
A Mehanially Veri�ed Commerial SRT DividerDavid M. Russino�April 9, 2009AbstratWe present a proof of orretness of a ommerial implementation of the Sweeney-Robertson-Toher (SRT) division algorithm, namely the integer divider of the AMDproessor ode-named \Llano". The register-transfer logi (RTL) design of the di-vider and its behavioral spei�ation are both formalized in the ACL2 logi; theproof has been formally heked by the ACL2 prover. The omplexity of the prob-lem is managed by modeling the design at suessively lower levels of abstration,beginning with the SRT algorithm and ending with the RTL module. This ap-proah is ontrasted with earlier published work on this problem, whih addressesonly the high-level algorithm.1 IntrodutionThe Sweeney-Robertson-Toher (SRT) division algorithm [9, 13℄, owing to its suseptibil-ity to eÆient hardware implementation, is ubiquitous in ontemporary miroproessordesigns. It is also notoriously prone to implementation error. Analysis of the algorithm'smost elebrated inarnation, the defetive FDIV iruitry of the original Intel Pentiumoating-point unit [7℄, suggests that thorough veri�ation of an SRT divider by testingalone is a pratial impossibility.This development has been a boon to the enterprise of formal hardware veri�ation.One early response to the 1994 revelation of the Pentium bug was Bryant's BDD-basedanalysis [2℄, whih established a ritial invariant of an SRT iruit but was limitedby the pratial onstraints of the model-theoreti approah. More omplete resultswere subsequently ahieved with the use of mehanial theorem provers by Kapur andSubramanian [5℄; Ruess, Shankar, and Srivas [8℄; and Clarke, German, and Zhou [3℄.All of these e�orts shared the goal of demonstrating the e�etiveness of a partiularprover in exposing a spei� bug, and onsequently foused on the relevant aspets ofthe underlying algorithm. Moreover, although developed independently, all three wereoinidentally based on the same exeution model, a high-level iruit design proposedin 1981 by Taylor [12℄.A di�erent objetive is pursued in the work reported here: a omprehensive mahine-heked proof of orretness of a ommerial hardware design. The objet of investi-gation is a register-transfer logi (RTL) model of a radix-4 SRT integer divider, to beimplemented as a omponent of the AMD proessor ode-named \Llano". The theoremprover used in this projet is ACL2 [1℄.The required behavior of the module is onisely spei�ed in terms of the integervalues X and Y (divisor and dividend) represented by the primary data inputs and the1

orresponding values Q and R (quotient and remainder) of the data outputs. Undersuitable input onstraints, the following relations must be satis�ed:(1) Y = QX +R;(2) jRj < jX j;(3) Either R = 0, or R and X have the same sign.Regrettably (from a veri�ation perspetive), the simpliity of this behavioral spe-i�ation is not reeted in the design. In ontrast to Taylor's iruit, whih uses only�ve state-holding registers, the divider of the Llano proessor uses �fty-six. In order toaddress this omplexity, the proof is divided into four parts, whih model the design atsuessively lower levels of abstration.At the highest level, as disussed in Setion 2, we establish the essential proper-ties of the underlying SRT algorithm. Our desription of the algorithm is based on anunspei�ed radix, 2r. In the ase of interest, we have r = 2, whih means that twoquotient bits are generated per yle. The main result of this setion pertains to theiterative phase of the omputation, whih generates the sequenes of partial remaindersp0; : : : ; pn, quotient digits m1; : : : ;mn, and resulting partial quotients Q0; : : : ; Qn. Wealso address several relevant issues that are ignored in the proofs ited above: (1) presal-ing of the divisor and dividend and postsaling of the remainder; (2) determination ofthe required number n of iterations, whih depends on the relative magnitudes of theoperands; (3) inremental (\on-the-y") omputation of the quotient, whih involvesthe integration of positive and negative quotient digits; and (4) derivation of the �nalremainder and quotient R and Q, as spei�ed above, from the results R0 and Q0 of theiteration, whih are haraterized by Y = Q0X +R0 and jR0j � jX j.In the radix-4 ase, the quotient digits are on�ned to the range �3 � mk � 3. Eahmk is read from a table of 4 � 32 = 128 entries aording to indies derived from thenormalized divisor d and the previous partial remainder pk�1, and is used to ompute thenext partial remainder by the reurrene formula pk = 4pk�1�mkd. At the seond levelof abstration, in Setion 3, we present the atual table used in our implementation,whih was adapted from the IBM z990 [4℄, and prove that it preserves the invariantjpkj � jdj.At the third level, the algorithm is implemented in XFL, a simple formal languagedeveloped at AMD for the spei�ation of the AMD64 instrution set arhiteture.XFL is based on unbounded integer and arbitrary preision rational data types andombines the basi onstruts of C with the logial bit vetor operations of Verilog, inwhih AMD RTL designs are oded. The XFL enodings of the lookup table and thedivider are displayed in Appendies A and B. Like most XFL programs, this ode wasautomatially generated from a hand-oded C++ program, whih has been subjetedto testing for the purpose of validating the model.The XFL model is signi�antly smaller than the RTL, whih onsists of some 150kilobytes of Verilog ode, but it is designed to perform the same sequene of register-transfer-level operations while avoiding low-level implementation onerns. Thus, muhof the omplexity of the design is aptured at this third level, inluding several essentialfeatures that are absent from higher-level models suh as Taylor's iruit spei�ation:(1) A hardware implementation of Taylor's model, whih omputes an expliit rep-resentation of the partial remainder on eah iteration, would require a time-onsuming full-width arry-propagate adder, resulting in a prohibitively long yle2

time. In ontrast, a typial ontemporary ommerial implementation suh as theLlano divider stores the remainder in a redundant form, whih may be omputedby a muh faster arry-save adder. A single full-width addition is then performedat the end of the iterative phase.(2) The derivation of the �nal results R and Q from the intermediate values R0 andQ0 involves onsideration of the speial ases R0 = 0 and R0 = �X . Timingonsiderations ditate that these onditions be deteted in advane of the full-widthaddition that produes R0. This requires speial logi for prediting anellation.(3) The module is also responsible for deteting overow, i.e., a quotient that is toolarge to be represented in the target format. This involves an analysis that isperformed onurrently with the �nal omputation of the quotient.Eah of these ompliations introdues a possible soure of design error that annot beignored. In Setion 4, we present a omplete proof of the laim that the algorithm isorretly implemented by the XFL model.The lowest level of abstration to be onsidered is that of the RTL itself. The proofof equivalene between the RTL and XFL models represents a signi�ant portion of theoverall e�ort, involving the analysis of a omplex state mahine, innumerable timing andsheduling issues, and various other implementation onerns. However, this part of theproof would be of relatively little interest to a general readership; moreover, neitherspae nor proprietary on�dentiality allows its inlusion here.Thus, the purpose of this paper is an exposition of the proof of orretness of theLlano divider as represented by the XFL model. The presentation is on�ned to standardmathematial notation, avoiding any obsure speial-purpose formalism, but assumesfamiliarity with the general theory of bit vetors and logial operations, making impliituse of the results found in [10℄. Otherwise, the proof is self-ontained and surveyable,with one exeption: Lemma 3.1, whih provides a set of inequalities that are satis�edby the entries of the lookup table, involves mahine-heked omputation that is tooextensive to be arried out by hand.We emphasize, however, that a omprehensive statement of orretness of the RTLmodule itself has been formalized in the logi of ACL2 and its proof has been thoroughlyheked with the ACL2 prover. This inludes a formalization of the proof presentedhere, along with a detailed proof of equivalene between the XFL and RTL models. Forthis purpose, the XFL model was re-oded diretly in ACL2 and the RTL module wastranslated to ACL2 by a tool that was developed for this purpose [11℄. Thus, the validityof the proof depends only on the semanti orretness of the Verilog-ACL2 translatorand the soundness of the ACL2 prover, both of whih have been widely tested.While the ultimate objetive of formal veri�ation is a proof of orretness, its utilitymay best be demonstrated through the exposure of bugs that might otherwise have goneundeteted. In the present ase, three bugs that had already survived extensive diretedtesting were found through our analysis, at three distint levels of abstration. Oneidenti�ed, all three were readily orreted.First, an entry of the lookup table (the one in the upper right orner of Figure 1)was missing from the original design. This was strikingly similar to the original Pentiumbug insofar as the entry was thought to be inaessible. The error was not exposed byinitial direted testing, whih was designed to hit all aessible table entries on the �rstiteration. Subsequent analysis and testing revealed that the entry an be reahed, butonly after nine iterations. 3

A seond problem was deteted in onnetion with the same table entry. If thepartial remainder is lose to �2, it appears to be possible (although no test ase hasyet been onstruted to on�rm this possibility), as a result of the two's omplementenoding sheme, for the approximation derived from the redundant representation tobe lose to +2 instead. The original design did not aount for this ourrene, whihwould have resulted in a quotient digit with the wrong sign.Finally, a timing problem was deteted in the RTL implementation, related to thepossible anellation and re-transmission of the divisor input. This issue, whih of ourseis not reeted in the algorithm or the XFL enoding, illustrates the inadequay of aorretness proof based solely on a high-level design model.2 SRT DivisionThe desription of a division algorithm is typially simpli�ed by interpreting its param-eters as frations. Thus, our presentation begins with a normalized representation ofthe divisor X , d = 2�expo(X)X;where expo(X) is the integer de�ned by2expo(X) � jX j < 2expo(X)+1;and onsequently, 1 � jdj < 2. The dividend Y is similarly shifted to produe the initialpartial remainder, p0 = 2�expo(X)�rnY;where 2r is the underlying radix of the omputation and n, the number of iterations tobe performed, is hosen to ensure that jp0j � jdj.On eah iteration, the urrent partial remainder pk�1 is shifted by r bits and anappropriate multiple of d is subtrated to form the next partial remainder,pk = 2rpk�1 �mkd;where the multiplier mk ontributes the aumulated quotient. The invariant jpkj � jdjis guaranteed by seleting mk from the interval2rpk�1d � 1 � mk � 2rpk�1d + 1:For further motivation, refer to [6℄.Lemma 2.1 Let X, Y , r, and n be integers suh that X 6= 0, r > 0, n � 0, and jY j �2rnjX j. Let d = 2�expo(X)X, p0 = 2�expo(X)�rnY , and Q0 = 0. For k = 1; : : : ; n, letpk = 2rpk�1 �mkdand Qk = 2rQk�1 +mk;where mk is an integer suh that if jpk�1j � jdj, then jpkj � jdj. Let R = 2expo(X)pnand Q = Qn. Then Y = QX +R and jRj � jX j.4

