Formal Verification of Floating-Point RTL at AMD
Using the ACL2 Theorem Prover

David Russinoff
Matt Kaufmann
Eric Smith
Robert Sumners
Advanced Micro Devices, Inc., Austin, TX
Phone: 512-602-6741, Fax: 512-602-6970, E-mail: davsdinoff@amd.com

Abstract - We describe a methodology for the formal ver- a rational data type, high-level arithmetic functionalspe
ification of the correctness, including IEEE-compliance, 6 ifications are encoded in the same language and similarly
register-transfer level models of floating-point hardwarede- translated into ACL2.

signs, and it; application to the floating-point units ofasées. One advantage of a Verilog behavioral specification of a
of commercial microprocessors produced by Advanced Mi- oqion s that it is accessible to RTL writers, and in fact
cro Devices, Inc. The methodology is based on a mechanical . . .

translator from a synthesizable subset of the Verilog hard- may be deveI(_)ped n coIIqborann between designer and
ware description language, in which the models are coded, Verifier. Thus, it may effectively serve as formal documen-
to the formal logic of the ACL2 theorem prover. Behavioral ~tation shared by the designers, verifiers, and users of a mod-
specifications of correctness, coded in essentially the saan- ule. Since our Verilog extensions have been implemented
guage as the designs, are translated as well, and ultimately in our simulation environment, the same specification may

checked with the ACL2 prover. also be used as a basis for comprehensive testing.

Keywords— Formal verification, Floating-point arithmetic, Of course, thg primary purpose of SL_JCh a sngIflcatlon_|§

IEEE-compliance, Theorem proving, ACL2 formal analysis. Once a module and its behavioral specifi-
I. INTRODUCTION cation have been translated to ACL2, a proof of correctness

is established as the culmination of a sequence of lemmas,

The use of conventional simulation dominates the verifidenerated through a process of interaction with the prover.
cation of modern microprocessors. However, it is widelyAlong the way, any flaws existing in the RTL are naturally
accepted that as design complexity continues to grow drgXposed and must be corrected in order for the proof to be
matically, simulation alone is insufficient to establismeo completed.

fidence in the correctness of hardware designs. Conseuccessful use of ACL2 in large-scale applications typi-
quently, formal verification methods have found increasingally depends on the development of reusable libraries of
use in industrial applications. definitions and proved theorems. Over the course of this
This paper describes ongoing work, begun in 1996, iwork, we have established a continually growing library of
the use of theorem proving in the verification of registertheorems pertaining to RTL primitives and floating-point
transfer logic (RTL) models of the floating-point unitsarithmetic, which is publicly available as part of the stan-
of microprocessors developed by Advanced Micro Dedard ACL2 release. (The description of the library pre-
vices, Inc. [MO0O98, RUS99, RUS98, RUS00a, RUSoosented here corresponds to ACL2 Version 2.9.2.)

KAU00d] Our methodology is based on the mechanical || RTL DEsiGNS ANDSPECIFICATIONS INVERILOG
translation of a synthesizable subset of the Verilog hard-

ware description language to the formal logic of the ACL27n. RTL Models

prover [ACL2, KAUOOa].

ACL2 is based on an applicative subset of Commo®@ur RTL models are coded in a limited subset of Verilog
LISP [STE90] with list structures and numerical data typegefined by a strict set of coding guidelines designed to fa-
in which system designs may be encoded along with thetgilitate synthesis as well as simulation. These restmstio
behavioral specifications. It is supported by a heurisge th which preclude such anomalies as race conditions and zero-
orem prover, which may be used to establish the corredime evaluation cycles, ensure that for each signal in a syn-
ness of a design, i.e., to derive a logical propositionrsgati chronous circuit, a well-defined final value for each clock
that a design satisfies its specification. cycle may be computed as a function of the values of other
Thus, RTL modules, written in Verilog, are translated intasignals. An RTL module consists of three classes of sig-
ACL2 according to a scheme in which bit vectors are repaals: inputs wiresandregisters Any wire or register may
resented as natural numbers, RTL primitives correspond b designated as autput The values of inputs are un-
LISP functions, and signal dependencies are characterizeeffined by the module; the defining equations of wires and
by recursive function definitions. Through suitable extenregisters are syntactically distinguished by the assigrime
sions of standard Verilog syntax, e.g., the introduction obperators =” and “<=", respectively. The value of a wire

for a given clock cycle is determined by the values, for théhe extended language, together with a set of interface con-
same cycle, of the other signals that occur in its definingtraints, each of which is classified asiaputor output as-
equations. For example, the wioeit , defined by the fol- sertion All signals and assertions of the specification are
lowing three equations, is a function of the three signaldefined in terms of the inputs and outputs of the module.

