
Chapter 6

Proteus: A Frame-based

Nonmonotonic Inference

System

David M. Russino�

Introduction

Early arti�cial intelligence systems relied on �rst-order predicate logic as

a language for representing domain knowledge. While this scheme is com-

pletely general and semantically clear, it has been found to be inadequate for

organizing large knowledge bases and encoding complex objects. As an alter-

native, various frame-based languages have been employed. These languages

are designed to support the natural representation of structured objects and

taxonomies. They have proved to be well-suited for representing many useful

relations, although they lack the general expressive power of the predicate

calculus.

Knowledge-based systems may also be classi�ed according to inference

methods. Most deductive systems may be characterized as either goal-

directed (backward chaining) or data-directed (forward chaining). In a goal-

1

directed system, logical implications are encoded as rules that are used by

the system to reduce goals to simpler subgoals. This allows knowledge to

be represented implicitly, without using space in the knowledge base, until

it becomes relevant to a current problem. In this framework, however, it is

di�cult for the knowledge base designer to build control into a system. Data-

directed inference, on the other hand, is based on production rules, which

the system uses to derive all logical consequences of new data automatically.

While control of inference is more natural within this paradigm, it uses space

less e�ciently, representing all knowledge explicitly.

This chapter describes the knowledge representation and reasoning com-

ponents of Proteus [Russino� 1985b, Petrie 1987, Poltrock, et al. 1986],

a hybrid expert system tool, written in Common Lisp, under development

at the Microelectronics and Computer Technology Corporation. Proteus is

frame-based, but allows knowledge to be expressed in terms of arbitrary pred-

icates. It also integrates goal-directed and data-directed inference, allowing

the knowledge engineer the freedom to decide whether each logical implica-

tion is more suitably represented as a backward rule or a forward rule.

A central feature of Proteus is a nonmonotonic truth maintenance sys-

tem (TMS), based on [Doyle 1979], which records logical inferences and de-

pendencies among data. This allows e�cient revision of a set of beliefs to

accommodate new information, the retraction of a premise, or the discovery

of a contradiction [Petrie 1987]. It also facilitates the generation of coher-

2

ent explanations. Data dependencies and truth maintenance in Proteus are

discussed in Section 2.

In Section 3, we introduce frames, along with classes, attributes, meta-

classes, and types. Section 4 describes simple data, including attribute values

that are attached to frames, as well as assertions associated with predicates.

Here we discuss the use of the TMS in connection with single-valued slots

and inheritance.

Finally, we describe the Proteus inference system and its integration with

the TMS. Sections 5 and 6 deal with backward and forward chaining, respec-

tively.

1 Truth Maintenance

Each element of the Proteus database represents a potential belief. The

status of this belief, which is subject to change, is reected in the support-

status of the datum, the value of which may be IN, indicating that it is

currently believed, or OUT, indicating current disbelief. This value is assigned

by the TMS in accordance with a list of justi�cations that have been attached

to the datum.

Each justi�cation consists of a pair of lists of data, the IN-list and the OUT-

list of the justi�cation. A justi�cation is said to be valid and is considered

to represent reason for belief in its associated datum if each element of its

IN-list is IN and each element of its OUT-list is OUT. The justi�ed datum is

3

said to depend monotonically on each member of the justi�cation's IN-list

and nonmonotonically on each member of the OUT-list.

Also associated with each datum is a list of other data called its sup-

porters. The supporters of a datum are considered to be responsible for its

current support-status.

It is the function of the TMS to assign support-statuses and supporters

to data in a manner that is consistent with their justi�cations, and to adjust

these assignments continually as required by the addition of new justi�cations

and the retraction of old ones. More precisely, the state of the database, as

constructed by the TMS, must satisfy two requirements: stability and well-

foundedness. A stable state is one that sati�es the following conditions:

1. A datum is IN if it has at least one valid justi�cation. In this case

its list of supporters is the result of appending the IN-list and OUT-list of

one of its valid justi�cations. This justi�cation is identi�ed as the supporting

justi�cation.

2. A datum is OUT if it has no valid justi�cation. Its supporters then

include one representative of each of its invalid justi�cations: either an OUT

member of the IN-list or an IN member of the OUT-list.

The requirement of well-foundedness is that no set of beliefs be mutually

dependent, i.e., there may be no sequence of data d0; : : : ; dn, all of which are

IN, such that d0 = dn and for i = 1; : : : ; n, di�1 is a supporter of di.