Proof: Clearly, 1 � jdj < 2, andjp0j = 2�expo(X)�rnjY j � 2�expo(X)jX j = jdj:It follows by indution that jpkj � jdj for all k � n. We shall also show by indutionthat pk = 2rkp0 �Qkd:The laim learly holds for k = 0, and for 0 < k � n,pk = 2rpk�1 �mkd= 2r �2r(k�1)p0 �Qk�1d��mkd= 2rkp0 � (2rQk�1 +mk)d= 2rkp0 �Qkd:In partiular, pn = 2rnp0 �Qnd;and Y = 2expo(X)2rnp0 = 2expo(X)(Qnd+ pn) = QX +R;where jRj = j2expo(X)pnj � j2expo(X)dj = jX j. 2A quotient and remainder that satisfy the onlusion of Lemma 2.1 may be easilyadjusted to satisfy the spei�ation stated in Setion 1.Lemma 2.2 Let X, Y , Q0, and R0 be integers suh that X 6= 0, jR0j � jX j, andY = Q0X +R0. Let R and Q be de�ned as follows:(a) If jR0j < jX j and either R0 = 0 or sgn(R0) = sgn(Y), then R = R0 and Q = Q0;(b) If (a) does not apply and sgn(R0) = sgn(X), then R = R0 �X and Q = Q0 + 1;() If (a) does not apply and sgn(R0) 6= sgn(X), then R = R0 +X and Q = Q0 � 1.Then Y = QX +R, jRj < jX j, and either R = 0 or sgn(R) = sgn(Y).Proof: We onsider the three ases separately:(a) In this ase, the onlusion holds trivially.(b) In this ase, Y = Q0X +R0 = (Q0 + 1)X + (R0 �X) = QX +Rand sgn(R0) = sgn(X). If jR0j = jX j, then R0 = X and R = 0. Otherwise, wemust have Y 6= 0 and sgn(R0) 6= sgn(Y). Sine jR0j < jX j, jRj = jR0 � X j =jX j � jR0j < jX j: Moreover, sgn(R) 6= sgn(R0), whih implies sgn(R) = sgn(Y).() Here we have Y = Q0X +R0 = (Q0 � 1)X + (R0 +X) = QX +Rand sgn(R0) 6= sgn(X). If jR0j = jX j, then R0 = �X and R = 0. Otherwise,Y 6= 0 and sgn(R0) 6= sgn(Y). Sine jR0j < jX j, jRj = jR0+X j = jX j� jR0j < jX j:Moreover, sgn(R) 6= sgn(R0), whih implies sgn(R) = sgn(Y): 25

In an SRT implementation, the multiplier mk of Lemma 2.1 represents a sequene ofr bits that are appended to the quotient during the kth iteration. Although not requiredfor the proof of the lemma, it may be assumed that in pratie, jmkj < 2r. In partiular,in our radix-4 implementation, we have �3 � mk � 3. This provides a bound on thepartial quotients.Lemma 2.3 Let Q0 = 0 and for k = 1; : : : ; n, let Qk = 4Qk�1+mk, where �3 � mk �3. Then jQkj < 4k.Proof: By indution,jQkj = j4Qk�1 +mkj � j4Qk�1j+ jmkj < 4 �4k�1 � 1�+ 4 = 4k: 2If we ould guarantee that mk � 0, then we ould maintain a bit vetor enodingof the quotient simply by shifting in two bits at eah step. In order to aommodatemk < 0 without resorting to a full subtration, and simultaneously to provide an eÆientimplementation of Lemma 2.2, we adopt a sheme that involves three separate bit vetorsrepresenting the values Qk, Qk � 1, and Qk + 1. The following lemma will be used inSetion 4 to ompute the �nal quotient. Note that eah step in the omputation maybe implemented as a simple two-bit shift.Lemma 2.4 Let Q0 = 0 and for k = 1; : : : ; n, let Qk = 4Qk�1+mk, where �3 � mk �3. Let N > 0. We de�ne three sequenes of bit vetors, Ek, E�k , and E+k , all of widthN , as follows: E0 = 0, E�0 = 2N � 1, E+0 = 1, and for k = 1; : : : ; n,Ek = � (4Ek�1 +mk)[N � 1 : 0℄ if mk � 0(4E�k�1 +mk + 4)[N � 1 : 0℄ if mk < 0,E�k = � (4Ek�1 +mk � 1)[N � 1 : 0℄ if mk > 0(4E�k�1 +mk + 3)[N � 1 : 0℄ if mk � 0,and E+k = 8<: (4Ek�1 +mk + 1)[N � 1 : 0℄ if �1 � mk � 2(4E�k�1 +mk + 5)[N � 1 : 0℄ if mk < �1(4E+k�1)[N � 1 : 0℄ if mk = 3.Then for k = 0; : : : ; n, Ek = Qk[N � 1 : 0℄;E�k = (Qk � 1)[N � 1 : 0℄;and E+k = (Qk + 1)[N � 1 : 0℄:Proof: The laim holds trivially for k = 0. In the indutive step, there are sevenequations to onsider. For example, if mk < �1, thenE+k = (4E�k�1 +mk + 5)[N � 1 : 0℄= (4(Qk�1 � 1)[N � 1 : 0℄ +mk + 5)[N � 1 : 0℄= (4(Qk�1 � 1) +mk + 5)[N � 1 : 0℄= (4Qk�1 +mk + 1)[N � 1 : 0℄= (Qk + 1)[N � 1 : 0℄:6

The other six ases are handled similarly. 2The implementation is also responsible for supplying the integer n of Lemma 2.1,whih is required to satisfy jY j � 22njX j and represents the number of iterations to beperformed. This may be aomplished by establishing an upper bound on the di�ereneexpo(Y)� expo(X):Lemma 2.5 Let X, Y , and B be integers suh that X 6= 0 and expo(Y)�expo(X) � B.Let n = � �B2 �+ 1 if B � 00 if B < 0:Then jY j < 22njX j.Proof: If B � 0, then2n = 2��B2 �+ 1� � 2�B � 12 + 1� = B + 1;so that 2n+ expo(X) � B + 1 + expo(X) � expo(Y) + 1 and22njX j � 22n+expo(X) � 2expo(Y)+1 > jY j:But if B < 0, then expo(Y) < expo(X) andjY j < 2expo(Y)+1 � 2expo(X) � jX j = 22njX j: 2The most intensive omputation performed in the exeution of the algorithm is thatof the partial remainder, pk = 4pk�1 + mkd. In order for this to be ompleted in asingle yle, pk is represented in a redundant form onsisting of two bit vetors. Sinejmkj � 3, the term mkd is onveniently represented by up to two vetors orrespondingto �d and �2d, depending on mk. Thus, the omputation of pk is implemented as atwo-bit shift (multipliation by 4) of pk�1 followed by a 4{2 ompression. The detailsare deferred to Setion 4.The most hallenging task is the omputation of the quotient digit mk. This is thesubjet of the next setion.3 Quotient Digit SeletionIn this setion, we de�ne a proess for omputing the quotient bits mk of Lemma 2.1and prove that the invariant jpkj � jdj is preserved. The problem may be formulated asfollows:Given rational numbers d and p suh that 1 � jdj < 2 and jpj � jdj, �nd aninteger m suh that �3 � m � 3 and j4p� dmj � jdj.We may restrit our attention to the ase d > 0, sine the inequalities in the aboveobjetive are una�eted by reversing the signs of both d andm. Thus, we have 1 � d < 2and �2 < p < 2. These onstraints determine a retangle in the dp-plane as displayedin Figure 1, whih is adapted from [4℄. The retangle is partitioned into an array ofretangles of width 14 and height 18 . The olumns and rows of the array are numbered7

with indies i and j, respetively, where 0 � i < 4 and 0 � j < 32. Let Rij denote theretangle in olumn i and row j, and let (Æi; �j) be its lower left vertex. Thus,Rij = �(d; p) j Æi � d < Æi + 14 and �j � p < �j + 18� :The numbering sheme is designed so that if (d; p) 2 Rij , then i omprises the leadingtwo bits of the frational part of d, and j omprises the leading 5 bits of the two'somplement representation of p.The ontents of the retangles of Figure 1 represent a funtionm = �(i; j);whih is de�ned formally in Appendix A and may be implemented as a table of 4�32 =128 entries. For a given pair (d; p), we derive an approximation (Æi; �j), whih determinesthe arguments of � to be used to ompute the orresponding value of m. Ideally, thisapproximation would be simply determined by the retangle Rij that ontains (d; p),i.e., i and j would be derived by extrating the appropriate bits of d and p. Sine ourimplementation generates the enoding of d expliitly, d may indeed be approximatedin this manner. Thus, i = d[�1 : �2℄ = b4(d� 1), whih yieldsÆi � d < Æi + 14 :On the other hand, as noted in Setion 2, p is represented redundantly as a sum oftwo vetors. The index j may be derived by adding the high-order bits of these vetors,but as a onsequene of this sheme, as we shall see in Setion 4, instead of the optimalrange of 18 , the auray of �j is given by�j � p < �j + 14 :Thus, in geometri terms, we may assume that (d; p) is known to lie within the squareSij formed as the union of the retangle Rij and the retangle diretly above it:Sij = �(d; p) j Æi � d < Æi + 14 and �j � p < �j + 14� :We would like to show that if (d; p) 2 Sij and m = �(i; j), then j4p � dmj � d, orequivalently, m� 14 � pd � m+ 14 :We �rst present an informal argument, whih will then be formalized and proved ana-lytially.The de�nition of � is driven by the following observations:(1) Sine jpj � d, (d; p) lies between the lines p = d and p = �d. Therefore, if Sijlies entirely above the line p = d, or entirely below the line p = �d, then m isinonsequential and left unde�ned. In all other ases, m is de�ned.(2) Sine p � d, the upper bound pd � m+ 14is satis�ed trivially if m = 3. In order to guarantee that this bound holds generally,it suÆes to ensure that if m 6= 3, then Sij lies below the line p = (m+1)d4 .8