inl ,in2 ,andin3 . Every signal occurring in an input assertion must be de-
out[5:0] = 6'b111111; _rlved from inputs and registers. Forexa_mple,thefollowmg
if (in1) out[1] = in2: is taken fromthe speC|f_|cat|on ofamglnpllerthat performs
if (in2) out[5:3] = iN3[2:0]; several operations of different latencies.

For a register, such as either of the signalsn and 2sSert(DivSartOpin4 ==> "MulOplinit);

carry defined by the single equation below, the value foHere the signabivSqrtOpin4 s a register (of the spec-
a given cycle is computed from the values of its definingfication) that indicates that the result of a divide or sguar
signals—in this cas@ andb—on the preceding cycle. rootoperationis to be returned in four cyclilOpinit

{carry, sum[2:0]} means that a mﬂtiq!igation @s being initi_ated. Th_e impli-
<= {1'b0, a[2:0]} + {1'b0, b[2:0]}: cation operator ==> is a minor syntactic extensiona
==> b may beread @& | b . Since this operation has
B. Behavioral Specifications a latency of four, the effect is to preclude the simultaneous

termination of two operations.
One consequence of the simplicity of our modelingyery signal occurring in an output assertion must be de-
language is that it admits a straightforward semanticsived from outputs and registers. The following (which per-
preserving translation to the functional language of ACLZ4ins to the same multiplier) asserts that whenever a valid
(as described in Section Ill). Statements of behavioral cofegylt is returned in the absence of any microarchitectural
rectness of RTL modules may then be formulated as logayt, the value of the data outpBRes_15 agrees with
ical propositions pertaining to the functions generated byt of the specification signBlataSpec at all relevant bit

this translation, the proofs of which may be mechanicallyycations, which are determined by the sigbataMask .
checked by the ACL2 prover.

From the perspective of formal verification, the most natu@Ssert

ral approach is to write these behavioral specifications di-(Resultvalid & “Fault ==>

rectly in the ACL2 logic, a language designed to provide (FRes_15[75:0] & DataMask[75:0])

a level of expressiveness suitable for this task. However, ==

there are two important potential advantages of a specifica- (DataSpec[75:0] & DataMask[75:0]));

tion written in the same language as the design itself: £5ch of the above constraints may be classified sefety

(1) If a specification can be written in Verilog, then it is property, i.e., a statement that some condition is satisfied
immediately accessible to design engineers, who are ge¢entinuously throughout every execution. Our assertion
erally unacquainted with logical and functional languagedanguage also provides ftivenessproperties. A liveness

In fact, such a specification can be written in collaboracondition is one that is guaranteed not to fail permanently,
tion between engineers and verifiers, providing a relativeli.€., if it ever becomes false during an execution, then it
high level of confidence that it successfully captures the irmust become true at some later time. Such assertions are
tended functionality of the design. required to specify the behavior of variable-latency opera

(2) A Verilog specification may be executed in simula-tions' The following, for example, states that if the signal
is asserted, which occurs whenever a

tion along with the design. This provides a practical mearlRVSdrtPending

of exposing bugs even before any formal analysis is peﬁ:l_ivide or square root operation is issued, it must eventuall
formed, both in the RTL and in the specification itself. be deasserted, indicating that the operation has terndinate

Although no conventional hardware description languag@ventually ("DivSgrtPending);
is ideally suited for formal specification, we have identfie) .

and implemented a small number of extensions to our syl Rational-Valued Signals
thesizable subset of Verilog that have been found to provi

) qﬁ addition to the assertion facility, our specification-lan
adequate expressiveness for our purpose.