An example of an admissible state is shown in Fig. 1. In this graph and

4

�
�
�
�

i

6

no prior
appendectomy

(IN)

+

appendicitis

(IN)

��
��

��
��
��
���

side
pain

(IN)

+

6

i

@
@
@
@

�

colitis
(OUT)

PP
PP

PP
PP

PP
PPP

�

recent
meal
(OUT)

6

i

+

meal
time

(OUT)

i

6

�
�
��

patient says
no prior

appendectomy

(IN)

+

6

i

@
@
@@

patient
unreliable
(OUT)

�

Figure 1: A Stable Well-founded State

those that follow, each circle corresponds to a justi�cation, with an arrow

pointing to the justi�ed datum, positive arcs connected to the elements of

the IN-list, and negative arcs to elements of the OUT-list. Thus, the datum

representing a diagnosis of appendicitis has a valid justi�cation with a two-

element IN-list and a two-element OUT-list. The belief that the patient has a

side pain is supported by a justi�cation with an empty IN-list and an empty

OUT-list and is said to be a premise. The datum representing the unreliability

of the patient has an empty list of justi�cations and is therefore OUT. If this

datum were to acquire a new valid justi�cation, then its support-status as

well as those of the data that depend on it (directly or indirectly) must

be reevaluated, ultimately forcing the diagnosis OUT. This phenomenon, the

5

i

#
#
#
##�

P

Z
Z
Z
ZZ~
#
#
#

##
�

Q

Z
Z
Z

ZZ}

i

++

ii

??

SR

Figure 2: Alternative Assumptions

development of a new belief resulting in the abandonment of an old one,

characterizes nonmonotonic reasoning.

In the presence of nonmonotonic dependencies, the status-assignment

problem may not have a unique solution. In the situation shown in Fig.

2, the TMS may succeed either by making P (and hence R) IN and Q (and

hence S) OUT, or by giving the opposite assignments. This choice between

alternative hypothetical assumptions can only be made arbitrarily, and may

have to be revised later as new justi�cations are produced (e.g., if Q acquires

a new valid justi�cation while P is IN).

Circularities involving nonmonotonic dependencies may also impose un-

satis�able constraints on the TMS, a situation that may be di�cult to detect.

Two simple examples of this are shown in Figs. 3 and 4. Note that the net-

work of Fig. 4 does have a stable state (in which all data are IN), but this

state is ill-founded, and therefore inadmissable.

As described in [Russino� 1985a], the Proteus TMS is complete in the

sense that given any database with any set of justi�cations, it will achieve a

6

i

#
#
#
##�

P

Z
Z
Z
ZZ~
#
#
#

##
+

Q

Z
Z
Z

ZZ}

i

Figure 3: Unsatis�able Dependencies

i

#
#
#
##+

P

+

i
@
@
@
@R

R

Z
Z
Z
ZZ~
#
#
#

##
+

Q

Z
Z
Z

ZZ}

i

6

i

�
�

�
�
��

Figure 4: No Well-founded Stable State

i

P (OUT)

Q (OUT)

i R (OUT)

i

i

S (IN)

+

�

+

�

�

�
�
�

@
@

@I

�
�

�

@
@
@R

@
@
@

@
@
@

�
�
�	

�
�
��

Figure 5: A Solvable Odd Loop

7

stable well-founded state if such a state exists, and otherwise will recognize

and report failure. This represents an improvement over the original TMS of

Doyle [Doyle 1979], as well as other published procedures for truth mainte-

nance [Charniak, et al. 1980, Goodwin 1986]. These systems all fail (perhaps

even fail to terminate) in the presence of certain circular dependencies that

have been characterized as odd loops. An odd loop is a cycle of arcs with

an odd number of minus signs, as in Figs. 3, 4, and 5. A dependency net-

work containing such a loop may or may not be satis�able. (The network in

Fig. 5 does admit a solution.) While the presence of odd loops complicates

the truth maintenance task and is generally considered undesirable, they are

sometimes unavoidable in practice, particularly in dependency networks that

are based on input from several users.

In the sequel, we show how data dependency networks are created in

Proteus by the user, by the frame system, and by both forward and backward

inference.

2 Frames and Classes

The data on which the TMS operates represent statements about objects.

Before discussing the structure of these data, we shall describe the objects

that they concern. These objects, called frames, are the subject of this

section.

8

Figure 6: Built-in classes

2.1 Classes, Subclasses, and Members

In the initial state of the system, there exist several frames. One of these,

named CLASS, plays a special role as discussed below. The others are

LIST,CONS,NULL, SYMBOL,NUMBER, FIXNUM, and SINGLE-

FLOAT. The user may enlarge this set by creating new frames, one at a

time.

There are two primitive relations de�ned on frames: instance and child.

If a pair (x; y) is an element of the instance relation, we say that x is an

instance of y, or that y is the type of x. For a pair (x; y) in the child relation,

we say that x is a child of y, that y is a parent of x, or that x is linked to y.

Fig. 6 depicts these relations as they are de�ned in the initial state. Broken

lines are drawn from instances to types; solid lines from children to parents.

Thus, CLASS is the type of every system-de�ned frame.

Two other important relations are de�ned in terms of these primitives:

9

subclass and member. The subclass relation is de�ned as the reexive tran-

sitive closure of the child relation. Thus, x is a subclass of y (equivalently, y

is a superclass of x) if either x is identical to y, or x is a child of a subclass

of y. The membership relation is de�ned as follows: x is a member of y if x

is an instance of a subclass of y. In this case we may also say that x is a y.

In particular, a class is by de�nition a frame that is a member of CLASS.

Note that every system-de�ned frame is a class, including CLASS itself.

As new frames are created by the user, he may also extend these rela-

tions by assigning types to instances and creating links (between user-de�ned

classes only). This must be done in such a way, however, that at each stage

of the development, the following properties are preserved:

1. The instance relation is a function, i.e., for each frame x there exists a

unique frame y such that x is an instance of y.