-

6 d = 1 d = 2
p = 2

p = �2

�������
�������

�������
�������

�

���������
���������

���������
��

�������������
�������������

���
�������������������������

����
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
HHHHHHHHHHHHHHHHHHHHHHHHHHHHH
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

�����������������������������

p = d
p = 34d
p = 12d
p = 14d
p = � 14d
p = � 12d
p = � 34d
p = �d

0

0111101110011010110001011010100100101000001110011000101001000001100010000010000011111111101110111100110111101011001110001011110110101011010010011100101000110000 00 01 10 11

||||||333332211000�1�1�2�2�3�3�3�3�3|||||

||||33333322211000�1�1�2�2�2�3�3�3�3�3�3|||

||3333332221111000�1�1�1�2�2�2�2�3�3�3�3�3�3|

333333332221111000�1�1�1�2�2�2�2�3�3�3�3�3�3�3

p

d

Figure 1: SRT Table9

(3) Similarly, sine p � �d, the lower boundpd � m� 14is satis�ed trivially if m = �3. In order to guarantee that this bound holdsgenerally, it suÆes to ensure that if m 6= �3, then Sij lies above the line p =(m�1)d4 .It is easily veri�ed by inspetion of Figure 1 that in all ases in whihm is de�ned, theonditions spei�ed by (2) and (3) are satis�ed and onsequently, the desired inequalityholds. It should also be noted that in some ases, there is a hoie between two aeptablevalues of m. If Sij lies within the region bounded by p = m4 d and p = m+14 d, where�3 � m � 2, then the inequality is satis�ed by both m and m + 1. For example,although we have assigned 3 as the value of �(11b, 01000b), sine S11;01000 lies betweenp = 12d and p = 34d, we ould have hosen 2 instead.The �rst step toward formalization is to express the onditions listed above in preiseanalytial terms:(1) Sij lies entirely above the line p = d if and only if its lower right vertex, (Æi+ 14 ; �j),lies on or above that line, a ondition expressed by the inequality�j � Æi + 14 :The ondition that Sij lies entirely below the line p = �d is similarly determinedby the loation of its upper right vertex, (Æi + 14 ; �j + 14), and is expressed by theinequality �j � ��Æi + 14�� 14 = �Æi � 12 :Thus, m = �(i; j) is de�ned if and only if neither of these inequalites holds, i.e.,�Æi � 12 < �j < Æi + 14 :(2) The maximum value of the quotient dp in Sij ours at either the upper left or theupper right vertex, depending on the sign of their ommon p-oordinate, �j + 14 .Thus, Sij lies below the line p = (m+1)d4 if and only if both verties lie on or belowthe line, i.e, �j + 14Æi = 4�j + 14Æi � m+ 14and �j + 14Æi + 14 = 4�j + 14Æi + 1 � m+ 14 :(3) The minimum value of dp in Sij ours at either the lower left or the lower rightvertex, depending on the sign of �j . Thus, Sij lies above the line p = (m�1)d4 ifand only if both verties lie on or above the line, i.e,�jÆi � m� 1410

and �jÆi + 14 = 4�j4Æi + 1 � m� 14 :We shall also require analytial expressions for Æi and �j as funtions of i and j. Thede�nition of Æi is trivial:De�nition 3.1 For eah integer i suh that 0 � i < 4,Æi = 1 + i4 :Sine j is the �ve-bit two's omplement representation of the signed integer 8�j , wehave the following de�nition, in whih the funtion SgndIntVal(w; x) omputes the valuerepresented by a bit vetor x with respet to a signed integer format of width w:De�nition 3.2 For eah integer j suh that 0 � j < 32,�j = SgndIntVal(5; j) = � j8 if j < 16j8 � 32 if j � 16:The formal statement of orretness of � appears below as Lemma 3.2. The on-straints on � that were derived above are required in the proof. These are summarizedin Lemma 3.1, whih is proved by straightforward exhaustive omputation.Lemma 3.1 Let i and j be integers, 0 � i < 4 and 0 � j < 32. Assume that �Æi� 12 <�j < Æi + 14 and let m = �(i; j).(a) If m 6= 3, then max�4�j+14Æi ; 4�j+14Æi+1 � � m+14 ;(b) If m 6= 3, then min��jÆi ; 4�j4Æi+1� � m�14 .Lemma 3.2 Let d and p be rational numbers, 1 � d < 2 and jpj � d. Let i and j beintegers, 0 � i < 4 and 0 � j < 32, suh that Æi � d < Æi + 14 and �j � p < �j + 14 . Letm = �(i; j). Then j4p� dmj � d.Proof: First note that sine �j � p � d < Æi + 14and �j > p� 14 � �d� 14 > ��Æi + 14�� 14 = �Æi � 12 ;we may apply Lemma 3.1.We must show that �d � 4p� dm � d, i.e.,m� 14 � pd � m+ 14 :First we establish the upper bound. Sinepd � 1 = 3 + 14 ;11

we may assume m 6= 3. If �j � � 14 , thenpd < �j + 14d � �j + 14Æi = 4�j + 14Æi � m+ 14 :On the other hand, if �j < � 14 , thenpd < �j + 14d < �j + 14Æi + 14 = 4�j + 14Æi + 1 � m+ 14 :As for the lower bound, sine pd � �1 = �3� 14 ;we may assume m 6= �3. If �j � 0, thenpd � �jd � �jÆi + 14 = 4�j4Æi + 1 � m� 14 :But if �j < 0, then pd � �jd � �jd � m� 14 : 24 ImplementationThe results of this setion refer to the values assumed by variables during a hypothetialexeution of the XFL funtion SRT, de�ned in Appendix B. With the exeption of theloop variables b and k, eah variable of SRT belongs to one of two lasses:� Some variables assume at most one value during an exeution. The value of suha variable will be denoted by the name of the variable in italis, e.g., X, dEn, andYNB.� Variables that are assigned inside the main for loop may assume only one valueduring eah iteration and may or may not be assigned an initial value before theloop is entered. The value assigned to suh a variable during the kth iterationwill be denoted with the subsript k, e.g., pk, mAbsk, and addAk. If suh avariable is assigned an initial value outside of the loop, it will be denoted with thesubsript 0, e.g., p0 and QPart0. When onvenient, the subsript may be omittedand understood to have the value k. When replaed with an aent (0), it will beunderstood to have the value k� 1. For example, in the statement of Lemma 4.7,m and p0 represent mk and pk�1, respetively.SRT has four input parameters:� isSigned is a boolean indiation of a signed or unsigned integer format;� w is the format width, whih is assumed to be 8, 16, 32, or 64;� XEn is the signed or unsigned w-bit enoding of the divisor;� YEn is the signed or unsigned 2w-bit enoding of the dividend.12

Three values are returned:� A boolean indiation of whether the omputation ompleted suessfully;� The signed or unsigned w-bit enoding of the quotient;� The signed or unsigned w-bit enoding of the remainder.The last two values are of interest only when the �rst is true, in whih ase they are thevalues of the variables QOut and ROut, respetively.Some of the variables of SRT do not ontribute to the outputs, but are used only inour analysis and in embedded assertions. Of these (listed in a preamble to the funtion),X and Y are the integer values represented by XEn and YEn, and Q and R are thequotient and remainder, whih, unless X = 0, satisfy Y = QX + R, jRj < jX j, andeither R = 0 or sgn(R) = sgn(Y).Our objetive is to show that suess is indiated if and only if X 6= 0 and Q isrepresentable with respet to the indiated format, in whih ase Q and R are theinteger values of QOut and ROut. Sine this obviously holds when X = 0, we shallassume X 6= 0 in the following. The main result is the theorem at the end of thissetion.The omputation is naturally partitioned into three phases, whih are desribed inthe following three subsetions.4.1 Analysis of OperandsIn the �rst phase, the operands are analyzed and normalized in preparation for theiterative omputaion of the quotient and remainder, and the number n of iterations isestablished.The variable XNB represents the \number of bits" of X , derived by ounting theleading zeroes or ones:Lemma 4.1 XNB = expo(X) + 1:Proof: If X > 0, then X = XEn and XNB� 1 is the index of the leading 1 of X ,whih implies 2XNB-1 � X < 2XNB, and the laim follows.If XNegPower2 = 1, then XEn[b℄ = 1 if and only if w > b � XNB � 1. It followsthat XEn = 2w � 2XNB�1 andX = XEn� 2w = 2w � 2XNB�1 � 2w = �2XNB�1:In the remaining ase, X < 0, XNB � 1 is the index of the leading 0 of XEn, andXEn[XNB� 2 : 0℄ 6= 0. It follows that2w � 2XNB < XEn < 2w � 2XNB�1;whih implies �2XNB < X < �2XNB�1, i.e., 2XNB�1 < jX j < 2XNB: 2The variable dEn is an enoding of d = 2�expo(X)X :Lemma 4.2 dEn = (265d)[67 : 0℄ = d[2 : �65℄:13

