
1

Formal Verification of Floating-Point RTL at AMD
Using the ACL2 Theorem Prover

David Russinoff
Matt Kaufmann

Eric Smith
Robert Sumners

Advanced Micro Devices, Inc., Austin, TX

Phone: 512-602-6741, Fax: 512-602-6970, E-mail: david.russinoff@amd.com

Abstract - We describe a methodology for the formal ver-
ification of the correctness, including IEEE-compliance, of
register-transfer level models of floating-point hardwarede-
signs, and its application to the floating-point units of a series
of commercial microprocessors produced by Advanced Mi-
cro Devices, Inc. The methodology is based on a mechanical
translator from a synthesizable subset of the Verilog hard-
ware description language, in which the models are coded,
to the formal logic of the ACL2 theorem prover. Behavioral
specifications of correctness, coded in essentially the same lan-
guage as the designs, are translated as well, and ultimately
checked with the ACL2 prover.

Keywords— Formal verification, Floating-point arithmetic,
IEEE-compliance, Theorem proving, ACL2

I. I NTRODUCTION

The use of conventional simulation dominates the verifi-
cation of modern microprocessors. However, it is widely
accepted that as design complexity continues to grow dra-
matically, simulation alone is insufficient to establish con-
fidence in the correctness of hardware designs. Conse-
quently, formal verification methods have found increasing
use in industrial applications.
This paper describes ongoing work, begun in 1996, in
the use of theorem proving in the verification of register-
transfer logic (RTL) models of the floating-point units
of microprocessors developed by Advanced Micro De-
vices, Inc. [MOO98, RUS99, RUS98, RUS00a, RUS00b,
KAU00d] Our methodology is based on the mechanical
translation of a synthesizable subset of the Verilog hard-
ware description language to the formal logic of the ACL2
prover [ACL2, KAU00a].
ACL2 is based on an applicative subset of Common
LISP [STE90] with list structures and numerical data types,
in which system designs may be encoded along with their
behavioral specifications. It is supported by a heuristic the-
orem prover, which may be used to establish the correct-
ness of a design, i.e., to derive a logical proposition stating
that a design satisfies its specification.
Thus, RTL modules, written in Verilog, are translated into
ACL2 according to a scheme in which bit vectors are rep-
resented as natural numbers, RTL primitives correspond to
LISP functions, and signal dependencies are characterized
by recursive function definitions. Through suitable exten-
sions of standard Verilog syntax, e.g., the introduction of

a rational data type, high-level arithmetic functional spec-
ifications are encoded in the same language and similarly
translated into ACL2.
One advantage of a Verilog behavioral specification of a
design is that it is accessible to RTL writers, and in fact
may be developed in collaboration between designer and
verifier. Thus, it may effectively serve as formal documen-
tation shared by the designers, verifiers, and users of a mod-
ule. Since our Verilog extensions have been implemented
in our simulation environment, the same specification may
also be used as a basis for comprehensive testing.
Of course, the primary purpose of such a specification is
formal analysis. Once a module and its behavioral specifi-
cation have been translated to ACL2, a proof of correctness
is established as the culmination of a sequence of lemmas,
generated through a process of interaction with the prover.
Along the way, any flaws existing in the RTL are naturally
exposed and must be corrected in order for the proof to be
completed.
Successful use of ACL2 in large-scale applications typi-
cally depends on the development of reusable libraries of
definitions and proved theorems. Over the course of this
work, we have established a continually growing library of
theorems pertaining to RTL primitives and floating-point
arithmetic, which is publicly available as part of the stan-
dard ACL2 release. (The description of the library pre-
sented here corresponds to ACL2 Version 2.9.2.)