2. CLASS is the only frame that is an instance of itself. Thus, whenever

a new frame is created, some preexisting frame must be speci�ed as its

type.

3. The subclass relation is a partial order. That is, if x is a subclass of y

and y is a subclass of x, then x and y are identical.

4. If x is an instance of y, then y must be a member of CLASS.

5. If x is a child of y, then x and y must both be members of CLASS.

10

Thus, according to the last two of these properties, only classes may have

instances, members, children, parents, subclasses, or superclasses. There is

a further restriction on the classes that may be instantiated by the user:

a user-de�ned frame may be an instance of CLASS or of any user-de�ned

class, but it may not be an instance of LIST, CONS, NULL, SYMBOL,

NUMBER, FIXNUM, or SINGLE-FLOAT. Instead, whenever the sys-

tem encounters a Common Lisp object whose datatype is the name of one of

these system-de�ned classes, the object automatically becomes an instance

of the named class. For example, if the number 3 is read, it becomes an

instance of FIXNUM and thus a member of NUMBER (in other words, a

number). When the symbol NIL is encountered, it is recognized as the unique

instance of the class NULL, and hence both a list and a symbol.

An example of a user-de�ned system of frames is illustrated in Fig. 7.

This example involves eight new classes, all of which are subclasses of the

class PERSON and instances of the class CLASS. For clarity, classes are

denoted in bold-face and other user-de�ned frames in italics. SHIRLEY, for

example, as an instance of TA, is not a class, but is a TA, a graduate, a

sta�, a student, an employee, and a person.

2.2 Metaclasses

Of course, the existence of classes as frames provides the advantage of being

able to reason about classes at the same level at which one reasons about the

objects of which they are comprised. It is often desirable to be able to reason

11

Figure 7: User-de�ned Classes

12

about classes of classes as well. The only class we have seen so far that has

classes as members isCLASS itself. Any class that has a class as an instance

must be a subclass of CLASS, in which case all of its members are classes.

Such a class is called a metaclass. While CLASS is the only system-de�ned

metaclass (and the only one in the example of Fig. 7), additional metaclasses

may be created simply by linking any user-de�ned classes to CLASS.

The example of Fig. 8 includes several user-de�ned metaclasses (de-

noted in large bold print). This example is based on six classes of ani-

mals: ANIMALIA (the class of all animals) and �ve of its subclasses,

which are related as indicated by the solid arrows connecting them. These

classes could be constructed simply as instances of CLASS. But in or-

der to represent and utilize the knowledge that these classes share more

than mere classhood, we �rst de�ne a metaclass called BIOLOGICAL-

CLASS, intended to include the animal classes among its members. In

fact, the animal classes are partitioned into smaller metaclasses by de�n-

ing them as instances of KINGDOM, PHYLUM, and SPECIES, which

are subclasses of BIOLOGICAL-CLASS. Note thatKINGDOM, PHY-

LUM, and SPECIES are themselves not simply instances of CLASS, but

are classes by virtue of being instances of the metaclass TAXONOMIC-

DIVISION. Moreover, they are metaclasses by virtue of their links to the

metaclass BIOLOGICAL-CLASS.

13

Figure 8: User-de�ned Metaclasses

14

2.3 Attributes

Corresponding to each user-de�ned class is a (possibly empty) set of user-

de�ned attributes associated with that class. Every attribute is de�ned for

a unique class | the frames that may assume values for a given attribute

are the members of the class for which it is de�ned. Thus, in the example of

Fig. 7, if attributes called HOURLY-WAGE and TITLE are de�ned for the classes

EMPLOYEE and FACULTY, respectively, then the frames that may have

HOURLY-WAGE values are NAT, SHIRLEY, AHMET, and DONALD, while

only AHMET and DONALD may assume TITLEs. These attribute values

form a classi�cation of data to be discussed in Section 4.1.

The manner in which attributes are inherited from their de�ning classes

provides motivation for the construction of user-de�ned metaclasses, such

as those of Fig. 8. If ANIMALIA, CHORDATA, etc. had simply

been de�ned as instances of CLASS, there would have been no way for

them to acquire attribute values. But as members of the user-de�ned class

BIOLOGICAL-CLASS, they may assume values for any attributes de-

�ned for that class. Thus, if COMMON-NAME is among these attributes, then

the statement \the COMMON-NAME of PROTOZOA is ONE-CELLED-ANIMAL"

makes sense. The partitioning of BIOLOGICAL-CLASS into subclasses

allows the de�nition of attributes that pertain to some biological-classes but

not to all. For example, one might refer to the number of species of proto-

zoa, but not the number of species of amoeba, while the number of species of

15

animalia is not practically measurable. The attribute NUMBER-OF-SPECIES,

therefore, should not be de�ned for the class BIOLOGICAL-CLASS, but

rather for its subclass PHYLUM.

2.4 Variables and Types

Along with the objects that appear in Proteus data, there are also occur-

rences of variables. These are denoted as symbols with initial character \?".