Proof: Sine d = 2�expo(X)X and expo(X) � 63, 263d = 263�expo(X)X is aninteger and X = 2expo(X)d = 2XNB�1d:Clearly,dEn[65 : 66�XNB℄ = XEn[XNB�1 : 0℄ = X [w�1 : 0℄[XNB�1 : 0℄ = X [XNB�1 : 0℄and sine jX j < 2XNB,dEn[66℄ = dEn[67℄ = XSign = X [XNB℄ = X [XNB+ 1℄:Thus, dEn[67 : 66�XNB℄ = X [XNB+ 1 : 0℄, and henedEn = 266�XNBX [XNB+ 1 : 0℄= (266�XNBX)[67 : 0℄= (2XNB�1+66�XNBd)[67 : 0℄= (265d)[67 : 0℄= d[2 : �65℄: 2The next lemma gives an expression for i, the �rst argument of the table aessfuntion �:Lemma 4.3 i = b4(jdj � 1).Proof: If X > 0, then sine 4 � 4d < 8,i = dEn[64 : 63℄ = d[�1 : �2℄ = mod(b4d; 4) = b4d � 4 = b4(d� 1):If XNegPower2 = 1, then X = �2expo(X), d = �1, andi = 0 = b4(jdj � 1):In the remaining ase, X < 0, dEn[66℄ = 1, dEn[65℄ = 0, and dEn[64 : 0℄ 6= 0.Sine 265d = 265�expo(X)X is an integer and 265d < 266,265d = SgndIntVal(67; (265d)[66 : 0℄)= SgndIntVal(67; dEn[66 : 0℄)= dEn[64 : 0℄� 266:Thus, jdj = �d = 2� 2�65dEn[64 : 0℄ andb4(jdj � 1) = b4� 2�63dEn[64 : 0℄ = b4� dEn[64 : 63℄� 2�63dEn[62 : 0℄:Suppose that dEn[62 : 0℄ = 0. Then dEn[64 : 63℄ 6= 0, andb4(jdj � 1) = 4� dEn[64 : 63℄:An exhaustive ase analysis (dEn[64 : 63℄ = 1, 2, or 3) shows that4� dEn[64 : 63℄ = ((~dEn[64℄ | ~dEn[63℄) << 1) | dEn[63℄ = i:14

Finally, suppose that dEn[62 : 0℄ 6= 0. Thenb4(jdj � 1) = 3� dEn[64 : 63℄ = ~dEn[64 : 63℄ = i: 2YNB is the \number of bits" of Y , inluding, in the negative ase, the �nal trailingsign bit:Lemma 4.4 If Y > 0, then 2YNB�1 � Y < 2YNB;and if Y < 0, then 2YNB�2 < jY j � 2YNB�1:Consequently, in either ase, YNB � expo(Y) + 1.Proof: If Y > 0, then YNB � 1 is the index of the leading 1 of YEn = Y , i.e.,expo(Y) = YNB-1.If Y = �1, then YNB = 1 and2YNB�2 = 12 < jY j = 1 = 2YNB�1:In the remaining ase, Y < �1, YNB�2 is the index of the leading 0 of YEn, whihimplies 2w � 2YNB�1 � YEn < 2w � 2YNB�2:But sine Y = YEn� 2w, �2YNB�1 � Y < �2YNB�2and 2YNB�2 < jY j � 2YNB�1: 2The number of iterations, n, satis�es the requirement of Lemma 2.1:Lemma 4.5 jY j < 22njX j.Proof: This is an immediate onsequene of Lemmas 4.1, 4.4, and 2.5. 2The bit vetor pEn is an enoding of p0 = 2�expo(X)�2nY :Lemma 4.6(a) If n = 0, thenpEnHi0 = � (264�YNBY)[67 : 0℄ if YNB[0℄ = XNB[0℄(265�YNBY)[67 : 0℄ if YNB[0℄ 6= XNB[0℄.(b) If n > 0, then 2129p0 is an integer andpEn = (2129p0)[131 : 0℄ = p0[2 : �129℄:15

Proof: First onsider the ase YNB[0℄ = XNB[0℄. We may assume YNB > 0;otherwise, Y = 0 and the lemma is trivial.Note that YNB � 128 andpEn[127 : 128�YNB℄ = YEn[YNB� 1 : 0℄ = Y [YNB� 1 : 0℄:Therefore, pEn[127 : 0℄ = 2128�YNBY [YNB� 1 : 0℄ = (2128�YNBY)[127 : 0℄:Sine Y < 2YNB, for ` = 128; : : : ; 131,pEn[`℄ = YSign = (2128�YNBY)[`℄:Thus, pEn = pEn[131 : 0℄ = (2128�YNBY)[131 : 0℄:If n = 0, then YNB < XNB � 64 andpEn = (2128�YNBY)[131 : 0℄ = 264(264�YNBY)[67 : 0℄;whih implies pEnHi0 = (264�YNBY)[67 : 0℄.On the other hand, if n > 0, then2n = 2��YNB�XNB2 �+ 1� = YNB�XNB+ 2 = YNB� expo(X) + 1and p0 = 2�expo(X)�2nY = 2�YNB�1Y:Thus, 2129p0 = 2128�YNBY is an integer andpEn = (2128�YNBY)[131 : 0℄ = (2129p0)[131 : 0℄:The proof for the ase YNB[0℄ 6= XNB[0℄ is similar, with every ourrene of 127 or128 replaed by 128 or 129. Thus, we havepEn = (2129�YNBY)[131 : 0℄;whih, in the n = 0 ase, leads topEnHi0 = (265�YNBY)[67 : 0℄: 24.2 IterationThe seond phase is the iteration loop, in whih the quotient digits are seleted and thepartial remainder and quotient are updated aordingly. The main results pertaining tothe iterative omputation of the partial remainder are given by Lemmas 4.7 and 4.9:(1) The quotient digit m is orretly omputed as the value of �(i; j), as stated inLemma 4.7;(2) The partial remainder pk = 4pk�1 � mkd is enoded by pEnHi, arryHi, andpEnLo, as stated in Lemma 4.9. 16

The proof of (2) depends on (1), and that of (1) requires the assumption that (2) holdson the preeding iteration:Lemma 4.7 Let 0 < k � n. Suppose that jp0j � jdj < 2, 2129p0 is an integer, and(2129p0)[131 : 0℄ = 264(pEnHi0 + arryHi0)[67 : 0℄ + pEnLo0:Then(a) m = � �(i; j) if X � 0��(i; j) if X < 0;(b) �j � p0 < �j + 14 .Proof: First suppose pEnHi0 + arryHi0 � 268. Then pTop = 63; otherwise,pEnHi0 + arryHi0 = 262pTop+ pEnHi0[61 : 0℄ + arryHi0� 26262 + 262 � 1 + 262 � 1< 268:Consequently, j = pIndex = pTop[4 : 0℄ = 31, whih implies m = �(i; j) = 0, and (a)follows. To prove (b), we note that(2129p0)[131 : 64℄ = (pEnHi0 + arryHi0)[67 : 0℄= pEnHi0 + arryHi0 � 268< 268 + 262 � 268= 262and therefore, (2129p0)[131 : 0℄ < 264(262 � 1) + 262 < 2126:Sine j2129p0j < 2131,2129p0 = SgndIntVal(132; (2129p0)[131 : 0℄) = (2129p0)[131 : 0℄and thus, 0 � 2129p0 < 2126 and�j = �18 < 0 � p0 < 18 = �j + 14 :We may assume, therefore, that pEnHi0 + arryHi0 < 268 and hene(2129p0)[131 : 0℄ = 264(pEnHi0 + arryHi0)[67 : 0℄ + pEnLo0= 264(pEnHi0 + arryHi0) + pEnLo0= 2126pTop + 264(pEnHi0[61 : 0℄ + arryHi0) + pEnLo0< 2126pTop + 264(262 � 1 + 262 � 1) + 264< 2126(pTop + 2):Suppose p0 � 0. Then 2129p0 = (2129p0)[131 : 0℄ and18pTop � p0 < 18pTop + 14 :17

Sine pTop � 8p0 < 16, j = pIndex = pTop and pSign = 0. Thus,jmj = mAbs = SRTLookup(i; j) = j�(i; j)j = �(i; j)and mSign = XSign, whih implies (a). To prove (b), we need only observe thatSgndIntVal(5; j) = SgndIntVal(5; pTop) = pTop:Now suppose p0 < 0. Then 2129p0 = (2129p0)[131 : 0℄� 2132 and the above estimateyields 18(pTop � 64) � p0 < 18(pTop � 64) + 14 :Thus, pTop > 8p0 + 62 > �16 + 62 = 46, so pTop � 47. Let us assume that pTop � 48.Then j = pIndex and jmj = j�(i; j)j = ��(i; j). Thus, to establish (a), we need onlyshow that m and X have opposite signs. But this follows from mSign = XSign ^ pSignand pSign = 1. To prove (b), it suÆes to show that pTop = SgndIntVal(5; j) + 64. Butin this ase, j = pTop[4 : 0℄ = pTop�32 � 16, so SgndIntVal(5; j) = j�32 = pTop�64.There remains the speial ase pTop = 47. Sinep0 < 18(pTop � 64) + 14 = �178 + +14 = �158 ;2 > jdj � jp0j > 158 , whih impliesdIndex = i = b4(jdj � 1) = 3:Thus, jmj = mAbs = SRTLookup(3; 15) = 3:On the other hand, �(i; j) = �(3; 16) = �3. But again, sine pSign = 1, m and X haveopposite signs and (a) follows. To prove (b), note that SgndIntVal(5; j) = �16; hene,�j = �2 < p0 < �178 + 14 < �j + 14 : 2The omputation of the partial remainder, as desribed in Lemma 4.9, involves a\ompression" that redues four addends to two. This is performed by the serial opera-tion of two arry-save adders, as desribed by the following basi result, taken from [10℄:Lemma 4.8 Given n-bit vetors x, y, and z, leta = x ^ y ^ zand b = 2(x & y | x & z | y & z):Then x+ y + z = a+ b:Lemma 4.9 If n > 0 and 0 � k � n, then jpj � jdj < 2, 2129p is an integer, and(2129p)[131 : 0℄ = p[2 : �129℄ = 264(pEnHi + arryHi)[67 : 0℄ + pEnLo:18