II. RTL D ESIGNS ANDSPECIFICATIONS INVERILOG

A. RTL Models

Our RTL models are coded in a limited subset of Verilog
defined by a strict set of coding guidelines designed to fa-
cilitate synthesis as well as simulation. These restrictions,
which preclude such anomalies as race conditions and zero-
time evaluation cycles, ensure that for each signal in a syn-
chronous circuit, a well-defined final value for each clock
cycle may be computed as a function of the values of other
signals. An RTL module consists of three classes of sig-
nals: inputs, wiresandregisters. Any wire or register may
be designated as anoutput. The values of inputs are un-
defined by the module; the defining equations of wires and
registers are syntactically distinguished by the assignment
operators “=” and “<=”, respectively. The value of a wire

for a given clock cycle is determined by the values, for the
same cycle, of the other signals that occur in its defining
equations. For example, the wireout , defined by the fol-
lowing three equations, is a function of the three signals
in1 , in2 , andin3 .

out[5:0] = 6’b111111;
if (in1) out[1] = in2;
if (in2) out[5:3] = in3[2:0];

For a register, such as either of the signalssum and
carry defined by the single equation below, the value for
a given cycle is computed from the values of its defining
signals—in this case,a andb—on the preceding cycle.

{carry, sum[2:0]}
<= {1’b0, a[2:0]} + {1’b0, b[2:0]};

B. Behavioral Specifications

One consequence of the simplicity of our modeling
language is that it admits a straightforward semantics-
preserving translation to the functional language of ACL2
(as described in Section III). Statements of behavioral cor-
rectness of RTL modules may then be formulated as log-
ical propositions pertaining to the functions generated by
this translation, the proofs of which may be mechanically
checked by the ACL2 prover.
From the perspective of formal verification, the most natu-
ral approach is to write these behavioral specifications di-
rectly in the ACL2 logic, a language designed to provide
a level of expressiveness suitable for this task. However,
there are two important potential advantages of a specifica-
tion written in the same language as the design itself:

(1) If a specification can be written in Verilog, then it is
immediately accessible to design engineers, who are gen-
erally unacquainted with logical and functional languages.
In fact, such a specification can be written in collabora-
tion between engineers and verifiers, providing a relatively
high level of confidence that it successfully captures the in-
tended functionality of the design.

(2) A Verilog specification may be executed in simula-
tion along with the design. This provides a practical means
of exposing bugs even before any formal analysis is per-
formed, both in the RTL and in the specification itself.

Although no conventional hardware description language
is ideally suited for formal specification, we have identified
and implemented a small number of extensions to our syn-
thesizable subset of Verilog that have been found to provide
adequate expressiveness for our purpose.

C. Assertions

The first problem to be addressed is the need to formulate
predicates that represent various types of constraints on the
interface behavior of a module. Thus, a module specifi-
cation consists of a supplementary set ofspecification sig-
nals, each of which is defined as a wire or a register in

the extended language, together with a set of interface con-
straints, each of which is classified as aninputor output as-
sertion. All signals and assertions of the specification are
defined in terms of the inputs and outputs of the module.
Every signal occurring in an input assertion must be de-
rived from inputs and registers. For example, the following
is taken from the specification of a multiplier that performs
several operations of different latencies.

assert(DivSqrtOpIn4 ==> ˜MulOpInit);

Here the signalDivSqrtOpIn4 is a register (of the spec-
ification) that indicates that the result of a divide or square
root operation is to be returned in four cycles;MulOpInit
means that a multiplication is being initiated. The impli-
cation operator “==>” is a minor syntactic extension:a
==> b may be read as̃a | b . Since this operation has
a latency of four, the effect is to preclude the simultaneous
termination of two operations.
Every signal occurring in an output assertion must be de-
rived from outputs and registers. The following (which per-
tains to the same multiplier) asserts that whenever a valid
result is returned in the absence of any microarchitectural
fault, the value of the data outputFRes_15 agrees with
that of the specification signalDataSpec at all relevant bit
locations, which are determined by the signalDataMask .