Variables, as usual, represent unspeci�ed objects. The process of uni�cation,

which is central to the mechanisms of forward and backward chaining, is built

on the basic operation of binding (i.e., assigning values to) variables. An un-

bound variable ?X may be bound either to an object or to another unbound

variable ?Y. In the latter case, if ?Y is subsequently bound, its binding also

becomes the binding of ?X.

Since objects in this system are classi�ed by their types, it is natural

and useful to classify variables in a similar way. Thus, following [A��t-kaci

and Nasr 1985], a variable may be speci�ed to be of a certain type. This

is done by appending the name of a class to the variable name, using \:"

as a separator, as in ?X:STUDENT. The consequence of assigning a type to a

variable is that any binding of the variable is required to be a member of the

variable's type.

In the presence of typed variables, the standard uni�cation algorithm

must be altered in several ways. First, before a variable is bound to an

object, it must be veri�ed that the object is a member of the variables's

16

type. Second, before a variable is bound to another variable, it must be

veri�ed that the types of the two variables are compatible, so that it will be

possible later to bind them to the same object. Thus, the two types must

have a nontrivial common subtype. Finally, when a variable ?X is bound

to a variable ?Y, the type of ?Y must be replaced in order to ensure that

any later binding of ?Y is consistent with the type of ?X. The new type of

?Y should be the most general common subtype, or greatest lower bound, of

the type of ?X and the old type of ?Y. For example (see Fig. 7), a variable

?X:UNDERGRADUATE could be bound to a variable ?Y:STAFF, with type of ?Y

replaced by GRADER. ?Y could then be bound to NAT, but no longer to

SHIRLEY, which would violate the type restriction on ?X.

Thus, the modi�ed uni�cation algorithm depends on the computability

of the greatest lower bound (g.l.b.) of two variable types. Unfortunately, the

partially ordered set of classes does not form a lattice, i.e., the g.l.b. of two

classes may not exist. The classes STUDENT and EMPLOYEE of Fig.

7, for example, have two common subclasses, GRADER and TA. Since

neither of these is a superclass of the other, neither can be said to be the

g.l.b. of STUDENT and EMPLOYEE.

This problem is solved by generalizing the notion of type. A type is now

de�ned to be a set of classes, none of which is a subclass of another. A type

t1 is a subtype of a type t2 if each of the classes of t1 is a subclass of at least

one of the classes of t2. An object is said to belong to a type if it is a member

17

of at least one of its classes. It follows that an object belongs to a type if it

belongs to any of its subtypes.

Under this ordering, the set of all types forms a lattice. The type of a

variable may be any member of this lattice. The identi�cation of each class

c with the type fcg induces an embedding of the partially ordered set of

classes into the lattice of types. In this context, the g.l.b. of two classes may

always be computed. Thus, the g.l.b. of STUDENT and EMPLOYEE is

the type fGRADER,TAg.

The empty set of classes, denoted *bottom*, is a subtype of every type.

This type contains no objects and is not allowed as the type of a variable.

If the g.l.b. of the types of two variables (e.g., ?X:STAFF and ?Y:FACULTY)

is *bottom*, then these variables cannot be uni�ed; their types contain no

common objects.

The set of all maximal classes is also a type, denoted *top*. It is a

supertype of every type, and every object belongs to it. If no type is speci�ed

for a variable, then the variable's type is taken to be *top* as a default. There

is no restriction on the binding of such a variable.

The cost of the expressive power of typed variables is the resulting com-

plication of the uni�cation algorithm. In order to minimize this cost, the

g.l.b. operation must be a fast computation. This is accomplished by means

of an encoding scheme that associates with each class c a bit-string B(c), in

such a way that c1 is a subclass of c2 if and only if B(c1) is (bit-wise) less

18

than or equal to B(c2). For a type t = fc1; : : : ; ckg, B(t) is constructed as

the logical-or of the B(ci). The g.l.b. operation then reduces to logical-and.

The details of this scheme are described in [A��t-kaci, et al. 1985].

3 Assertions

There are two main classi�cations of data: assertions and rules. Assertions,

as described in this section, represent simple statements. Rules, which are

used by the system to derive assertions from other assertions, are further

classi�ed as forward rules and backward rules. These are the subjects of

Sections 5 and 6.

3.1 Instance Slot Values

Recall that a frame may assume values for a given attribute if it is a member

of the class for which the attribute is de�ned. In this case, an instance slot

corresponding to the attribute is attached to the frame. One or more values

may be stored in this instance slot. Thus, if an attribute DESCRIPTION is

de�ned for the class PERSON of Fig. 7, then the frame DONALD may

acquire DESCRIPTION values. An assertion such as

@assert (description donald tall)

19

results in the creation of a datum called an instance slot value, which is stored

in DONALD's DESCRIPTION slot. This datum is justi�ed it as a premise (i.e.,

with empty IN-list and OUT-list) and printed as

Instance Slot Value DESCRIPTION-1 (IN)

(DESCRIPTION DONALD TALL)

When an attribute is initially de�ned, it is speci�ed as either single-valued

or multiple-valued. A frame may assume any number of coexisting values for

a multiple-valued attribute. If DESCRIPTION, for example, is multiple-valued,

then asserting a new DESCRIPTION for DONALD via

@assert (description donald young)

produces a new slot value, but has no e�ect on the old value. Thus, a query

for DONALDs DESCRIPTION produces both values:

@?? (description donald ?X)

(DESCRIPTION DONALD TALL)

(DESCRIPTION DONALD YOUNG)

20

For a single-valued attribute, on the other hand, a frame may have

only one e�ective value at any time. Suppose the attribute NATIONALITY

is de�ned for class PERSON and declared to be single-valued, and that a

NATIONALITY is asserted for NAT:

@assert (nationality nat french)

Instance Slot Value NATIONALITY-1 (IN)

(NATIONALITY NAT FRENCH)

If another value is later asserted for the NATIONALITY of NAT, then the old

value is overridden by the new one:

@assert (nationality nat swiss)

Instance Slot Value NATIONALITY-2 (IN)

(NATIONALITY NAT SWISS)

@?? (nationality nat ?X)

21

(NATIONALITY NAT SWISS)

Actually, this restriction to a single value is enforced by the TMS: whenever

a value is asserted for a single-valued attribute, it is added to the OUT-list

of each justi�cation of any preexisting conicting value. Thus, the old value

remains in the database, but is ignored in answering the query because it is

now OUT. This method not only provides for the construction of explanations,

such as

@why NATIONALITY-1

Instance Slot Value NATIONALITY-1 (OUT)

(NATIONALITY NAT FRENCH)

was replaced by

Instance Slot Value NATIONALITY-2 (IN)

(NATIONALITY NAT SWISS)

but also allows an old value to be reinstated if the overriding value is removed:

22

@erase (nationality nat swiss)

@?? (nationality nat ?X)

(NATIONALITY NAT FRENCH)

In fact, it always ensures that the value that is IN is the one with the most

recently created justi�cation that is currently valid. Note that if several

conicting values for a slot are asserted in succession, then a reassertion of

the original value will result in a complicated dependency network, including

odd loops. This implementation, therefore, requires a complete TMS as

discussed in Section 2.

3.2 Class Slot Values

Values for an attribute may be attached to subclasses of its de�ning class as

well as to its members. Each of these subclasses contains a class slot, the

values in which may be inherited by any member of the class to which it

belongs. For example, the command

@assert (description ?X:person aerobic)

adds a value to the DESCRIPTION class slot of PERSON:

23

Class Slot Value DESCRIPTION-2 (IN)

(DESCRIPTION ?X:PERSON AEROBIC)

This datum represents the belief that every member ofPERSON is AEROBIC.

Similarly, any subclass of PERSON may acquire class values for this at-

tribute:

@assert (description ?X:faculty pompous)

Class Slot Value DESCRIPTION-3 (IN)

(DESCRIPTION ?X:FACULTY POMPOUS)

The DESCRIPTION values associated with a member of PERSON are then

the instance values assigned to it speci�cally, along with the class values

assigned to the superclasses of its type. Hence,

@?? (description donald ?X)

(DESCRIPTION DONALD TALL)

(DESCRIPTION DONALD YOUNG)

24

(DESCRIPTION DONALD POMPOUS)

(DESCRIPTION DONALD AEROBIC)

For single-valued attributes, a more complicated mode of inheritance is

used. A value for a single-valued class slot may be inherited by a member of

the class only if no value has been assigned to that member's instance slot.

Class slot values for these attributes are therefore called default values.

Default values assigned to a given class override each other in the same

manner as instance values for a given frame, so that only one default value

assigned to a class may be IN at any time. If an attribute value is sought

for a given frame, the frame's instance slot is �rst examined for an IN value.

If there is none, then each of the superclasses of the frame is examined (in

depth �rst order) until an IN default value is found.

Suppose that for the single-valued attribute NATIONALITY, the default val-

ues AMERICAN, CHINESE, and INDIAN are asserted for the classes PERSON,

STUDENT, and GRADUATE, respectively. Suppose further that NAT's

NATIONALITY is asserted to be FRENCH and that DONALD's is GERMAN. Then

a query for the NATIONALITY values for all members of PERSON would

produce the following:

?? (nationality ?X:person ?Y)

25

(NATIONALITY DONALD GERMAN)

(NATIONALITY AHMET AMERICAN)

(NATIONALITY SHIRLEY INDIAN)

(NATIONALITY NAT FRENCH)

(NATIONALITY DAVID CHINESE)

(NATIONALITY ESTELLE AMERICAN)

If a new default value were now asserted for STUDENT, only DAVID's

NATIONALITY would change:

@assert (nationality ?X:student texan)

?? (nationality ?X:student ?Y)

(NATIONALITY SHIRLEY INDIAN)

(NATIONALITY NAT FRENCH)

(NATIONALITY DAVID TEXAN)

If the default value forGRADUATE were retracted, then SHIRLEY would

inherit from STUDENT:

26

@erase (nationality ?X:graduate indian)

?? (nationality ?X:student ?Y)

(NATIONALITY SHIRLEY TEXAN)

(NATIONALITY NAT FRENCH)

(NATIONALITY DAVID TEXAN)

3.3 Predicates and Assertions

Any attribute may be regarded as representing a binary relation whose do-

main is the set of members of some class. An instance slot value then cor-

responds to a pair of related objects, while a class slot value (at least for

a multiple-valued attribute) corresponds to a set of such pairs. While this

scheme is suitable for representing many kinds of information, it is somewhat

restrictive.

