YNBY 4 265-e2po(X)x)[66 : 0] = 0. But
since

e~ YNBy | 265fempo(X)X‘ < 2|265fe:npo(X)X‘ < 2|2657€Ip0(X)26zp0(X)+1| — 967
this implies 2°~ YNBy 4 265-€2po(X) X — 0 which is impossible. O
Lemma 4.17 RPosX is true if and only if RPre = X.
Proor: By Lemma 4.8,

(RPosXSum + RPosXCarry)[66 : 0) = (pEncHi+ CarryHi+ ~dEnc+ 1)[66 : 0]
(REncPre — dEnc — 1+ 1)[66 : 0]
= (REncPre — dEnc)[66 : 0],

and hence, by Lemma 4.14,

RPosX=1 <& (RPosXSum+ RPosXCarry)[66:0] =0
& (REncPre— dEnc)[66 : 0] = 0.

The rest of the proof is similar to that of Lemma 4.16. O

Lemma 4.18 Y = QX + R, where |R| < |X| and either R =0 or sgn(R) = sgn(Y").
PROOF: This is an immediate consequence of Lemmas 2.2, 4.12, and 4.15. O
The final remainder is encoded by REnc:

Lemma 4.19

(264=XNBR)63:0] ifn >0
REnc=1<{ (22-YNBR)[63:0] if n=0 and YNB[0] = XNB[0]
(263-YNBR)[63:0] ifn =0 and YNB|0] # XNB[0].

24

Proo¥F: If fizupNeeded is false, then R = RPre, REnc = REncPre[66 : 2], and the
lemma follows from Lemma 4.13. If n = 0, then as noted in the proof of Lemma 4.15,
RPre=Y and |Y| < | X]|, from which it follows that fizupNeeded is false. Thus, we may
assume that fizupNeeded is true and n > 0. We may further assume that RIsX = 0;
otherwise, REnc = R = 0. If RSign = XSign, then

REnc = (REncPre+ ~dEnc[66 : 0] 4+ 1)[65 : 2]

= (2% XNBRPre 4 257 — 28 €2P0LX) ¥ 1 4 1)[65 : 2]

= (290 XNB(RPre — X))[65 : 2]
(
(

206-XNBR)[65 : 2]
204=XNBR[63 : 0].

The case RSign # XSign is similar. O

Our main result follows:

Theorem 1 If Q) is representable in the integer format determined by isSigned and w,
then QTooLarge = false and QOut and ROut are the encodings of Q) and R, respectively.
Otherwise, QTooLarge = true.

PROOF: We shall first prove that @ TooLarge is false if and only if () is representable.
We begin with the case YNB— XNB > w, in which must show that @) is not representable.
If Y > 0, then by Lemmas 4.1 and 4.4, | X| < 2X¥8 and Y > 2Y¥B-1and hence,

‘% S 9YNB-1-XNB 5 gu.
which implies
Y - R Y R Y
S 8 I Nl B ulll w
o= 2 5 - |g]2 5 o

and |Q] > 2%.

Now suppose Y < 0. Then |X| < 2¥NBand |Y| > 2YNB-2_ Since the format is

signed, it will suffice to show that |Q| > 2¥~', or ‘§| > 29—l 4+ 1. If XNB = w, then
|X]>2v"! and we must have X = —2*~! and

Z‘ S 2YNB—2 9 YNB-XNB-1 5, ou

X 9XNB-1 = ’

We may assume, therefore, that XNB < w. Since | X| < 2XNB _ 1

2YN372 2XNB+1U71

Y
}‘ > 9XNB _1 = 9XNB _ 1’
and we need only show that

2XNB+w71

oy 22

or equivalently,

2XNB+UJ71 Z (2XNB o 1)(211)71 + 1) — 2XNB+1U71 + QXNB o 211)71 o 1

25

which follows from XNB < w.
In the case n < 1, QTooLarge is false and we must show that @ is representable. But
this is trivially true, since YNB — XNB < 1, |Y| < 2YNB and X > 2XNB-1 imply