assert
(ResultValid & ˜Fault ==>

(FRes_15[75:0] & DataMask[75:0])
==

(DataSpec[75:0] & DataMask[75:0]));

Each of the above constraints may be classified as asafety
property, i.e., a statement that some condition is satisfied
continuously throughout every execution. Our assertion
language also provides forlivenessproperties. A liveness
condition is one that is guaranteed not to fail permanently,
i.e., if it ever becomes false during an execution, then it
must become true at some later time. Such assertions are
required to specify the behavior of variable-latency opera-
tions. The following, for example, states that if the signal
DivSqrtPending is asserted, which occurs whenever a
divide or square root operation is issued, it must eventually
be deasserted, indicating that the operation has terminated:

eventually (˜DivSqrtPending);

D. Rational-Valued Signals

In addition to the assertion facility, our specification lan-
guage includes several data types that are foreign to stan-
dard Verilog. For the purpose of floating-point specifica-
tion, the most important of these is the rational number
type, without which it would be impossible to describe
the high-level behavior of any floating-point operation in
a natural way. The built-in operators associated with this
type include the usual basic arithmetic operators as well as
various special functions pertaining to floating-point rep-

resentation and rounding. In the following illustration,
Val1 andVal2 are rational specification signals derived
from the operands of a double-precision (53-bit) multipli-
cation. The signalRndRes represents the prescribed ra-
tional value of the rounded result, computed according to
the rounding mode indicated by the control inputRC. This
signal is used in the definition of the signalDataSpec ap-
pearing in the output assertion above.

// Unrounded product:

Unrnd = Val1 * Val2;

// Rounded product:

case (RC[1:0])
‘RC_RZ : RndRes = $Trunc(Unrnd, 53);
‘RC_RP : RndRes = $Inf(Unrnd, 53);
‘RC_RM : RndRes = $Minf(Unrnd, 53);
‘RC_RN : RndRes = $Near(Unrnd, 53);

endcase

For the purpose of simulation, each new feature of our
specification language must be translated or otherwise in-
corporated into standard Verilog. The safety assertions
present no difficulty, as they are readily translated into the
pre-existing assertion language of our simulation environ-
ment. For liveness assertions, however, the translation in-
volves some work. For each such assertion, a counter is
defined. If the indicated condition ever fails to hold, the
counter in initialized to a value that may be set in the spec-
ification. If the counter is decremented to 0 before the con-
dition becomes true, then the assertion fails. Although the
choice of the counter’s initial value is arbitrary, this im-
plementation has generally produced acceptable results in
simulation.
Since Verilog does not provide built-in support for (arbi-
trarily precise) rational arithmetic, we have implementeda
C library for this purpose, based on the GNU Multiple Pre-
cision Arithmetic Library [GMP], to which calls are gener-
ated during Verilog simulation. The C code maintains the
values of all rational signals, while special Verilog vari-
ables are used are used to trigger the evaluation of any
blocks that are sensitive to changes in these values.

III. T RANSLATION OF VERILOG TO ACL2

A. Primitive Operators

Our translation scheme is based on the natural correspon-
dence between bit vectors and integers, the primary data
types of Verilog and ACL2, respectively. Thus, a bit vec-
tor of widthn, bn�1bn�2 � � � b1b0, where eachbk 2 f0; 1g,

corresponds to the integerx = Pn�1k=0 2kbk, in the range0 � x < 2n. The set of such integers is recognized by the
ACL2 predicatebvecp :

(defun bvecp (x n)

(and (integerp x)
(>= x 0)
(< x (expt 2 n)))

We also define an ACL2 function corresponding to each
RTL primitive. The Verilog operator that extracts the slice
of bits between indicesi andj from a vectorx, which may
be defined asx[i : j℄ = brem(x; 2i+1)=2j;
and the single bit operator,x[k℄ = x[k : k℄, are formalized
in ACL2 as follows:

(defun bits (x i j)
(mbe :logic

(fl (/ (mod x (expt 2 (1+ i)))
(expt 2 j)))