Proof: The proof is by indution on k.For k = 0, we havejpj = j2�expo(X)�2nY j < j2�expo(X)X j = jdjby Lemma 4.5, and sine264(pEnHi + arryHi)[67 : 0℄ + pEnLo = pEn;the other two laims follow from Lemma 4.6.In the indutive ase, we shall derive the bound on jpj from Lemma 3.2. ByLemma 4.3, sine jdj � 1, 0 � i < 4 and Æi � jdj < Æi + 14 . Clearly, j < 32, andby Lemma 4.6, �j � p < �j + 14 andm = � �(i; j) if X � 0��(i; j) if X < 0.Thus, applying Lemma 3.2, with the signs of d and m reversed if d < 0, we havejpj = j4p0 �mdj � d.By indution, 2129p = 2131p0�2129md is an integer. The omputation of (2129p)[131 :0℄ involves a 4{2 ompressor with inputs addA, addB, addC, addD. We shall show that(addA + addB + addC + addD)[67 : 0℄ = (2129p)[131 : 64℄:The �rst two terms, addA and addB, if not 0, represent �2d and �d, respetively,depending on the value of m. However, in the negative ase, in order to avoid a full67-bit addition, the simple omplement of 2d or d is used in plae of its negation, andthe missing 1 is reorded in the variable injet, whih is more onveniently ombinedlater with addD. Thus, our �rst goal is to prove that(addA + addB + injet)[67 : 0℄ = (�265dm)[67 : 0℄:If mSign = 1, thenaddA = mAbs[1℄ � (2 � dEn)[67 : 0℄ = (2 �mAbs[1℄ � dEn)[67 : 0℄;addB = mAbs[0℄ � dEn;and injet = 0. Hene,(addA+ addB + injet)[67 : 0℄ = (2 �mAbs[1℄ � dEn+mAbs[0℄ � dEn)[67 : 0℄= ((2 �mAbs[1℄ +mAbs[0℄) � dEn)[67 : 0℄= (mAbs � dEn)[67 : 0℄= (�dEn �m)[67 : 0℄)= (�265dm)[67 : 0℄):On the other hand, if mSign = 0, thenaddA = addA[67 : 0℄= mAbs[1℄ � (2(~dEn[66 : 0℄) + 1)[67 : 0℄= mAbs[1℄ � (2(�dEn� 1)[66 : 0℄) + 1)[67 : 0℄= mAbs[1℄ � (�2dEn� 2)[67 : 0℄) + 1)[67 : 0℄= mAbs[1℄ � (�2 � dEn � 1)[67 : 0℄= (�2 �mAbs[1℄ � dEn �mAbs[1℄)[67 : 0℄;19

addB = mAbs[0℄ � ~dEn[67 : 0℄= mAbs[0℄ � (�dEn� 1)[67 : 0℄= (�mAbs[0℄ � dEn�mAbs[0℄)[67 : 0℄;and injet = mAbs[0℄ +mAbs[1℄, so that(addA + addB + injet)[67 : 0℄= (�2 �mAbs[1℄ � dEn�mAbs[1℄�mAbs[0℄ � dEn�mAbs[0℄ +mAbs[0℄ +mAbs[1℄)[67 : 0℄= (�(2 �mAbs[1℄ +mAbs[0℄) � dEn)[67 : 0℄= (�m � dEn)[67 : 0℄= (�265dm)[67 : 0℄)= (�2129dm)[131 : 64℄):The remaining two terms, addC and addD, represent the shifted result of the previousiteration, 4p0. Thus, addC = 4 � pEnHi + pEnLo[63 : 62℄;addD = 2 � arryHi + injet;and(addC + addD � injet)[67 : 0℄= (4 � pEnHi + pEnLo[63 : 62℄ + 4 � arryHi + injet� injet)[67 : 0℄= (4(pEnHi+ arryHi)[67 : 0℄ + pEnLo[63 : 62℄)[67 : 0℄= (4(264(pEnHi+ arryHi)[67 : 0℄ + 262 � pEnLo[63 : 62℄))[131 : 64℄= 4(264(pEnHi + arryHi)[67 : 0℄ + 262 � pEnLo[63 : 62℄)[129 : 62℄= 4(264(pEnHi + arryHi)[67 : 0℄ + 262 � pEnLo[63 : 62℄ + pEnLo[61 : 0℄)[129 : 62℄= 4(264(pEnHi + arryHi)[67 : 0℄ + pEnLo)[129 : 62℄= 4(2129p0)[131 : 0℄[129 : 62℄= 4(2129p0)[129 : 62℄= (4 � 2129p0)[131 : 64℄:Combining these last two results, we have(addA + addB + addC + addD)[67 : 0℄= ((addA + addB + injet)[67 : 0℄ + (addC + addD� injet)[67 : 0℄)[67 : 0℄= ((21294p0)[131 : 64℄ + (�2129dm)[131 : 64℄)[67 : 0℄:Sine (�2129dm)[63 : 0℄ = 0, this may be redued to((2129(4p0 � dm))[131 : 64℄ = (2129p)[131 : 64℄:Two appliations of Lemma 4.8 yieldaddA+ addB + addC + addD = sum1+ arry1+ addD = sum2+ arry2;20

and therefore,(2129p)[131 : 64℄= (sum2+ arry2)[67 : 0℄= ((262(sum2[67 : 62℄ + arry2[67 : 62℄))[67 : 0℄ + sum2[61 : 0℄ + arry2[61 : 0℄)[67 : 0℄= (262(sum2[67 : 62℄ + arry2[67 : 62℄)[5 : 0℄ + sum2[61 : 0℄ + arry2[61 : 0℄)[67 : 0℄= (pEnHi+ arryHi)[67 : 0℄:But by Lemma 4.2,(2129p)[63 : 0℄ = (2129(4p0 �md))[63 : 0℄= ((21294p0)[63 : 0℄ + (�264m265d)[63 : 0℄)[63 : 0℄= (21294p0)[63 : 0℄= (4 � pEnLo0)[63 : 0℄= pEnLo;and thus, (2129p)[131 : 0℄ = 264(2129p)[131 : 64℄ + (2129p)[63 : 0℄= 264(pEnHi + arryHi)[67 : 0℄ + pEnLo: 2As a result of the iterative shifting of the partial remainder, pEnLo = 0 upon exitingthe loop. This is proved reursively:Lemma 4.10 If n > 0 and 0 � k � n, then pEnLo[63� 2(n� k) : 0℄ = 0).Proof: The proof is by indution on k. For k = 0, sine pEnLo[127�YNB : 0℄ = 0,we need only show that 127�YNB � 63� 2n, or 2n � YNB� 64. But2n = 2��YNB�XNB2 �+ 1� � YNB�XNB+ 1 � YNB� 63:For k > 0, pEnLo[63� 2(n� k) : 0℄ = (4 � pEnLo0)[63� 2(n� k) : 0℄= 4 � pEnLo0[63� 2(n� k + 1) : 0℄= 0: 2The partial quotient QPart is enoded by Q0En. Its omputation, as desribed inLemma 2.4, is failitated by simultaneously maintaining enodings of QPart� 1:Lemma 4.11 For 0 � k � n, Q0En = QPart[66 : 0℄;QMEn = (QPart� 1)[66 : 0℄;and QPEn = (QPart+ 1)[66 : 0℄:21

Proof: We shall invoke Lemma 2.4 with N = 67 and Qk = QPart. We need onlyshow that Q0En = Ek, QMEn = E�k , and QPEn = E+k . The laim is trivial fork = 0. For k > 0, it may be readily veri�ed by examining eah value of m, �3 � m � 3.For example, if m = �1, then mSign = 1, mAbs = 1,Q0En = (4 �Q0En0)[66 : 0℄ = (4Ek�1)[66 : 0℄ = (4Ek�1 +mk � 1)[66 : 0℄ = E+k ;QMEn = (4 �Q0En0)[66 : 0℄ j 2= (4E�k�1)[66 : 0℄ j 2= (4E�k�1 j 2)[66 : 0℄= (4E�k�1 + 2)[66 : 0℄= (4E�k�1 +mk + 3)[66 : 0℄= E�k ;and QPEn = (4 �Q0En0)[66 : 0℄ j 3= (4E�k�1)[66 : 0℄ j 3= (4E�k�1 j 3)[66 : 0℄= (4E�k�1 + 3)[66 : 0℄= (4E�k�1 +mk + 4)[66 : 0℄= E+k : 24.3 Final ComputationIn the �nal phase of the omputation, a full addition is performed to generate an expliit(non-redundant) representation of the remainder. This result is then adjusted, alongwith the quotient, to produe the �nal results as spei�ed by Lemma 4.18.The next lemma refers to the quotient and remainder before the orretion step:Lemma 4.12 Y = QPre �X +RPre and jRPrej � jX j.Proof : This is an immediate onsequene of Lemma 2.1, with r = 2, Qk = QPartk,R = RPre, and Q = QPre. We need only note that the ondition jpkj � jdj is ensuredby Lemma 4.9. 2RPre is enoded by REnPre:Lemma 4.13REnPre = 8<: (266�XNBRPre)[66 : 0℄ if n > 0(264�YNBRPre)[66 : 0℄ if n = 0 and YNB[0℄ = XNB[0℄(265�YNBRPre)[66 : 0℄ if n = 0 and YNB[0℄ 6= XNB[0℄.
22