guage includes several data types that are foreign to stan-
C. Assertions dard Verilog. For the purpose of floating-point specifica-
tion, the most important of these is the rational number
The first problem to be addressed is the need to formulatygpe, without which it would be impossible to describe
predicates that represent various types of constraintseon the high-level behavior of any floating-point operation in
interface behavior of a module. Thus, a module specifa natural way. The built-in operators associated with this
cation consists of a supplementary sespécification sig- type include the usual basic arithmetic operators as well as
nals each of which is defined as a wire or a register ivarious special functions pertaining to floating-point-rep

resentation and rounding. In the following illustration, (and (integerp Xx)

Vall andVal2 are rational specification signals derived (>= x 0)

from the operands of a double-precision (53-bit) multipli- (< x (expt 2 n)))
cation. The signaRndRes represents the prescribed ra-
tional value of the rounded result, computed according
the rounding mode indicated by the control inR& This
signal is used in the definition of the sigizdtaSpec ap-
pearing in the output assertion above.

tWe also define an ACL2 function corresponding to each
RTL primitive. The Verilog operator that extracts the slice
of bits between indicesand; from a vectorz, which may

be defined as

/I Unrounded product: ali: j] = [rem(z,2"%1)/27],
Unmd = Vall * val2: gnd the single bit operator[k] = z[k : k], are formalized
in ACL2 as follows:
/I Rounded product: (defun bits (x i j)
(mbe :logic
case (RC[1:0]) (fl (/ (mod x (expt 2 (1+ i)))
‘RC_RZ : RndRes = $Trunc(Unrnd, 53); (expt 2)
‘RC_RP : RndRes = $Inf(Unrnd, 53); :exec
‘RC_RM : RndRes = $Minf(Unrnd, 53); (logand
‘RC_RN : RndRes = $Near(Unrnd, 53); (ash x (- j)
endcase 2- (@ash 1 (1+ - i DN

For the purpose of simulation, each new feature of our)
specification language must be translated or otherwise ifefun bitn (x k)
corporated into standard Verilog. The safety assertions (Pits X k K))

present no difficulty, as they are readily translated in® thNote that the definition obits makes use of the ACL2
pre-existing assertion language of our simulation envirorrmust be equal” feature, which provides for two (provably
ment. For liveness assertions, however, the translation iaquivalent) formulations of the same function: one for log-
volves some work. For each such assertion, a counteriigl analysis and the other for efficient execution.

defined. If the indicated condition ever fails to hold, theThe concatenation operator,

counter in initialized to a value that may be set in the spec-

ification. If the counter is decremented to 0 before the corf:[m —1 : 0], y[n—1: 0]} = 2"x[m—1:0]+y[n—1:0],
dition becomes true, then the assertion fails. Although the

choice of the counter’s initial value is arbitrary, this im-is formalized as a function of four arguments:
plementation has generally produced acceptable results([sjbfun cat (x m y n)

simulation. o _(+ (* (expt 2 n) (bits x (1- m) 0))

Since Verilog does not provide built-in support for (arbi- (bits y (1- n) 0)))

trarily precise) rational arithmetic, we have implemerdged _ _

C library for this purpose, based on the GNU Multiple PreThe RTL binary logical operators roughly correspond to
cision Arithmetic Library [GMP], to which calls are gener-the built-in LISP functionsogand , etc. Thus,

ated during Verilog simulation. The C code maintains the

values of all rational signals, while special Verilog vari-
ables are used are used to trigger the evaluation of a
blocks that are sensitive to changes in these values.

zn—1:0]&y[n—1:0]

@/represented by

I11. TRANSLATION OF VERILOG TOACL2 (defun land (X y n)
(logand (bits x (1- n) 0)
A. Primitive Operators (bits 'y (1- n) 0)))

. . while
Our translation scheme is based on the natural correspon-
dence between bit vectors and integers, the primary data
types of Verilog and ACL2, respectively. Thus, a bit vecand
tor of widthn, b,_1b,,—o - - - b1bo, where each;, € {0,1}, zn—1:0]" yln—1:0]

zn—1:0]] yln—1:0]

are similarly formalized by functionfor and Ixor ,

. _ n—1 ok .
corresponds to the integer = 5 ;_q 2"k, I e 1ange yopinoq in terms of the LISP primitivelgior and

Osz<2 N The set O_f such integers is recognized by th?ogxor , respectively. For the unary complement opera-
ACL2 predicatébvecp : tor

(defun bvecp (x n) “zn—1:01=2"—zn—-1:0] -1,

we have

(defun Inot (x n)
(+ (expt 2 n)
(- (bits x (1- n) 0))
-1))

tions:

(defun mod+ (x y n)
(bits (+ x y) (- n) 0))

Here ifl
Addition and multiplication of bit vectors are formalizegd b tion if
composingdoits with the built-in integer arithmetic func- setbits

(ifL (bitn (in2 n) 0)
(setbits (out$tmp n) 6 5 3
(bits (in3 n) 2 0))
(out$tmp n)))

is a variant of the standard branching func-
that tests whether its first argument is nonzero;
replaces a slice of its first argument as indicated

by the remaining arguments. In the second stage, the calls
to setbits

are eliminated:

As for the extra constructs associated with our rational dagdefun outstmp (n)

type, the elementary arithmetic operations all correspond
primitive LISP functions, while the ACL2 definitions of the
functions pertaining to floating-point arithmetit{unc ,
etc.) are straightforward.

(ifz (in1 n)
(cat 15 4 (cat (in2 n) 1 1 1) 2)
63))

(defun out (n)

B. Signal Definitions

As noted in Section 1I-A, a well-defined value may be com-
puted for each signal of a synchronous module for each

(ifL (in2 n)
(cat (in3 n) 3 (out$tmp n) 3)
(outtmpl n)))

clock cycle. Consequently, the behavior of a signal maiote that the function generated for a wire includes calls
be represented as a function of a single integer argumdntother signal functions with the same cycle number

n, representing the number of elapsed clock cycles. (Forfer a register, the supporting signals are evaluated on the
design that involves several instantiations of various mogreceding cycle. The raw and simplified definitions for the
ules, a second argument is required in order to distinguistignalsum of the preceding section follow:

between signals associated with different module insgnce
but this complication is ignored in this paper.) The ACL2
translation of a module consists mainly of a mutually re
cursive set of such function definitions.

Since we have no formal semantic definition of the Verilog

source, there can be no “proof of correctness” of the trans-
lation. However, in order to maximize our confidence that

the simulation behavior of a signal is faithfully repressht

by the corresponding ACL2 function, the translation is per-

formed as a two-step process [KAUO3]. The first step is

designed to be as simple as possible, so that the process

itself may be easily analyzed and understood, but without
regard for the readability or convenience of application of
the resulting “raw” ACL2 definitions. In the second step,
the ACL2 simplifier is used to reduce these functions to a
more manageable form andpoovethe equivalence of the
two forms. The prover is also used during this stage to de-
rive lemmas that characterize the values returned by the?s
signal functions, to be used later in generating proofs of
correctness.

As an illustration, the wireout of Section II-A gener-
ates the following raw definition during the first translatio
stage:

(defun sum (n)

(it (zp n)
(reset 'sum 3)
(bits (mod+
(cat O
1
(bits (@ (1- n)) 2 0)
3)
(cat O
1
(bits (b (1- n)) 2 0)
3)
4)
2.0))

deefun sum (n)

(if (zp n)
(reset 'sum 3)
(bits (+ (@ (+ -1 n)) (b (+ -1 n)))
2 0))

The undefined functioreset , which appears in all regis-

(defun out$tmp (n)

(if1 (bitn (in1 n) 0)
(setbits 63 6 1 1 (bitn (in2 n) 0))
63))

ter functions, is used to model unknown values in our two
state logic. By means of the ACL&ncapsulate fea-
ture, it is constrained to return a bit vector of unspecified
value but fixed width. Thus, all that is known about the
value ofsum in the initial state ak = 0, i.e., when(zp

(defun out (n) n) is true, is that it is a bit vector of width 3.

C. Assertions to treat the resulting formula as an additional hypothesis

of the conjecture under consideration. On the other hand,
The same procedure by which ACL2 functions are deriveg lemma may be declared to be|ong to one or nrate
from Verilog equations is also used to translate assertiogfasseswhich will allow it to be applied automatically ac-
into ACL2 predicates, which are also functions of the cycording to the prover's heuristics, even without the user’s
cle numbem. The main result required to establish that &nowledge. The most important of these classes is that
module satisfies its specification is a theorem stating that &f rewrite rules, which are used in the process of reduc-
output assertions hold on every cycle, under the assumptiffyy an expression to a simpler form. Rewrite rules, when
that no input assertion has been violated on any earlier cihey worked as planned, provide the benefit of relieving
cle. In order to formulate this theorem in ACLZ, we definqhe user of some of the details of a proof' but often have
a predicatenput-assertionsis the conjunction of all pred- the disadvantage of depriving him of control. Our expe-
icates derived from the input safety assertions of a modence has convinced us of the prudence of a conservative
ule specification. Slmllarly, a predicamltput-assertions approach Whereby most lemmas are Supp"ed manua”y via
is derived from the output safety assertions. The main thﬁjnts from the user, but if the app”cation of a S|mp||fy|ng