:exec
(logand

(ash x (- j))
(1- (ash 1 (1+ (- i j)))))))

(defun bitn (x k)
(bits x k k))

Note that the definition ofbits makes use of the ACL2
“must be equal” feature, which provides for two (provably
equivalent) formulations of the same function: one for log-
ical analysis and the other for efficient execution.
The concatenation operator,fx[m�1 : 0℄; y[n�1 : 0℄g = 2nx[m�1 : 0℄+y[n�1 : 0℄;
is formalized as a function of four arguments:

(defun cat (x m y n)
(+ (* (expt 2 n) (bits x (1- m) 0))

(bits y (1- n) 0)))

The RTL binary logical operators roughly correspond to
the built-in LISP functionslogand , etc. Thus,x[n� 1 : 0℄ & y[n� 1 : 0℄
is represented by

(defun land (x y n)
(logand (bits x (1- n) 0)

(bits y (1- n) 0)))

while x[n� 1 : 0℄ | y[n� 1 : 0℄
and x[n� 1 : 0℄ ˆ y[n� 1 : 0℄
are similarly formalized by functionslior and lxor ,
defined in terms of the LISP primitiveslogior and
logxor , respectively. For the unary complement opera-
tor,

˜ x[n� 1 : 0℄ = 2n � x[n� 1 : 0℄� 1;

we have

(defun lnot (x n)
(+ (expt 2 n)

(- (bits x (1- n) 0))
-1))

Addition and multiplication of bit vectors are formalized by
composingbits with the built-in integer arithmetic func-
tions:

(defun mod+ (x y n)
(bits (+ x y) (1- n) 0))

As for the extra constructs associated with our rational data
type, the elementary arithmetic operations all correspondto
primitive LISP functions, while the ACL2 definitions of the
functions pertaining to floating-point arithmetic ($trunc ,
etc.) are straightforward.

B. Signal Definitions

As noted in Section II-A, a well-defined value may be com-
puted for each signal of a synchronous module for each
clock cycle. Consequently, the behavior of a signal may
be represented as a function of a single integer argumentn, representing the number of elapsed clock cycles. (For a
design that involves several instantiations of various mod-
ules, a second argument is required in order to distinguish
between signals associated with different module instances,
but this complication is ignored in this paper.) The ACL2
translation of a module consists mainly of a mutually re-
cursive set of such function definitions.
Since we have no formal semantic definition of the Verilog
source, there can be no “proof of correctness” of the trans-
lation. However, in order to maximize our confidence that
the simulation behavior of a signal is faithfully represented
by the corresponding ACL2 function, the translation is per-
formed as a two-step process [KAU03]. The first step is
designed to be as simple as possible, so that the process
itself may be easily analyzed and understood, but without
regard for the readability or convenience of application of
the resulting “raw” ACL2 definitions. In the second step,
the ACL2 simplifier is used to reduce these functions to a
more manageable form and toprovethe equivalence of the
two forms. The prover is also used during this stage to de-
rive lemmas that characterize the values returned by these
signal functions, to be used later in generating proofs of
correctness.
As an illustration, the wireout of Section II-A gener-
ates the following raw definition during the first translation
stage:

(defun out$tmp (n)
(if1 (bitn (in1 n) 0)

(setbits 63 6 1 1 (bitn (in2 n) 0))
63))

(defun out (n)

(if1 (bitn (in2 n) 0)
(setbits (out$tmp n) 6 5 3

(bits (in3 n) 2 0))
(out$tmp n)))

Here if1 is a variant of the standard branching func-
tion if that tests whether its first argument is nonzero;
setbits replaces a slice of its first argument as indicated
by the remaining arguments. In the second stage, the calls
to setbits are eliminated:

(defun out$tmp (n)
(if1 (in1 n)

(cat 15 4 (cat (in2 n) 1 1 1) 2)
63))