Proof: If n > 0, then by Lemmas 4.9 and 4.1,REnPre = (pEnHin + arryHin)[66 : 0℄= (2129pn)[130 : 64℄= (264265�expo(X)RPre)[130 : 64℄= (266�expo(X)RPre)[66 : 0℄= (266�XNBRPre)[66 : 0℄:On the other hand, if n = 0, then REnPre = pEnHi0[66 : 0℄ and the lemma followsfrom Lemma 4.6. 2The enoding REn of the �nal remainder, whih is derived from REnPre, dependson the signs of RPre and Y and the speial ases RPre is 0 or �X . Timing onsiderationsditate that these onditions must be deteted before the full addition that produesREnPre is atually performed. This requires a tehnique for prediting anellation,whih is provided by the following result, found in [10℄:Lemma 4.14 Given n-bit vetors a and b and a one-bit vetor , let� = a ^ b ^ (2(a | b) +):If 0 � k < n, then (a+ b+)[k : 0℄ = 0, � [k : 0℄ = 0:Lemma 4.14 is used in the proofs of the following three lemmas:Lemma 4.15 RIs0 is true if and only if RPre = 0.Proof: By Lemma 4.14, RIs0 is true if and only if REnPre = 0. If n > 0, then byLemma 4.13, REnPre = (265�expo(X)RPre)[66 : 0℄. But by Lemma 4.12,j265�expo(X)RPrej � j265�expo(X)X j < 266;and it follows that REnPre = 0 if and only if RPre = 0.Now suppose n = 0. Then RPre = 2expo(X)p0 = Y , and jY j < 2YNB � 2XNB�1 �jX j. By Lemma 4.13, REnPre = (2e�YNBRPre)[66 : 0℄, where e = 64 or 65. Thus,j2e�YNBRPrej � j265�YNBY j � j264�expo(Y)Y j < 265;and again, REnPre = 0 if and only if RPre = 0. 2Lemma 4.16 RNegX is true if and only if RPre = �X.Proof: First note that by Lemma 4.2,dEn[66 : 0℄ = (265d)[66 : 0℄ = (265�expo(X)X)[66 : 0℄:Now by Lemma 4.8,(RNegXSum+RNegXCarry)[66 : 0℄ = (pEnHi+ CarryHi + dEn)[66 : 0℄= (REnPre+ dEn)[66 : 0℄;23

hene, by Lemma 4.14,RNegX = 1 , (RNegXSum+RNegXCarry)[66 : 0℄ = 0, (REnPre+ dEn))[66 : 0℄ = 0, (REnPre+ 265�expo(X)X)[66 : 0℄ = 0:If n > 0, then we haveRNegX = 1, (265�expo(X)(RPre+X))[66 : 0℄ = 0;wherej265�expo(X)(RPre+X)j < j265�expo(X)(2X)j � j265�expo(X)2expo(X)+2j = 267;and the result follows.If n = 0, then sine jRPrej = jY j < jX j, we must show that RNegX = 0. ByLemma 4.15, REnPre = (2e�YNBY)[66 : 0℄, where e � 65 and as noted above,j2e�YNBY j < 265. If RNegX = 1, then (2e�YNBY + 265�expo(X)X)[66 : 0℄ = 0. Butsinej2e�YNBY + 265�expo(X)X j < 2j265�expo(X)X j < 2j265�expo(X)2expo(X)+1j = 267;this implies 2e�YNBY + 265�expo(X)X = 0, whih is impossible. 2Lemma 4.17 RPosX is true if and only if RPre = X.Proof: By Lemma 4.8,(RPosXSum+RPosXCarry)[66 : 0℄ = (pEnHi + CarryHi+ ~dEn+ 1)[66 : 0℄= (REnPre� dEn� 1 + 1)[66 : 0℄= (REnPre� dEn)[66 : 0℄;and hene, by Lemma 4.14,RPosX = 1 , (RPosXSum+ RPosXCarry)[66 : 0℄ = 0, (REnPre� dEn)[66 : 0℄ = 0:The rest of the proof is similar to that of Lemma 4.16. 2Lemma 4.18 Y = QX +R, where jRj < jX j and either R = 0 or sgn(R) = sgn(Y).Proof: This is an immediate onsequene of Lemmas 2.2, 4.12, and 4.15. 2The �nal remainder is enoded by REn:Lemma 4.19REn = 8<: (264�XNBR)[63 : 0℄ if n > 0(262�YNBR)[63 : 0℄ if n = 0 and YNB[0℄ = XNB[0℄(263�YNBR)[63 : 0℄ if n = 0 and YNB[0℄ 6= XNB[0℄.24

Proof: If �xupNeeded is false, then R = RPre, REn = REnPre[66 : 2℄, and thelemma follows from Lemma 4.13. If n = 0, then as noted in the proof of Lemma 4.15,RPre = Y and jY j < jX j, from whih it follows that �xupNeeded is false. Thus, we mayassume that �xupNeeded is true and n > 0. We may further assume that RIsX = 0;otherwise, REn = R = 0. If RSign = XSign, thenREn = (REnPre+ ~dEn[66 : 0℄ + 1)[65 : 2℄= (266�XNBRPre+ 267 � 265�expo(X)X � 1 + 1)[65 : 2℄= (266�XNB(RPre�X))[65 : 2℄= (266�XNBR)[65 : 2℄= (264�XNBR)[63 : 0℄:The ase RSign 6= XSign is similar. 2Our main result follows:Theorem 1 If Q is representable in the integer format determined by isSigned and w,then QTooLarge = false and QOut and ROut are the enodings of Q and R, respetively.Otherwise, QTooLarge = true.Proof: We shall �rst prove that QTooLarge is false if and only if Q is representable.We begin with the aseYNB�XNB > w, in whih must show that Q is not representable.If Y > 0, then by Lemmas 4.1 and 4.4, jX j < 2XNB and Y � 2YNB�1, and hene,����YX ���� > 2YNB�1�XNB � 2w;whih implies jQj = ����Y �RX ���� � ����YX ����� ����RX ���� > ����YX ����� 1 > 2w � 1and jQj � 2w.Now suppose Y < 0. Then jX j < 2XNBand jY j > 2YNB�2. Sine the format issigned, it will suÆe to show that jQj > 2w�1, or �� YX �� � 2w�1 + 1. If XNB = w, thenjX j � 2w�1 and we must have X = �2w�1 and����YX ���� > 2YNB�22XNB�1 = 2YNB�XNB�1 � 2w:We may assume, therefore, that XNB < w. Sine jX j � 2XNB � 1,����YX ���� > 2YNB�22XNB � 1 � 2XNB+w�12XNB � 1 ;and we need only show that 2XNB+w�12XNB � 1 � 2w�1 + 1;or equivalently,2XNB+w�1 � (2XNB � 1)(2w�1 + 1) = 2XNB+w�1 + 2XNB � 2w�1 � 1;25

whih follows from XNB < w.In the ase n � 1, QTooLarge is false and we must show that Q is representable. Butthis is trivially true, sine YNB�XNB � 1, jY j < 2Y NB , and X � 2XNB�1 implyjQj � ����YX ���� < 2YNB�XNB+1 � 4:In the remaining ase, YNB � XNB � w and n > 1. The �rst of these onditionsimplies that 2n � 2�jw2 k+ 1� � w + 2;thus, by Lemma 2.3, jQPrej = jQPartnj < 2w+2;from whih we onlude that jQj � 2w+2.The seond ondition implies that YNB�XNB � 2, sojY j > 2YNB�2 � 2XNB > jX j;from whih we onlude that Q 6= 0. Thus, if YSign = XSign, then Q > 0, and ifYSign 6= XSign, then Q < 0.Suppose Q > 0. Then sine Q � 2w+2, Q = Q[w + 2 : 0℄ = QEn[w + 2 : 0℄. If theformat is unsigned, thenQ is representable, Q < 2w , QEn[w + 2 : w℄ = 0, QTooLarge = 0;while if the format is signed, thenQ is representable, Q < 2w�1 , QEn[w + 2 : w � 1℄ = 0, QTooLarge = 0:Finally, suppose Q < 0. Then Q � �2w+2 andQEn[w + 1 : 0℄ = Q[w + 1 : 0℄ = mod(Q; 2w+2) = Q+ 2w+2:Sine the format must be signed,Q is representable , Q � �2w�1, QEn[w + 1 : 0℄ � 2w+2 � 2w�1, QEn[w + 1 : w � 1℄ = 7, QTooLarge = 0: 2Next, we show that if Q is representable, then QOut and ROut are the enodings ofQ and R. Clearly, QOut = QEn[w � 1 : 0℄ = Q[w � 1 : 0℄, whih is the enoding of Q.We must also show that ROut = R[w � 1 : 0℄.Consider the ase n > 0. By Lemma 4.19,REn[63 : 64�XNB℄ = (264�XNBR)[63 : 0℄[63 : 64�XNB℄ = R[XNB� 1 : 0℄:Sine jRj < jX j < 2XNB,R[w � 1 : XNB℄ = � 0 if R � 02w�XNB � 1 if R < 026