orem states that for eveny, if (input-assertions lemma is considered to be generally desirable, it may be
k) is true for allk < n, then(output-assertions classified as a rewrite rule. In some cases, a lemma may be
n) must also be true. listed as a rewrite rule but left in a disabled state, offgrin

If a specification includes liveness assertions as welh thehe user the choice of using it in a hint or enabling it for
an additional result must be proved for each output liveneggitomatic application. lllustrations will be provided thet
assertion, stating that for ail, the corresponding predicate examples below.

holds for somek > n. Typically, it is necessary to con- The library comprises six ACL2 “books”, i.e., files of lem-
struct an expression fér as a function of and the values mas and definitions. Of the combined set of approximately
of various specification signals at cyate For example, 600 library lemmas, we shall list only a few representa-
consider the case of the multiplier liveness property of thgve examples in the space allowed here. For the sake of
Section II-A. If DivSqrtPending is deasserted at cycle readability, we shall use conventional mathematical nota-
n, then we may takk = n; otherwise, it must be shown that tion rather than the formal syntax of LISP, but the reader is
FPM_DoneInSeven_divsqrt_8 is asserted at somke encouraged to consult the actual ACL2 source files.

> n, the expression for which involves various other sigThe books of the library are logically partitioned into tare
nals derived from the inputs, which determine the latencyections:

of the operation.

IV. AN ACL2 LIBRARY OF FLOATING-POINT ARITHMETIC A. Bit Vectors

) o Much of the library pertains to the basic operations on bit
An ACL2 proof of any theorem of practical significance re ectors and the underlying general theory of integer arith-
quires considerable guidance from the user. Typically,

-) _trﬁ’]etic. These results are organized into two books:
prover must be guided, by means of user-supplied hints,

through a lengthy sequence of lemmas culminating in the Pasic : Definitions and basic properties of the relevant
desired result. In particular, a proof of correctness ofevePuilt-in arithmetic functions, especially floor (also know
the simplest floating-point operation involves the formula@S thegreatest integefunction), quotient and remainder,
tion and proof of at least several hundred lemmas, while @'d €xponentiation (87 lemmas).

more complicated module may involve tens of thousands. bits : Behavior of the primitive operations on bit vec-
Some of these lemmas are specific to the RTL design #drs, including bit extraction, concatenation, and lobica
hand, pertaining to the values of particular signals; ctheoperations, as described in Section II-A (189 lemmas).
are results of more general interest, dealing with releval:ﬁ1e bookbits

properties of bit vectors, arithmetic, etc. During the aeur the library. It contains a relatively large number of reerit

?f our F]Tbl‘ Xﬁr'f'citr'lon ef{\(l)vrt, V\I’e have ef,\rlldeavored to ddr'f'rules. These include associative and commutative laws of
Inguish between these two classes of lemmas, and Naye primitive operations, for which the prover has special
collected those belonging to the latter class in an eVOIV'nlgeuristics for establishing equalities between expressio
reusable library. Thus, once a theoretical arithmeticltes%O structed from these functions. Various other rewrite

ora property of a standard _technique has _been e_stablisq% s have a similar effect, namely, the transformation of
during the ar_1a|y5|s of a particular mod_ule, it remains avail,g ;i types of expressions into a canonical form:
able for use in the proofs of future designs.

There are two ways in which an ACL2 lemma may be apkemma (z & y)[n] = z[n] &y[n].