One problem is that only relations of two arguments can be naturally

represented in this way. Thus, the relation x is in debt to y may be realized

as an attribute called IN-DEBT-TO de�ned for PERSON, and the statement

NAT is in debt to AHMET is then asserted by assigning AHMET as a value

to the frame NAT, i.e., by asserting (IN-DEBT-TO NAT AHMET). On the

other hand, the unary relation x is in debt could not be represented so natu-

rally as an attribute. Of course, we could de�ne a Boolean-valued attribute

27

IN-DEBT and represent NAT is in debt by asserting (IN-DEBT NAT T), but

it would be preferable to be able to assert (IN-DEBT NAT). For a ternary

relation, such as x owes y dollars to z, the representation problem is more

di�cult.

We are thus led to a generalization of the notion of attribute. As an

alternative, a symbol may be declared to be a predicate and used to represent

a relation of an unspeci�ed number of arguments. Attributes and predicates

are both called relation symbols. A proposition is a list whose members are

a relation symbol followed by arguments. A proposition associated with an

attribute must have exactly two arguments, but a predicate proposition may

have any number of arguments. A proposition that resides in the database

is called an assertion. Thus, a slot value is just an assertion pertaining to an

attribute.

For example, if the symbol OWES is recognized as a predicate, then it may

be used to represent the ternary relation mentioned above, and the statement

DAVID owes 15 dollars to DONALD may be asserted by

@assert (owes david 15 donald)

to which the system responds by creating the new datum

28

Assertion OWES-1 (IN)

(OWES DAVID 15 DONALD)

There is no restriction on the appearance of variables in the argument list

of an assertion that is attached to a predicate. (In a slot value, a variable

may appear only as the �rst argument, and then its type must be a subtype

of the de�ning class of the attribute.) An assertion is classi�ed as general

or particular according to whether or not it contains any variables. The

variables in a general assertion are understood to be universally quanti�ed.

Thus, the assertion

General Assertion OWES-2 (IN)

(OWES ?U:UNDERGRADUATE 15 ?F:FACULTY)

represents the statement each undergraduate owes 15 dollars to each faculty

member.

4 Backward Inference

An instance of a proposition is a second proposition that results from the

�rst by performing some set of variable substitutions. When a proposition is

presented to the Proteus theorem prover as a goal, it attempts to derive an

instance of it from the knowledge in the database.

29

One way in which it might succeed is to unify the goal with an assertion.

The process of uni�cation amounts to �nding the most general common in-

stance of two propositions. If a goal is uni�able with an assertion that is IN,

then the resulting instance of the goal is returned as the result of the proof.

For example, if the database of Fig. 7 contains

Class Slot Value DESCRIPTION-5 (IN)

(DESCRIPTION ?X:STUDENT IDEALISTIC)

then the goal (DESCRIPTION ?X:EMPLOYEE ?Y) could succeed by returning

the instance (DESCRIPTION ?X:(GRADER TA) IDEALISTIC).

A goal may also be proved with the use of a backward rule. A backward

rule is composed of a proposition, called its consequent, and one or more

antecedents. A rule represents the belief that any instance of its consequent

is true whenever any compatible instances of its antecedents are true. If

a goal is uni�ed with the consequent, then the corresponding instances of

the antecedents become subgoals | recursively proving all of these subgoals

completes the proof of the original goal. This process is known as backward

chaining or goal-directed inference, and is the basis of Prolog [Clocksin and

Mellish 1981] and other logic programming systems.

For example, in order to derive a value for MICHAEL's UNCLE slot, the

goal (UNCLE ?X MICHAEL) may be uni�ed with the consequent of the rule

Backward Rule UNCLE-1 (IN)

30

(UNCLE ?X ?Y)

<--

(PARENT ?X ?Z)

(BROTHER ?Z ?Y)

creating the subgoals (PARENT MICHAEL ?Z) and (BROTHER ?Z ?Y). Sup-

pose that the �rst of these is matched with the consequent of

Backward Rule PARENT-1 (IN)

(PARENT ?X ?Y)

<--

(MOTHER ?X ?Y)

and is thus replaced by the subgoal (MOTHER MICHAEL ?Y), which is matched

with

Instance Slot Value MOTHER-7 (IN) (MOTHER MICHAEL SUZY)

The second subgoal, which becomes (BROTHER SUZY ?Y), may then be de-

rived from

Instance Slot Value BROTHER-23 (IN)

(BROTHER SUZY DAVID)

The instance (UNCLE MICHAEL DAVID) of the original goal is thereby proved

by backward chaining.

31

A Proteus predicate may alternatively be de�ned in Lisp, rather than

by rules and assertions. This provides the user the full power of Lisp for

knowledge representation and also allows access to Common Lisp system

functions, as in

Backward Rule POWER-OF-TWO-2 (IN)

(POWER-OF-TWO ?X:FIXNUM)

<--

(<= 1 ?X)

(EVENP ?X)

(POWER-OF-TWO (/ ?X 2))

Here the predicate POWER-OF-TWO is de�ned in terms of the two predicates

<= and EVENP, both of which are de�ned by Common Lisp. The �rst subgoal

produced by this rule succeeds if the function <= returns true for the argu-

ments 1 and the binding of ?X. Note that the interface between Lisp and the

rule system also allows function calls to be embedded in antecedents, as in

the third antecedent above.