0] < ‘; < 9YNB-XNB+1 _ 4

In the remaining case, YNB — XNB < w and n > 1. The first of these conditions
implies that

2n§2([%J+1)§w+2;

thus, by Lemma 2.3,
|QPre| = |QPart,| < 2¥2

from which we conclude that |Q] < 2v+2.
The second condition implies that YNB — XNB > 2, so

from which we conclude that Q # 0. Thus, if YSign = XSign, then @ > 0, and if
YSign # XSign, then @ < 0.

Suppose > 0. Then since Q < 2%*2, Q = Q[w + 2 : 0] = QEnc[w + 2 : 0]. If the
format is unsigned, then

@ is representable & @) < 2¥ & QFEnclw + 2 : w] =0 < QTooLarge = 0,
while if the format is signed, then
Q is representable & Q < 27" & QEncw +2:w — 1] = 0 & QTooLarge = 0.
Finally, suppose) < 0. Then Q > —2%*? and
QEnclw +1:0] = Q[w +1:0] = mod(Q, 2" ") = Q + 2%
Since the format must be signed,

Q) is representable < Q> —2v !
& QEncw4+1:0]>2v+2 —gw-t
& QFnduw+1l:w—-1]=7
& QTooLarge = 0. O

Next, we show that if @) is representable, then QOut and ROut are the encodings of
@ and R. Clearly, QOut = QEnc[w — 1:0] = Q[w — 1 : 0], which is the encoding of Q.
We must also show that ROut = R[w —1:0].

Consider the case n > 0. By Lemma 4.19,

REnc[63 : 64 — XNB] = (264~ XNBR)[63 : 0][63 : 64 — XNB] = R[XNB—1: (].
Since |R| < |X| < 2XNB
0 if R>0

26

and in either case, Rlw — 1 : XNB] = ROutjw — 1 : XNB].

Suppose n = 0 and YNB|0] = XNB[0]. By Lemma 4.19,

REnc[63:62 — YNB] = (262~ YNBR)[63:0][63:62 — YNB]
= (202~ YNBR)[63:62 — YNB
R[YNB+1:0].

Since |R| = |Y| < 2YNB,

if R >0

0

and in either case, Rlw —1: YNB+ 1] = ROutlw — 1 : YNB+ 1].

The case YNBI[0] # XNB|0] is similar. O

Acknowledgment

The author is grateful to Mike Achenbach, the principal designer of the Llano divider,
for facilitating this work, and especially for his patience in explaining the design and
answering endless questions about it.

References

[1]
[2]

ACL2 Web site, http://www.cs.utexas.edu/users/moore/acl2/.

Bryant, Randal E. and Yirng-An Chen, “Verification of Arithmetic Circuits with
Binary Moment Diagrams”, Proceedings of the 82nd Design Automation Confer-
ence, San Francisco, Calif., June 1996.

Clarke, Edmund M., Steven M. German, and Xudong Zhou, “Verifying the SRT
Division Algorithm Using Theorem Proving Techniques”, Formal Methods in Sys-
tem Design, 14:1, January 1999.

http://www-2.cs.cmu.edu/ "modelcheck/ed-papers/VtSRTDAU. pdf

Gerwig, G., H. Wetter, E.M. Schwarz, J. Haess, C.A. Krygowski, B.M. Fleischer,
and M. Kroener, “The IBM eServer z990 floating-point unit”, IBM Journal of
Research and Development, Volume 48, Number 3/4, 2004.
http://www.research.ibm.com/journal/rd/483/gerwig.html

Kapur, Deepak and M. Subramaniam, “Mechanizing Verification of
Arithmetic Circuits: SRT Division”, Invited Talk, Proc. FSTTCS-
17, Kharagpur, India, Springer LNCS 1346, pp. 103-122, Dec 1997.
http://www.cs.unm.edu/ kapur/myabstracts/fsttcs97.html

Parhami, Behrooz, Computer Arithmetic: Algorithms and Hardware Designs, Ox-
ford University Press, 2000.