E“ed to the proof ?ftr?nothelr_ lelTlTa. fF|rst, o_n:;e tr;e USefhe following is an example of a disabled rewrite rule that
ecomes aware of the applicability of an existing emmi;%,]ay be enabled as appropriate:

to a proof in progress, he may supply a hint to the prover,

instructing it to instantiate the lemma as appropriate andemmallf i < m + n, then

is the largest and most widely used of

{z[m —1:0],y[n —1:0]}[i:j] Lemmallf z > 0, then2¢ero(®) < g < 2eepo(e)+1,
yli :] ifi<n Lemma sig(sig(z)) = sig(x).
=< zli-n:j—n] ifj>n Lemma sig(2"z) = sig(z).
z[i—n:0l,yln—1:7 if j <n<i.
{afi = n: 0 yln iy ij<n< Lemma expo(2"z) = expo(x) + n.

In general, a rewrite rule is appropriate when the right side€mma ezpo(z) + expo(y) < expo(zy) < ewpo(z) +
of an equality is invariably a simpler expression than therpo(y) + 1.

left side, as in the examples below:

Lemmalf j <i,¢ < k,andj = k + 1, then The theory of representability is based on the predieate
actp, which determines whether a rationaladmits a bi-
{zli : jl,z[k : 0} = x[i : {]. nary expansion consisting of bits. More formally,ex-

actp(x,n)is true if and only if2"t1-¢*ro(#);: is an integer.

Lemmalf k <i — j, then Among the lemmas pertaining to this predicate are the fol-

wli: jllk : €] = alk +j : £+ j]. lowing:
Lemma If exzactp(zx,n), thenezactp(2kx, n).
Lemma (2" — 1) &z = z[n — 1:0].

Lemmallf m < n andezactp(z, m), thenezactp(z, n).
Lemma (2" - 1) | z[n—-1:0]=2" - 1.

Lo . . . Lemmalf z is a bit vector of widthn, thenezactp(z, n).
In cases such as the following, in which an equation might

be used as a transformation in either direction, control ksemma If exactp(x,m) and ezactp(y,n), then
best retained by the user: exactp(xy, m + n).

Lemmaz & (28 — 29) = 27z[i — 1:j]. Lemma If z > 0 andezactp(z,n), then the leasy > n
i — 261po(x)+17n'
Lemma (2™z) &y[n —1:0] = 2™ (z &y[n — 1 : m)). such thatzactp(y,n)isy = = +

Lemmalf m <n,y <2, andz < 27", then Our formalization of the IEEE rounding modes is based the

2mz) | y=2"5+y. three functiongrunc (round-to-zero)away (round-away-
' ' from-zero), andnear (round-to-nearest-even), which are
B. Floating-Point Arithmetic defined in terms of the floor function. For example,

The general theory of floating-point arithmetic is covered trunc(z,n) = sgn(z) LQN”*”PO(@|m|J26fﬂP°(w)+1*n_
in three books:

float : Characterization of representable rational numThe bookround 'includes lemmas characterizing the be-
N P “havior of these functions:

bers and their decomposition into sign, exponent, and sig-
nificand (51 lemmas). Lemmalf z > 0, then

« reps : Encoding and decoding of rationals with respect

to various (IEEE and other) representation schemes, in-
cluding both implicit and explicit leading-one formats;de Lemma If m < n, then
normals; characterization of representable numbers; con-
version between formats and rebiasing of exponents (50
lemmas).

. round : Properties of IEEE rounding as well as vari-Lemmaezactp(z,n) < trunc(z,n) = =.
ous rounding modgs.used mternally by AMI_D floating-point o ima trunc(2*
units; results pertaining to the implementation and cafrec

ness of a number of standard implementations of rounding
(193 lemmas). A number of lemmas relate rounding to the bit vector prim-

— gexpo(z)+l-n trunc(z,n) < .

trunc(trunc(z,n), m) = trunc(z, m).

x,n) = 2Ftrunc(x,n).

. . o _itives
Floating point representation is based on the observation
that every nonzero rational numbherdmits a unique fac- Lemmalf 0 < k < n <mand2" ! <z < 2", then
torization,
z = sgn(z)sig(z)2¢P°@), trunc(z, k) = = & (2™ — 2"°F).

wheresgn(z) € {1,—1},1 < sig(z) < 2, andezpo(z) is Lemmalf 0 < k < m and2"! < z < 2", then
an integer. The lemmas of the bofikat deal with the
properties of these functions, such as the following: trunc(z,m) = trunc(z, k) + 2" "xn—k—1:n—m).