and in either ase, R[w � 1 : XNB℄ = ROut[w � 1 : XNB℄.Suppose n = 0 and YNB[0℄ = XNB[0℄. By Lemma 4.19,REn[63 : 62�YNB℄ = (262�YNBR)[63 : 0℄[63 : 62�YNB℄= (262�YNBR)[63 : 62�YNB℄= R[YNB+ 1 : 0℄:Sine jRj = jY j < 2YNB,R[w � 1 : YNB+ 1℄ = � 0 if R � 02w�YNB�1 � 1 if R < 0and in either ase, R[w � 1 : YNB+ 1℄ = ROut[w � 1 : YNB+ 1℄.The ase YNB[0℄ 6= XNB[0℄ is similar. 2AknowledgmentThe author is grateful to Mike Ahenbah, the prinipal designer of the Llano divider,for failitating this work, and espeially for his patiene in explaining the design andanswering endless questions about it.Referenes[1℄ ACL2 Web site, http://www.s.utexas.edu/users/moore/al2/.[2℄ Bryant, Randal E. and Yirng-An Chen, \Veri�ation of Arithmeti Ciruits withBinary Moment Diagrams", Proeedings of the 32nd Design Automation Confer-ene, San Franiso, Calif., June 1996.[3℄ Clarke, Edmund M., Steven M. German, and Xudong Zhou, \Verifying the SRTDivision Algorithm Using Theorem Proving Tehniques", Formal Methods in Sys-tem Design, 14:1, January 1999.http://www-2.s.mu.edu/~modelhek/ed-papers/VtSRTDAU.pdf[4℄ Gerwig, G., H. Wetter, E.M. Shwarz, J. Haess, C.A. Krygowski, B.M. Fleisher,and M. Kroener, \The IBM eServer z990 oating-point unit", IBM Journal ofResearh and Development, Volume 48, Number 3/4, 2004.http://www.researh.ibm.om/journal/rd/483/gerwig.html[5℄ Kapur, Deepak and M. Subramaniam, \Mehanizing Veri�ation ofArithmeti Ciruits: SRT Division", Invited Talk, Pro. FSTTCS-17, Kharagpur, India, Springer LNCS 1346, pp. 103-122, De 1997.http://www.s.unm.edu/~kapur/myabstrats/fstts97.html[6℄ Parhami, Behrooz, Computer Arithmeti: Algorithms and Hardware Designs, Ox-ford University Press, 2000.[7℄ Pratt, V., \Anatomy of the Pentium Bug", TAPSOFT '95: Theory and Pratie ofSoftware Development, LNCS 915, Springer-Verlag, May 1995.https://eprints.kfupm.edu.sa/25851/1/25851.pdf27

[8℄ Ruess, Harald and Natarajan Shankar, \Modular Veri�ation of SRT Division",Formal Methods in System Design, 14:1, January 1999.http://www.sl.sri.om/papers/srt-long/srt-long.ps.gz[9℄ Robertson, J.E., \A New Class of Digital Division Methods", IRE Transations onEletroni Computers, Vol. EC-7, 1958.[10℄ Russino�, David M., \A Formal Theory of Register-Transfer Logi and ComputerArithmeti", http://www.russinoff.om/libman/.[11℄ Russino�, David M., \Formal Veri�ation of Floating-Point RTL at AMD Usingthe ACL2 Theorem Prover", IMACS World Congress, Paris, 2005.http://www.russinoff.om/papers/paris.html.[12℄ Taylor, G.S., \Compatible Hardware for Division and Square Root", Proeeding ofthe 5th Symposiom on Computer Arithmeti, IEE Computer Soiety Press, 1981.[13℄ Toher, K.D., \Tehniques of Multipliation and Division for Automati BinaryComputers", Quarterly Journal of Mehanis and Applied Mathematis, Vol. 2,1958.Appendix A: XFL De�nition of �int phi(nat i, nat j) {swith (i) {ase 0:swith (j) {ase 0x09: ase 0x08: ase 0x07: ase 0x06: ase 0x05:return 3;ase 0x04: ase 0x03:return 2;ase 0x02: ase 0x01:return 1;ase 0x00: ase 0x1F: ase 0x1E:return 0;ase 0x1D: ase 0x1C:return -1;ase 0x1B: ase 0x1A:return -2;ase 0x19: ase 0x18: ase 0x17: ase 0x16: ase 0x15:return -3;default: assert(false);}ase 1:swith (j) {ase 0x0B: ase 0x0A: ase 0x09: ase 0x08: ase 0x07: ase 0x06:return 3;ase 0x05: ase 0x04: ase 0x03:return 2;ase 0x02: ase 0x01: 28

return 1;ase 0x00: ase 0x1F: ase 0x1E:return 0;ase 0x1D: ase 0x1C:return -1;ase 0x1B: ase 0x1A: ase 0x19:return -2;ase 0x18: ase 0x17: ase 0x16: ase 0x15: ase 0x14: ase 0x13:return -3;default: assert(false);}ase 2:swith (j) {ase 0x0D: ase 0x0C: ase 0x0B: ase 0x0A: ase 0x09: ase 0x08:return 3;ase 0x07: ase 0x06: ase 0x05:return 2;ase 0x04: ase 0x03: ase 0x02: ase 0x01:return 1;ase 0x00: ase 0x1F: ase 0x1E:return 0;ase 0x1D: ase 0x1C: ase 0x1B:return -1;ase 0x1A: ase 0x19: ase 0x18: ase 0x17:return -2;ase 0x16: ase 0x15: ase 0x14: ase 0x13: ase 0x12: ase 0x11:return -3;default: assert(false);}ase 3:swith (j) {ase 0x0F: ase 0x0E: ase 0x0D: ase 0x0C:ase 0x0B: ase 0x0A: ase 0x09: ase 0x08:return 3;ase 0x07: ase 0x06: ase 0x05:return 2;ase 0x04: ase 0x03: ase 0x02: ase 0x01:return 1;ase 0x00: ase 0x1F: ase 0x1E:return 0;ase 0x1D: ase 0x1C: ase 0x1B:return -1;ase 0x1A: ase 0x19: ase 0x18: ase 0x17:return -2;ase 0x16: ase 0x15: ase 0x14: ase 0x13:ase 0x12: ase 0x11: ase 0x10:return -3;default: assert(false);} 29

default: assert(false);}}// The table that is atually used by the implementation ontains// only non-negative entries; the sign is omputed separately:nat SRTLookup(nat i, nat j) {return abs(phi(i, j));}Appendix B: XFL Model of the Implementation// The funtion SRT is an XFL model of the Llano integer divider. It// has four input parameters:// (1) isSigned: a boolean indiation of whether the dividend, divisor,// quotient, and remainder are represented as signed or unsigned// integers.// (2) w: the width of the divisor, quotient, and remainder, whih// may be 8, 16, 32, or 64; the width of the dividend is 2*w.// (3) XEn: the enoding of the divisor.// (4) YEn: the enoding of the dividend.// Three values are returned:// (1) A boolean indiation of suessful ompletion, whih is false if// either the divisor is zero or the quotient is too large to be// represented in the indiated format. The other two values are// invalid in this event.// (2) The enoding of the quotient.// (3) The enoding of the remainder.<bool, nat, nat> SRT(nat YEn, nat XEn, nat w, bool isSigned) {assert((w == 8) || (w == 16) || (w == 32) || (w == 64));// Division by 0 signals an error:if (XEn == 0) {return <false, 0, 0>;}// The following variables appear in assertions but are not involved// in the omputation of the funtion values:int Y; // value of dividendint X; // value of divisorint QPart; // value of quotient during iterationint QPre; // value of quotient before fix-upint RPre; // value of remainder before fix-upint Q; // value of quotient after fix-upint R; // value of remainder after fix-upint m; // value derived from table, -3 <= m <= 3rat d; // shifted divisor, 1 <= abs(d) < 230

rat p; // partial remainder, abs(p) <= abs(d)nat i; // first argument of phinat j; // seond argument of phi// Deode operands:if (isSigned) {Y = SgndIntVal(2*w, YEn[2*w-1:0℄);X = SgndIntVal(w, XEn[w-1:0℄);}else {Y = YEn[2*w-1:0℄;X = XEn[w-1:0℄;}// Compute the number of divisor bits that follow the leading sign// bits. In the ase of the negative of a power of 2, the trailing// sign bit is inluded as a divisor bit:bool XSign = isSigned ? XEn[w-1℄ : false;nat b = w;while ((b > 0) && (XEn[b-1℄ == XSign)) {b--;}bool XNegPower2 = XSign && ((b == 0) || (XEn[b-1:0℄ == 0));nat XNB = XNegPower2 ? b+1 : b;assert(XNB == expo(X) + 1);// Compute dEn, a bit vetor enoding of d = X >> expo(X):nat dEn = 0;dEn[67℄ = XSign;dEn[66℄ = XSign;dEn[65:66-XNB℄ = XEn[XNB-1:0℄;d = X >> expo(X);assert(dEn == d[2:-65℄);// Compute leading 2 bits of frational part of d:nat dIndex;if (XSign == 0) {dIndex = dEn[64:63℄;}else if (XNegPower2) {dIndex = 0;}else if (dEn[62:0℄ == 0) {dIndex = ((~dEn[64℄ | ~dEn[63℄) << 1) | dEn[63℄;}else {dIndex = ~dEn[64:63℄;}i = dIndex; // first argument of phiassert(i == fl(4*(abs(d) - 1))); 31