Pratt, V., “Anatomy of the Pentium Bug”, TAPSOFT ’95: Theory and Practice of
Software Development, LNCS 915, Springer-Verlag, May 1995.
https://eprints.kfupm.edu.sa/25851/1/25851.pdf

27

[8] Ruess, Harald and Natarajan Shankar, “Modular Verification of SRT Division”,
Formal Methods in System Design, 14:1, January 1999.
http://www.csl.sri.com/papers/srt-long/srt-long.ps.gz

[9] Robertson, J.E., “A New Class of Digital Division Methods”, IRE Transactions on
Electronic Computers, Vol. EC-7, 1958.

[10] Russinoff, David M., “A Formal Theory of Register-Transfer Logic and Computer
Arithmetic”, http://wuw.russinoff.com/libman/.

[11] Russinoft, David M., “Formal Verification of Floating-Point RTL at AMD Using
the ACL2 Theorem Prover”, IMACS World Congress, Paris, 2005.
http://www.russinoff.com/papers/paris.html.

[12] Taylor, G.S., “Compatible Hardware for Division and Square Root”, Proceeding of
the 5th Symposiom on Computer Arithmetic, IEE Computer Society Press, 1981.

[13] Tocher, K.D., “Techniques of Multiplication and Division for Automatic Binary
Computers”, Quarterly Journal of Mechanics and Applied Mathematics, Vol. 2,
1958.

Appendix A: XFL Definition of ¢

int phi(nat i, nat j) {
switch (i) {
case 0:
switch (j) {
case 0x09: case 0x08: case 0x07: case 0x06: case 0x05:
return 3;
case 0x04: case 0x03:
return 2;
case 0x02: case 0x01:
return 1;
case 0x00: case 0x1F: case Ox1E:
return 0;
case 0x1D: case 0x1C:
return -1;
case 0x1B: case Ox1A:
return -2;
case 0x19: case 0x18: case 0x17: case 0x16: case 0x1b:
return -3;
default: assert(false);
}
case 1:
switch (§) {
case 0x0B: case 0x0A: case 0x09: case 0x08: case 0x07: case 0x06:
return 3;
case 0x05: case 0x04: case 0x03:
return 2;
case 0x02: case 0x01:

28

return 1;
case 0x00:
return 0;
case 0x1D:

case

case

return -1;

case 0x1B:

case

return -2;

case 0x18:

case

return -3;
default: assert(false);

}
case 2:
switch ()
case 0x0D:
return 3;
case 0x07:
return 2;
case 0x04:
return 1;
case 0x00:
return 0;
case 0x1D:

{

case

case

case

case

case

return -1;

case Ox1A:

case

return -2;

case 0x16:

case

return -3;
default: assert(false);

}
case 3:
switch (3)
case 0xOF:
case 0xO0B:
return 3;
case 0x07:
return 2;
case 0x04:
return 1;
case 0x00:
return 0;
case 0x1D:

case
case
case
case

case

case

return -1;

case Ox1A:

case

return -2;

case 0x16:
case 0x12:

case
case

return -3;
default: assert(false);

}

0x1F:

0x1C:

Ox1A:

0x17:

0x0C:

0x06:

0x03:

Ox1F:

0x1C:

0x19:

0x15:

0xO0E:
0xO0A:

0x06:

0x03:

0x1F:

0x1C:

0x19:

0x15:
Ox11:

case

case

case

case

case

case

case

case

case

case

case
case

case

case

case

case

case

case
case

Ox1E:

0x19:

0x16:

0x0B:

case

case

0x05:

0x02:

case

Ox1E:

0x1B:

0x18:

0x14:

0x0D:
0x09:

case

case

case
case

0x05:

0x02:

case

Ox1E:

0x1B:

0x18:

0x14:

case

case

0x10:

29

0x15:

0xO0A:

0x01:

0x17:

0x13:

0x0C:
0x08:

0x01:

0x17:

0x13:

case 0x14:

case 0x09:

case 0x12:

case 0x13:

case 0x08:

case 0Ox11:

}

default: assert(false);

}

// The table that is actually used by the implementation contains
// only non-negative entries; the sign is computed separately:
nat SRTLookup(nat i, nat j) {

return abs(phi(i, j));

}

Appendix B: XFL Model of the Implementation

// The function SRT is an XFL model of the Llano integer divider. It
// has four input parameters:

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Three

¢

(2)

(3
(4)

)

(2)
(3

isSigned: a boolean indication of whether the dividend, divisor,
quotient, and remainder are represented as signed or unsigned
integers.

w: the width of the divisor, quotient, and remainder, which

may be 8, 16, 32, or 64; the width of the dividend is 2x*w.

XEnc: the encoding of the divisor.

YEnc: the encoding of the dividend.

values are returned:

A boolean indication of successful completion, which is false if
either the divisor is zero or the quotient is too large to be
represented in the indicated format. The other two values are
invalid in this event.

The encoding of the quotient.

The encoding of the remainder.

<bool, nat, nat> SRT(nat YEnc, nat XEnc, nat w, bool isSigned) {
assert((w == 8) || (w ==16) || (w==32) || (v ==64));

// Division by O signals an error:
if (XEnc == 0) {
return <false, 0, 0>;

}

// The following variables appear in assertions but are not involved

// in the computation of the function values:

int
int
int
int
int
int
int
int
rat

Y;
X;

// value of dividend
// value of divisor

QPart; // value of quotient during iteration
QPre; // value of quotient before fix-up

RPre; // value of remainder before fix-up

Q;
R;
m;
d;

// value of quotient after fix-up

// value of remainder after fix-up

// value derived from table, -3 <=m <= 3
// shifted divisor, 1 <= abs(d) < 2

30

rat p; // partial remainder, abs(p) <= abs(d)
nat i; // first argument of phi
nat j; // second argument of phi

// Decode operands:

if (isSigned) {
Y = SgndIntVal(2*w, YEnc[2*w-1:0]);
X = SgndIntVal(w, XEnc[w-1:0]);

}

else {
Y = YEnc[2*w-1:0];
X = XEnc[w-1:0];

}

// Compute the number of divisor bits that follow the leading sign
// bits. In the case of the negative of a power of 2, the trailing
// sign bit is included as a divisor bit:
bool XSign = isSigned ? XEnc[w-1] : false;
nat b = w;
while ((b > 0) &% (XEnc[b-1] == XSign)) {
b--;
}
bool XNegPower2 = XSign && ((b == 0) || (XEnc[b-1:0] == 0));
nat XNB = XNegPower2 7 b+l : b;
assert (XNB == expo(X) + 1);

// Compute dEnc, a bit vector encoding of d = X >> expo(X):
nat dEnc = 0;
dEnc[67] XSign;
dEnc[66] = XSign;
dEnc[65:66-XNB] = XEnc[XNB-1:0];
d = X > expo(X);
assert (dEnc == d[2:-65]);
// Compute leading 2 bits of fractiomnal part of d:
nat dIndex;
if (XSign == 0) {
dIndex = dEncl[64:63];

}

else if (XNegPower2) {
dIndex = 0;

}

else if (dEnc[62:0] == 0) {
dIndex = ((“dEnc[64] | ~“dEnc[63]) << 1) | dEnc[63];
}
else {
dIndex = ~“dEnc[64:63];
}
i = dIndex; // first argument of phi
assert (i == fl(4*x(abs(d) - 1)));

31

// Compute the number of dividend bits that follow the leading sign
// bits. In the negative case, the trailing sign bit is included as
// a dividend bit.