One of the non-standard rounding modes used in our analy- then prop(x,y,i,j) determines whether an incoming
sis issticky rounding If exactp(z, n), thensticky(z,n) = carry is propagatedacross the same slice. We have the
x, and otherwise, following equivalent formulations:

sticky(z,n) = trunc(z,n — 1) + sgn(z)2¢ere@+1—n_ Lemma

gen(w,y,i,j) = L& ali: j] +yli: j] > 27417
The significance of this function is that the result of round-
ing z to n bits, according to any IEEE rounding mode, car-€mMma o
always be recovered frosticky(z, n + 2): prop(z,y,i,j) =1 & afi: j] +yli:j] =277 -1

Lemma If m > n, then Lemma
prop(z,y.i,j) =1 & afi:j]" yli:j]=2*"7 — L
trunc(z,n) = trunc(sticky(z,m),n).
Various properties ofenandprop allow them to be com-

Lemma lf m > n, then puted efficiently:
away(z,n) = away(sticky(z, m),n). Lemmalfi > k > j, then
Lemmalfm2n+2’then gen($:y7i7j) = gen($,y7z7k+1) |

near(x,n) = near(sticky(z,m),n). gen(z,y,k,j) &prop(z,y,i,k +1).
Here is a property of sticky rounding that is in dealing withtemmalIf i > & > j, then
rounded sums:

rop(x,y,i,j) = prop(z,y,i, k + 1) &prop(x,y,k, 7).
Lemma Let k' = k + expo(z) — expo(y) andk” =k + prop(,y,) = prop(z.y) &prop(a,p, k. J)
expo(z + 1/,) —expo(y). If k > 1, k" > 1, k" > 1,and The addition of bit vectors may be optimized by means of
exactp(z, k' — 1), then lemmas such as the following, which allows a sum to be

o + sticky(y, k) = sticky(x +y, K"). decomposed into bit slices:

Lemma
(w+y)li : 4] = (ali < j)+yli : jl+gen(e,y. i, j-1))[i~j - 0.

The final book of the libraryfadd (30 lemmas), deals another example of an efficient addition technique, the fol-
with a number of standard techniques that are commonfyying result is used as an optimization in the computation
used in the implementation and optimization of floatingy¢ rounded sums. Suppose that two bit vectoendb are

point operat_ions, @nclud_ing methods of carry propagati(_){b be added, along with a carry it For the purpose of
and generation, sticky bit computation, leading-one gredi o nding, we would like to predict the exactness, i.e, the
tion, and multiplier encoding. The contents of this book d@,,mber of trailing zeroes, of + b + ¢. The following

not properly belong to the general theory of floating-poinfe;,ma provides a quantitythat may be computed in con-

arithmetic, but they are relevant to a variety of FPU designgant time (independent of the width@andb) and has the
and are therefore suitable for inclusion in the library. same number of trailing zeroes as the sum.

For example, various optimizations in the addition of bit
vectors are based on the functiogen and prop, defined Lemma Leta andb be bits vectors of width, letc be 0 or

C. Special-Purpose Techniques

recursively as follows: 1, and letk < n. Let
0ifi<y [T(@"b)n—-1:0] ife=0
gen(z,y,i,5) =< x[i] if i > jandz[i] = y[i] 77 a’b ifc=1,
gen(z,y,i—1,7) otherwise
2(a|b) ife=0
d = :
an g {2(a&b) if =1,
1ifi<y
prop(e,y,i,j) =4 0 if i > j andai] = yli] and o
prop(z,y,i — 1,j) otherwise. T="(0"K)[n:0]
Then

The value ofgen(z, y, i, j) indicates whether a carry bit is
generatedy the sume[i : j]+yl[i : 7). If gen(z,y,i,5) = (a+b+c)k:0]=0«7[k:0]=0.