// Compute the number of dividend bits that follow the leading sign// bits. In the negative ase, the trailing sign bit is inluded as// a dividend bit.bool YSign = isSigned ? YEn[2*w-1℄ : false;b = 2*w;while ((b > 0) && (YEn[b-1℄ == YSign)) {b--;}nat YNB = YSign ? b + 1 : b;if (Y > 0) {assert(1 << (YNB - 1) <= Y && Y < 1 << YNB);}else if (Y < 0) {assert(1 << (YNB - 2) < abs(Y) && abs(Y) <= 1 << (YNB - 1));};assert(Y == 0 || YNB >= expo(Y)+1);// Compute number of iterations:nat n;if (YNB >= XNB) {n = fl((YNB - XNB)/2) + 1;}else {n = 0;}assert(abs(Y) <= abs(X) << 2*n);// Initialize pEnHi, pEnLo, and arryHi, whih form a redundant// representation of the partial remainder:nat pEn = 0;pEn[131℄ = YSign;pEn[130℄ = YSign;pEn[129℄ = YSign;if (YNB != 0) {if (YNB[0℄ == XNB[0℄) {pEn[128℄ = YSign;pEn[127:128-YNB℄ = YEn[YNB-1:0℄;}else {pEn[128:129-YNB℄ = YEn[YNB-1:0℄;}}nat pEnHi = pEn[131:64℄;nat pEnLo = pEn[63:0℄;nat arryHi = 0;assert(n >= 32 || pEnLo[63-2*n:0℄ == 0);p = Y >> (expo(X) + 2*n); // initial partial remainderif (YNB >= XNB) { 32

assert(((pEnHi << 64) | pEnLo) == p[2:-129℄);}else if (YNB[0℄ == XNB[0℄) {assert(pEnHi == (Y << (64 - YNB))[67:0℄);}else {assert(pEnHi == (Y << (65 - YNB))[67:0℄);}// Initialize the quotient:QPart = 0; // partial quotientnat Q0En = 0; // enoding of QPartnat QPEn = 1; // enoding of QPart+1nat QMEn = 0x7FFFFFFFFFFFFFFFF; // enoding of QPart-1// On eah iteration, the next partial remainder is omputed and the// quotient is updated:for (nat k=1; k<=n; k++) {// Table lookup:nat pTop = pEnHi[67:62℄;bool pSign = pTop[5℄;nat pIndex = pTop[4:0℄; // seond argument of SRTLookupnat mAbs = SRTLookup(dIndex, pIndex);bool mSign = XSign ^ pSign;m = mSign ? -mAbs : mAbs;if (pTop == 0x2F) {j = 0x10;}else {j = pIndex;}assert(m == (XSign ? -phi(i, j) : phi(i, j)));assert(SgndIntVal(5, j)/8 <= p && p < SgndIntVal(5, j)/8 + 1/4);// 4*p - dm is omputed as a sum of four terms.// The first two, addA and addB, represent -d*m:nat addA;if (mAbs[1℄ == 0) {addA = 0;}else if (mSign) {addA = dEn[66:0℄ << 1;}else {addA = (~dEn[66:0℄ << 1) | 1;}nat addB;if (mAbs[0℄ == 0) { 33

addB = 0;}else if (mSign) {addB = dEn;}else {addB = ~dEn[67:0℄;}// A orretion term is required to omplete the 2's omplement// in ase m > 0:nat injet = 0;if (!mSign) {if (mAbs[0℄ ^ mAbs[1℄) {injet = 1;}else if (mAbs[0℄ & mAbs[1℄) {injet = 2;}}assert((addA + addB + injet)[67:0℄ == (-d*m)[2:-65℄);// addC and addD represent the upper bits of 4*p:nat addC = (pEnHi << 2) | pEnLo[63:62℄;nat addD = (arryHi << 2) | injet;assert((addC + addD - injet)[67:0℄ == (4*p)[2:-65℄);// The next partial remainder:p = 4*p - m*d;assert(abs(p) <= abs(d));assert((addA + addB + addC + addD)[67:0℄ == p[2:-65℄);// 4-2 ompression:nat sum1 = addA ^ addB ^ addC;nat arry1 = (addA & addB | addB & addC | addA & addC) << 1;nat sum2 = sum1 ^ arry1 ^ addD;nat arry2 = (sum1 & arry1 | arry1 & addD | sum1 & addD) << 1;assert((sum2 + arry2)[67:0℄ == p[2:-65℄);// Update the redundant representation of p:pEnHi = ((sum2[67:62℄ + arry2[67:62℄)[5:0℄ << 62) | sum2[61:0℄;pEnLo = (pEnLo << 2)[63:0℄;arryHi = arry2[61:0℄;assert((((pEnHi + arryHi)[67:0℄ << 64) | pEnLo) == p[2:-129℄);assert(n >= k + 32 || pEnLo[63-2*(n-k):0℄ == 0);// Update quotient:QPart = 4*QPart + m;assert(abs(QPart) < (1 << 2*k));if (mAbs == 0) { 34

QPEn = (Q0En << 2)[66:0℄ | 1;QMEn = (QMEn << 2)[66:0℄ | 3;Q0En = (Q0En << 2)[66:0℄;}else if (mSign == 0) {swith (mAbs) {ase 1:QPEn = (Q0En << 2)[66:0℄ | 2;QMEn = (Q0En << 2)[66:0℄;Q0En = (Q0En << 2)[66:0℄ | 1;break;ase 2:QPEn = (Q0En << 2)[66:0℄ | 3;QMEn = (Q0En << 2)[66:0℄ | 1;Q0En = (Q0En << 2)[66:0℄ | 2;break;ase 3:QPEn = (QPEn << 2)[66:0℄;QMEn = (Q0En << 2)[66:0℄ | 2;Q0En = (Q0En << 2)[66:0℄ | 3;break;default: assert(false);}}else { // mSign == 1swith (mAbs) {ase 1:QPEn = (Q0En << 2)[66:0℄;Q0En = (QMEn << 2)[66:0℄ | 3;QMEn = (QMEn << 2)[66:0℄ | 2;break;ase 2:QPEn = (QMEn << 2)[66:0℄ | 3;Q0En = (QMEn << 2)[66:0℄ | 2;QMEn = (QMEn << 2)[66:0℄ | 1;break;ase 3:QPEn = (QMEn << 2)[66:0℄ | 2;Q0En = (QMEn << 2)[66:0℄ | 1;QMEn = (QMEn << 2)[66:0℄;break;default: assert(false);}}assert(Q0En == QPart[66:0℄);assert(QMEn == (QPart - 1)[66:0℄);assert(QPEn == (QPart + 1)[66:0℄);} 35

// Remainder and quotient before fix-up:RPre = p << expo(X);QPre = QPart;assert(Y == RPre + QPre*X);assert(abs(RPre) <= abs(X));// Enoding of remainder:nat REnPre = (pEnHi + arryHi)[66:0℄;if (YNB >= XNB) {assert(REnPre == (RPre << (66 - XNB))[66:0℄);}else if (YNB[0℄ == XNB[0℄) {assert(REnPre == (RPre << (64 - YNB))[66:0℄);}else {assert(REnPre == (RPre << (65 - YNB))[66:0℄);}// Fix-up is required if either the remainder and the dividend have// opposite signs or the absolute value of the remainder is the same// as that of the divisor. The signals RIs0, RPosX, and RNegX, whih// indiate whether the remander is 0, X, or -X, are omputed in parallel// with the the addition and may not refer to the sum:bool RSignPre = REnPre[66℄;bool RIs0 = (pEnHi[66:0℄ ^ arryHi ^ ((pEnHi[65:0℄ | arryHi) << 1)) == 0;assert(RIs0 == (RPre == 0));nat RPosXSum = pEnHi[66:0℄ ^ arryHi ^ ~dEn[66:0℄;nat RPosXCarry = (pEnHi[66:0℄ & arryHi |pEnHi[66:0℄ & ~dEn[66:0℄ |arryHi & ~dEn[66:0℄) << 1;bool RPosX = (RPosXSum ^ RPosXCarry ^(((RPosXSum[65:0℄ | RPosXCarry[65:0℄) << 1) | 1)) == 0;;assert(RPosX == (RPre == X));nat RNegXSum = pEnHi[66:0℄ ^ arryHi ^ dEn[66:0℄;nat RNegXCarry = (pEnHi[66:0℄ & arryHi |pEnHi[66:0℄ & dEn[66:0℄ |arryHi & dEn[66:0℄) << 1;bool RNegX = (RNegXSum ^ RNegXCarry ^((RNegXSum[65:0℄ | RNegXCarry[65:0℄) << 1)) == 0;;assert(RNegX == (RPre == -X));bool RIsX = RPosX | RNegX;assert(RIsX == (abs(RPre) == abs(X)));bool fixupNeeded = RIsX || (!RIs0) && (RSignPre != YSign);36

nat REn; // final enoding of remainderif (!fixupNeeded) {REn = REnPre[65:2℄;R = RPre;}else if (RIsX) {REn = 0;R = 0;}else if (RSignPre == XSign) {REn = ((REnPre[65:2℄ << 2) + ~dEn[65:0℄ + 1)[65:2℄;R = RPre - X;}else {REn = ((REnPre[65:2℄ << 2) + dEn[65:0℄)[65:2℄;R = RPre + X;}bool RSign = YSign & ~RIs0[0℄ & ~RIsX[0℄;if (YNB >= XNB) {assert(REn == (R << (64 - XNB))[63:0℄);}else if (YNB[0℄ == XNB[0℄) {assert(REn == (R << (62 - YNB))[63:0℄);}else {assert(REn == (R << (63 - YNB))[63:0℄);}nat QEn; // final enoding of quotientif (!fixupNeeded) {QEn = Q0En;Q = QPre;}else if (RSignPre == XSign) {QEn = QPEn;Q = QPre + 1;}else {QEn = QMEn;Q = QPre - 1;}assert(Y == R + Q*X);assert(abs(R) < abs(X));assert((R == 0) || ((R < 0) == (Y < 0)));assert(n > 33 || QEn == Q[66:0℄);// Determine whether the quotient is representable:bool QTooLarge;if (YNB > XNB + w) { 37

QTooLarge = true;}else if (n <= 1) {QTooLarge = false;}else if (YSign == XSign) {QTooLarge = (QEn[w+2:w℄ != 0) || isSigned && (QEn[w-1℄ != 0);}else {QTooLarge = (QEn[w+1:w-1℄ != 7);}if (isSigned) {assert(QTooLarge == ((Q > MaxSgndIntVal(w)) ||(Q < MinSgndIntVal(w))));}else {assert(QTooLarge == (Q >= 1 << w));}if (QTooLarge) {return <false, 0, 0>;}// Compute the final results:nat QOut = QEn[w-1:0℄;nat ROut;if (YNB >= XNB) {ROut = ((RSign << w) - (RSign << XNB)) | REn[63:64-XNB℄;}else if (YNB[0℄ == XNB[0℄) {ROut = ((RSign << w) - (RSign << (YNB+2))) | REn[63:62-YNB℄;}else {ROut = ((RSign << w) - (RSign << (YNB+1))) | REn[63:63-YNB℄;}assert(QOut == Q[w-1:0℄);assert(ROut == R[w-1:0℄);return <true, QOut, ROut>;}
38