bool YSign = isSigned 7 YEnc[2*w-1] : false;

b = 2xw;
while ((b > 0) &% (YEnc[b-1] == YSign)) {
b--;
}
nat YNB = YSign ? b + 1 : b;
if (Y > 0) {
assert(1 << (YNB - 1) <= Y && Y < 1 << YNB);
}

else if (Y < 0) {

assert (1 << (YNB - 2) < abs(Y) && abs(Y) <= 1 << (YNB - 1));
};
assert (Y == [| YNB >= expo(Y)+1);

// Compute number of iterations:
nat n;
if (YNB >= XNB) {
n = f1((YNB - XNB)/2) + 1;
}
else {
n = 0;
}
assert(abs(Y) <= abs(X) << 2x%n);

// Initialize pEncHi, pEnclo, and carryHi, which form a redundant
// representation of the partial remainder:
nat pEnc = 0;

pEnc[131] = YSign;
pEnc[130] = YSign;
pEnc[129] = YSign;

if (YNB != 0) {
if (YNB[O] == XNB[0]) {
pEnc[128] = YSign;
pEnc[127:128-YNB] = YEnc[YNB-1:0];

}
else {
pEnc[128:129-YNB] = YEnc[YNB-1:0];
}
}
nat pEncHi = pEnc[131:64];
nat pEnclLo = pEnc[63:0];

nat carryHi = 0;

assert(n >= 32 || pEncLo[63-2*n:0] == 0);

p =Y > (expo(X) + 2*n); // initial partial remainder
if (YNB >= XNB) {

32

assert (((pEncHi << 64) | pEnclLo) == p[2:-129]);
}
else if (YNB[O] =
assert (pEncHi
}
else {
assert(pEncHi == (Y << (65 - YNB)) [67:0]);
}

XNB[0]) {
(Y << (64 - YNB))I[67:01);

// Initialize the quotient:

QPart = 0; // partial quotient

nat QOEnc = 0; // encoding of QPart

nat QPEnc 1; // encoding of QPart+1

nat QMEnc = Ox7FFFFFFFFFFFFFFFF; // encoding of QPart-1

// On each iteration, the next partial remainder is computed and the
// quotient is updated:
for (nat k=1; k<=n; k++) {

// Table lookup:

nat pTop = pEncHi[67:62];

bool pSign = pTopl[5];

nat pIndex = pTop[4:0]; // second argument of SRTLookup
nat mAbs = SRTLookup(dIndex, pIndex);

bool mSign = XSign ~ pSign;

m = mSign 7 -mAbs : mAbs;

if (pTop == 0x2F) A

j = 0x10;
}
else {

j = pIndex;
}

assert(m == (XSign ? -phi(i, j) : phi(i, j)));
assert(SgndIntVal(5, j)/8 <= p && p < SgndIntVal(5, j)/8 + 1/4);

// 4xp - dm is computed as a sum of four terms.
// The first two, addA and addB, represent -d*m:
nat addA;
if (mAbs[1] == 0) {
addA = 0;
}
else if (mSign) {
addA = dEnc[66:0] << 1;
}
else {
addA = ("dEnc[66:0] << 1) | 1;
}
nat addB;
if (mAbs[0] == 0) {

33

addB = 0;

}
else if (mSign) {
addB = dEnc;
}
else {
addB = “dEnc[67:0];
}

// A correction term is required to complete the 2’s complement
// in case m > O:
nat inject = 0;
if ('mSign) {
if (mAbs[0] ~ mAbs[1]) {
inject = 1;
}
else if (mAbs[0] & mAbs[1]) {
inject = 2;
}
}
assert((addA + addB + inject) [67:0] == (-d*m)[2:-65]);

// addC and addD represent the upper bits of 4#*p:

nat addC = (pEncHi << 2) | pEncLo[63:62];

nat addD = (carryHi << 2) | inject;

assert((addC + addD - inject) [67:0] == (4x*p)[2:-65]);