An antecedent may also take the form of a proposition preceded by the

symbol UNLESS, as in

Backward Rule HAS-CHILD-1 (IN)

(HAS-CHILD ?X)

<--

(MOTHER ?Y ?X)

32

UNLESS (ADULT ?Y)

When an antecedent of this type is processed, the system attempts to prove

the proposition that follows the UNLESS (under the current variable bindings).

If this proof attempt fails, then the subgoal succeeds; if the proof succeeds,

then the subgoal fails.

When a proposition proved by backward chaining is explicitly added to

the database as an assertion, it receives a justi�cation that is constructed

upon examination of the proof. Thus, the proposition derived in the �rst

example of this section would result in

Instance Slot Value UNCLE-2

(UNCLE MICHAEL DAVID)

which would acquire a justi�cation with IN-list (UNCLE-1 PARENT-1 MOTHER-7

BROTHER-23), i.e., all the data involved in the proof, and OUT-list ().

Nonmonotonic dependencies are constructed from proofs that involve

UNLESS antecedents. For example, if the proposition (HAS-CHILD SUZY)

were derived from Backward Rule HAS-CHILD-1 and Assertion MOTHER-1

above, and

Assertion HAS-CHILD-5

(HAS-CHILD SUZY)

were created as a result, then the IN-list of its justi�cation would be (HAS-CHILD-1

MOTHER-7), but the justi�cation would also reect the dependency of the

33

derivation on the failure to prove (ADULT MICHAEL). This is done by making

the OUT-list (ADULT-2), where

Assertion ADULT-2 (OUT)

(ADULT MICHAEL)

is an unjusti�ed assertion, created for the purpose of this justi�cation (unless

it already existed). If (ADULT MICHAEL) were to be asserted later, then

Assertion ADULT-2 would become IN, and HAS-CHILD-5 would go OUT as it

should.

The case of an UNLESS goal with unbound variables presents a new prob-

lem. Suppose, for example, that we have a predicate ORPHAN with an associ-

ated rule

Backward rule ORPHAN-1 (IN)

(ORPHAN ?X)

<--

unless (PARENT ?X ?Z)

Then the goal (ORPHAN ANNIE) will succeed if (PARENT ANNIE ?Z) fails. In

this case, the new justi�cation for

Assertion ORPHAN-2:

(ORPHAN ANNIE)

should contain only ORPHAN-1 in its IN-list, but there is no assertion, gen-

eral or particular, which could be placed in the OUT-list to record the non-

34

monotonic dependency. This problem is solved by the introduction of a new

datatype:

Failed Goal PARENT-2 (OUT)

(PARENT ANNIE ?Z)

A failed goal is a datum that is created only in this situation. When a proof

succeeds as a result of a failure to prove a proposition that follows UNLESS in

an antecedent, the proposition that failed is inserted in the database without

justi�cation as a failed goal. It represents the belief that some instance of the

proposition is true. That is, any variables in a failed goal are understood to be

existentially quanti�ed. The failed goal PARENT-2 above, which represents

the belief that ANNIE has some parent, would appear in the OUT-list of the

justi�cation of ORPHAN-2.

If some instance of a failed goal is asserted at any time, the system auto-

matically creates a monotonic dependency of the failed goal on the assertion.

Thus, if the assertion ORPHAN-2 were justi�ed as described above, and

Assertion PARENT-3:

(PARENT ANNIE WARBUCKS)

were later to become IN, then the failed goal PARENT-2 would also be forced

IN and hence ORPHAN-2 would go OUT.

35

5 Forward Inference

A backward rule has e�ect only when it is relevant to a goal being pro-

cessed by the system. The insertion of a backward rule, therefore, a�ects

only the implicit informational content of the database, without causing new

assertions to be added explicitly. Consider, for example, the backward rule

PARENT-1 of Section 5, which states that all mothers are parents. In the

presence of

Instance Slot Value MOTHER-7 (IN)

(MOTHER MICHAEL SUZY)

this rule enlarges the implicit database to include the proposition (PARENT

SUZY MICHAEL) without actually creating a new assertion.

The same logical implication expressed by PARENT-1 could alternatively

be represented as a forward rule:

Forward Rule MOTHER-11

(MOTHER ?X ?Y)

-->

(PARENT ?X ?Y)

While the two rules are logically equivalent, they are used quite di�erently.

The forward rule takes e�ect not when a goal matches its consequent (PARENT

?X ?Y), but rather when an assertion matches its antecedent (MOTHER ?X

?Y). In this event (assuming the new assertion is IN), another assertion,

36

representing the corresponding instance of (PARENT ?X ?Y), is automati-

cally added to the database. The PARENT assertion is then justi�ed by the

MOTHER assertion and the rule. Thus, when the match between MOTHER-7

and MOTHER-11 is discovered, the result is a new datum

Instance Slot Value PARENT-4 (IN)

(PARENT MICHAEL SUZY)

which is justi�ed with an IN-list (MOTHER-7 MOTHER-11) and aaOUT-list NIL.