V. SUMMARY OF RESULTS [KAUOOa] KAUFMANN, M., P. MANOLIOS, AND J S. MOORE,
Computer-Aided Reasoning: An Approach. Kluwer Academic

Following the methodology outlined above, we have veri-PreSS’ 2000.

fied the correctness, including IEEE-compliance [IEEESSLKAUOOb] KAUFMANN, M., P. MANOLIOS, AND J S. MOORE,

. . . ditors, Computer-Aided Reasoning: ACL2 Case StudiesvKfu
of floating-point modules of the AMD microprocessor se-academic Press, 2000.

ries that perform addition, multiplication, comparisoi, d [KAUOOd] KAUFMANN, M. AND D. M. RUSSINOFF, Verifica-
vision, and square root extraction. Our efforts have eXion of pipeline circuits, Proceedings ACL2 Workshop 200@.
posed a number of design flaws, many of which had sug000.

vived extensive testing through simulation, and all of vishic \év(\)/\(/)v(\g./cs.utexas.edu/users/moore/acl2/workshop-

were corrected before fabrication in silicon. o
- . . . KAUO3] K AUFMANN, M., A tool for simplifying files of ACL2
The ability to represent behavioral specifications in the ngjefinitions, Proceedings ACL2 Workshop 2003, July 2003.

tive language of hardware designers has proved to be wivw.cs.utexas.edu/users/moore/acl2/workshop-

great value. Our earlier verification efforts were based of003/-

formulations of correctness written directly in ACL2, de-[l\gOQ9i?|] ME?OEEdJ' T. }-Y?C#, AND M. KAUF?A?]NNK A mﬁ-f

§ H H H anically checked proof of the correctness of the kerne¢he

rlveq from,"?‘” informal and unreI!abIe understandmg of théAMD5K86 floating point division algorithmEEE Transactions

designers’ intent. In contrast, this new approach brings thhn Computers47:9, September, 1998.

deS|gner into the specn‘lca_tlon process and allows a consigms%] RUSSINOFFE D.M., A mechanically checked proof of

erably higher level of confidence in the result. It also prolEEE compliance of the AMD-K?7 floating point multiplication

vides an effective means of communication among desigﬁ}VlSlgﬂ, andl s?%are root I_nstrUCéI('J\;lS,hLond(_)n Mlathffgﬁgg

ers and users, replacing the less dependable documentaﬁﬁ@’be?uiggso omputation and Mathematics (1), 148-288,

practices on which they have traditionally relied. The colwww.russinoff.com/papers/k7-div-sqrt.html)

laborative formulation of these specifications has exposgfusgg] Russinors D.M., A mechanically checked proof of

a number of bugs resulting from poorly understood intetEEE compliance of the AMD-K5 floating point square root mi-

face constraints much earlier in the design process th&fpcode, Formal Methods in System Design 14, 75-125 (1999).
. www.russinoff.com/papers/fsqrt.html .

they would otherwise have been found.

At e ; US00a] RussINOFF D.M., A case study in formal verifica-
The use of formal specifications in simulation has alsﬁzn of register-transfer logic with ACL2: the floating poidder

proved beneficial. Our application of this technology hagf the AMD Athlon processor, invited paper, FMCAD 2000.
not been limited to floating-point data paths: we have writwww.russinoff.com/papers/fadd.html :

ten similar specifications of several blocks of control tpgi [RUS00b] RussINOFF D.M. AND A. FLATAU, RTL verifica-
which have been used for both formal analysis and testirfiggn: a floating-point multiplier, in [KAUOOb], pp. 201-232
through co-simulation. As a consequence of the high lev Tussinoff.com/papers/aci2.htm :

of abstraction that characterizes the design of thesefspeci

cations, they have been effective in exposing bugs that went

undetected by standard testing methods, which are gener-

ally tied more closely to the implementation.

While it is recognized that theorem proving offers a higher

level of assurance than other methods of hardware verifica-

tion, it remains notoriously labor-intensive. We have faun

however, that a significant part of the total effort of verify

ing a floating-point RTL design is effectively reusable. As

our ACL2 library has evolved, the time required for the ver-

ification of comparable modules has noticeably decreased.

Since no part of this library is specific to AMD designs or

to Verilog constructs, it is our hope that it may be of use to

others who are interested in verifying floating-point algo-

rithms and RTL.

REFERENCES

[STEQO] SrekeLE, G.L., R., Common Lisp The Language, 2nd
edition, Digital Press, 1990.

[ACL2] ACL2 home page.
www.cs.utexas.edu/users/moore/acl2/.

[GMP] GNU Multiple Precision Arithmetic Library.
www.swox.com/gmp/.

[[EEE85] INSTITUTE OF ELECTRICAL AND ELECTRONICEN-
GINEERS IEEE Standard for Binary Floating Point Arithmetic,
Std. 754-1985, New York, NY, 1985.