// The next partial remainder:

P = 4%p - m*d;

assert(abs(p) <= abs(d));

assert((addA + addB + addC + addD) [67:0] == p[2:-65]);

// 4-2 compression:

nat suml = addA ~ addB ~ addC;

nat carryl = (addA & addB | addB & addC | addA & addC) << 1;

nat sum2 = suml ~ carryl ~ addD;

nat carry2 = (suml & carryl | carryl & addD | suml & addD) << 1;
assert((sum2 + carry2)[67:0] == p[2:-65]);

// Update the redundant representation of p:

pEncHi = ((sum2[67:62] + carry2[67:62])[5:0] << 62) | sum2[61:0];
pEnclo = (pEncLo << 2)[63:0];

carryHi = carry2[61:0];

assert ((((pEncHi + carryHi) [67:0] << 64) | pEnclLo) == p[2:-129]);
assert(n >= k + 32 || pEncLo[63-2*(n-k):0] == 0);

// Update quotient:

QPart = 4*QPart + m;
assert(abs(QPart) < (1 << 2xk));
if (mAbs == 0) {

34

QPEnc

QMEnc

QOEnc
}

else if (mSign == 0) {

switch (mAbs) {

case 1:
QPEnc
QMEnc
QOEnc
break;

case 2:
QPEnc
QMEnc
QOEnc
break;

case 3:
QPEnc
QMEnc
QOEnc
break;

(QOEnc
(QOEnc
(QOEnc

(QOEnc
(QOEnc
(QOEnc

(QPEnc
(QOEnc
(QOEnc

<<
<<
<<

<<
<<
<<

<<
<<
<<

(QOEnc << 2)[66:0]
(QMEnc << 2)[66:0]
(QOEnc << 2)[66:0];

2) [66:
2) [66:
2) [66:

2) [66:
2) [66:
2) [66:

2) [66:
2) [66:
2) [66:

default: assert(false);

}
}

else { // mSign =
switch (mAbs) {

case 1:
QPEnc
QOEnc
QMEnc
break;

case 2:
QPEnc
QOEnc
QMEnc
break;

case 3:
QPEnc
QOEnc
QMEnc
break;

(QOEnc
(QMEnc
(QMEnc

(QMEnc
(QMEnc
(QMEnc

(QMEnc
(QMEnc
(QMEnc

<<
<<
<<

<<
<<
<<

<<
<<
<<

2) [66:
2) [66:
2) [66:

2) [66:
2) [66:
2) [66:

2) [66:
2) [66:
2) [66:

default: assert(false);

}
}
assert (QOEnc
assert (QMEnc
assert (QPEnc

1]
1]

0]
0];
0]

0]
0]
0]

0];
0]
0]

0];
0]
0]

0]
0]
0]

0]
0]
0];

QPart[66:0]) ;
(QPart - 1)[66:01);

1
3;

== (QPart + 1)[66:0]);

35

// Remainder and quotient before fix-up:
RPre p << expo(X);

QPre QPart;

assert (Y == RPre + QPrex*X);

assert (abs(RPre) <= abs(X));

// Encoding of remainder:
nat REncPre = (pEncHi + carryHi) [66:0];
if (YNB >= XNB) {

assert (REncPre == (RPre << (66 - XNB))[66:0]);
}
else if (YNB[O] == XNB[0]) {

assert (REncPre == (RPre << (64 - YNB))[66:0]);
}
else {

assert (REncPre == (RPre << (65 - YNB))[66:0]);
}

// Fix-up is required if either the remainder and the dividend have

// opposite signs or the absolute value of the remainder is the same

// as that of the divisor. The signals RIsO, RPosX, and RNegX, which

// indicate whether the remander is 0, X, or -X, are computed in parallel
// with the the addition and may not refer to the sum:

bool RSignPre = REncPre[66];
bool RIsO = (pEncHi[66:0] ~ carryHi ~ ((pEncHi[65:0] | carryHi) << 1)) == 0;
assert (RIsO == (RPre == 0));