This process is known as forward chaining or data-directed inference.

A forward rule may have any number of antecedents and consequents.

Antecedents have the same form as those of backward rules. When a new

assertion is uni�ed with an antecedent of a forward rule, the set of remaining

antecedents is presented to the backward inference system as goals. For

each simultaneous proof of these goals, a �ring of the rule occurs, i.e., its

consequents are processed.

A consequent of a forward rule may be either a proposition or a Lisp

form. When a rule is �red, an instance of each propositional consequent

(corresponding to the derived instances of the antecedents) is asserted. The

justi�cation for this assertion is constructed from the data involved in the

derivation of the antecedents, as described in Section 5. Each Lisp consequent

is simply evaluated, with variables evaluating to their bindings.

Suppose, for example, that the database contains

Forward rule PATIENT-1 (IN)

37

(PATIENT ?X)

(SHOULD-TAKE ?X ?Y)

-->

(UNDER-TREATMENT ?X)

(FORMAT T "Prescription for ~A: ~A" ?X ?Y)

when

Assertion PATIENT-2 (IN)

(PATIENT BILL)

is added. The �rst antecedent of PATIENT-2 is matched with PATIENT-1,

triggering an attempt to prove (SHOULD-TAKE BILL ?Y). Suppose that the

instance (SHOULD-TAKE BILL ASPIRIN) is derived. Then after

Assertion SHOULD-TAKE-1 (IN)

(SHOULD-TAKE BILL ASPIRIN)

is added to the database, the rule PATIENT-1 �res:

Assertion UNDER-TREATMENT-1 (IN)

(UNDER-TREATMENT BILL)

is added, justi�ed by PATIENT-1, PATIENT-2, and SHOULD-TAKE-1, and

Prescription for BILL: ASPIRIN

38

is printed.

Some thought is required in determining whether a given implication

should be represented as a forward rule or a backward rule. A backward rule

o�ers the advantage of increasing the inherent knowledge of a system without

incurring the expense (in both time and space) of creating new assertions.

It may be necessary, however, for this knowledge to be represented explicitly

in order for it to take some desired e�ect.

Suppose, for example, that the assertion

Assertion ORPHAN-3 (IN)

(ORPHAN GEORGE)

is added as a result of the rule ORPHAN-1 of Section 5. Then the OUT-list of

its justi�cation contains a datum corresponding to the last antecedent of the

rule,

Failed Goal PARENT-5 (OUT)

(PARENT GEORGE ?Z)

which was unprovable at the time ORPHAN-3 was created. Suppose that

Assertion MOTHER-12 (IN)

(MOTHER GEORGE MARY)

were asserted later. It would then be desirable for PARENT-5 to come IN

and for ORPHAN-3 to go OUT. The backward rule PARENT-1, however, could

39

not cause this to occur. Although an instance of PARENT-5 would become

provable, that instance would not be discovered. It would probably be prefer-

able in this case to code the rule in the form of the forward rule MOTHER-11

instead. This would produce a new assertion

Assertion PARENT-6 (IN)

(PARENT GEORGE MARY)

on which PARENT-5 would become monotonically dependent, and ORPHAN-3

would go OUT as desired.

References

[A��t-kaci, et al. 1985] A��t-kaci, H., R. Boyer, and R. Nasr, An

Encoding Technique for the E�cient Imple-

mentation of Type Inheritance, MCC Tech-

nical Report AI-109-85.

[A��t-kaci and Nasr 1985] A��t-kaci, H., and R. Nasr, LOGIN: A Logic

Programming Language with Built-in Inher-

itance, MCC Technical Report AI-109-85.

[Charniak, et al. 1980] Charniak, E., C. K. Riesbeck, and D. V. Mc-

Dermott, Arti�cial Intelligence Program-

ming, Lawrence Erlbaum Associates, Hills-

dale, N.J., 1980.

40

[Clocksin and Mellish 1981] Clocksin, W. F. & C. S. Mellish, Program-

ming in Prolog, Springer-Verlag, New York,

1981.

[Doyle 1979] Doyle, J., A Truth Maintenance System, in

Arti�cial Intelligence, Vol.12 No.3, 1979.

[Goodwin 1986] Goodwin, J. W., WATSON: A Dependency

Directed Inference System, Research Report

LiTH-IDA-R-84-10, Computer and Infor-

mation Science Dept., Link��ping University.

[Petrie 1987] Petrie, C., Revised Dependency-Directed

Backtracking for Default reasoning, Pro-

ceedings of AAAI-87, Seattle, 1987.

[Poltrock 1986] Poltrock, S., D. Steiner, & N. Tarlton

Graphic Interfaces for Knowledge-Based

System Development, in Proceedings of

ACM/SIGCHI, Boston, MA, 1986.

[Russino� 1985a] Russino�, D., An Algorithm for Truth

Maintenance, MCC Technical Report AI-

062-85.

41

[Russino� 1985b] Russino�, D., A Nonmonotonic Inference

System, MCC Technical Report AI-062-85.

42