nat RPosXSum = pEncHi[66:0] "~ carryHi ~ “dEnc[66:0];
nat RPosXCarry = (pEncHi[66:0] & carryHi |
PEncHi[66:0] & “dEnc[66:0] |
carryHi & “dEnc[66:0]) << 1;
bool RPosX = (RPosXSum ~ RPosXCarry ~
(((RPosXSum[65:0] | RPosXCarry[65:0]) << 1) | 1)) == 0;;
assert (RPosX == (RPre == X));

nat RNegXSum = pEncHi[66:0] ~ carryHi ~ dEnc[66:0];
nat RNegXCarry = (pEncHi[66:0] & carryHi |
pEncHi[66:0] & dEnc[66:0] |
carryHi & dEnc[66:0]) << 1;
bool RNegX = (RNegXSum ~ RNegXCarry ~
((RNegXSum[65:0] | RNegXCarry[65:0]) << 1)) == 0;;
assert (RNegX == (RPre == -X));

bool RIsX = RPosX | RNegX;
assert (RIsX == (abs(RPre) == abs(X)));

bool fixupNeeded = RIsX || (!RIsO) && (RSignPre != YSign);

36

nat REnc; // final encoding of remainder
if (!fixupNeeded) {
REnc = REncPre[65:2];
R = RPre;
}
else if (RIsX) {
REnc = 0;
R = 0;
}
else if (RSignPre == XSign) {
REnc = ((REncPre[65:2] << 2) + “dEnc[65:0] + 1)[65:2];
R = RPre - X;

}

else {
REnc = ((REncPre[65:2] << 2) + dEnc[65:0])[65:2];
R = RPre + X;

}

bool RSign = YSign & "RIsO[0] & "RIsX[0];
if (YNB >= XNB) {
assert (REnc == (R << (64

XNB)) [63:01);
}
else if (YNB[0] == XNB[0]) {

assert (REnc == (R << (62 - YNB))[63:0]);
}
else {

assert (REnc == (R << (63

YNB)) [63:0]);
}

nat QEnc; // final encoding of quotient
if (!fixupNeeded) {
QEnc = QOEnc;
Q = QPre;
}
else if (RSignPre == XSign) {
QEnc = QPEnc;
Q = QPre + 1;
}
else {
QEnc = QMEnc;
Q = QPre - 1;
}
assert(Y == R + Q*X);
assert(abs(R) < abs(X));
assert((R == 0) || ((R<0) == (Y <0)));
assert(n > 33 || QEnc == Q[66:0]);

// Determine whether the quotient is representable:

bool QToolarge;
if (YNB > XNB + w) {

37

QTooLarge = true;

}
else if (n <= 1) {
QTooLarge = false;

}
else if (YSign == XSign) {

QTooLarge = (QEnc[w+2:w] != 0) || isSigned && (QEnc[w-1] != 0);

}
else {
QTooLarge = (QEnc[w+l:w-1] != 7);
}
if (isSigned) {
assert(QTooLarge == ((Q > MaxSgndIntVal(w)) ||
(Q < MinSgndIntVal(w))));
}
else {
assert(QToolarge == (Q >= 1 << w));

}

if (QToolarge) {
return <false, 0, 0>;

}

// Compute the final results:
nat QOut = QEncl[w-1:0];
nat ROut;
if (YNB >= XNB) {
ROut = ((RSign << w) - (RSign << XNB)) | REnc[63:64-XNBI;
}
else if (YNB[0] == XNB[0]) {
ROut = ((RSign << w) - (RSign << (YNB+2))) | REnc[63:62-YNB];
}
else {
ROut = ((RSign << w) - (RSign << (YNB+1))) | REnc[63:63-YNB];
}
assert (QOut == Q[w-1:0]);
assert (ROut == R[w-1:0]);
return <true, QOut, ROut>;

38