(defun out (n)
(if1 (in2 n)

(cat (in3 n) 3 (out$tmp n) 3)
(outtmp1 n)))

Note that the function generated for a wire includes calls
to other signal functions with the same cycle numbern.
For a register, the supporting signals are evaluated on the
preceding cycle. The raw and simplified definitions for the
signalsum of the preceding section follow:

(defun sum (n)
(if (zp n)

(reset ’sum 3)
(bits (mod+

(cat 0
1
(bits (a (1- n)) 2 0)
3)

(cat 0
1
(bits (b (1- n)) 2 0)
3)

4)
2 0)))

(defun sum (n)
(if (zp n)

(reset ’sum 3)
(bits (+ (a (+ -1 n)) (b (+ -1 n)))

2 0)))

The undefined functionreset , which appears in all regis-
ter functions, is used to model unknown values in our two
state logic. By means of the ACL2encapsulate fea-
ture, it is constrained to return a bit vector of unspecified
value but fixed width. Thus, all that is known about the
value ofsum in the initial state atn = 0, i.e., when(zp
n) is true, is that it is a bit vector of width 3.

C. Assertions

The same procedure by which ACL2 functions are derived
from Verilog equations is also used to translate assertions
into ACL2 predicates, which are also functions of the cy-
cle numbern. The main result required to establish that a
module satisfies its specification is a theorem stating that all
output assertions hold on every cycle, under the assumption
that no input assertion has been violated on any earlier cy-
cle. In order to formulate this theorem in ACL2, we define
a predicateinput-assertionsas the conjunction of all pred-
icates derived from the input safety assertions of a mod-
ule specification. Similarly, a predicateoutput-assertions
is derived from the output safety assertions. The main the-
orem states that for everyn, if (input-assertions
k) is true for allk < n, then(output-assertions
n) must also be true.
If a specification includes liveness assertions as well, then
an additional result must be proved for each output liveness
assertion, stating that for alln, the corresponding predicate
holds for somek > n. Typically, it is necessary to con-
struct an expression fork as a function ofn and the values
of various specification signals at cyclen. For example,
consider the case of the multiplier liveness property of the
Section II-A. If DivSqrtPending is deasserted at cycle
n, then we may takek = n; otherwise, it must be shown that
FPM_DoneInSeven_divsqrt_8 is asserted at somek> n, the expression for which involves various other sig-
nals derived from the inputs, which determine the latency
of the operation.

IV. A N ACL2 L IBRARY OF FLOATING-POINT ARITHMETIC

An ACL2 proof of any theorem of practical significance re-
quires considerable guidance from the user. Typically, the
prover must be guided, by means of user-supplied hints,
through a lengthy sequence of lemmas culminating in the
desired result. In particular, a proof of correctness of even
the simplest floating-point operation involves the formula-
tion and proof of at least several hundred lemmas, while a
more complicated module may involve tens of thousands.
Some of these lemmas are specific to the RTL design at
hand, pertaining to the values of particular signals; others
are results of more general interest, dealing with relevant
properties of bit vectors, arithmetic, etc. During the course
of our RTL verification effort, we have endeavored to dis-
tinguish between these two classes of lemmas, and have
collected those belonging to the latter class in an evolving
reusable library. Thus, once a theoretical arithmetic result
or a property of a standard technique has been established
during the analysis of a particular module, it remains avail-
able for use in the proofs of future designs.
There are two ways in which an ACL2 lemma may be ap-
plied to the proof of another lemma. First, once the user
becomes aware of the applicability of an existing lemma
to a proof in progress, he may supply a hint to the prover,
instructing it to instantiate the lemma as appropriate and

to treat the resulting formula as an additional hypothesis
of the conjecture under consideration. On the other hand,
a lemma may be declared to belong to one or morerule
classes, which will allow it to be applied automatically ac-
cording to the prover’s heuristics, even without the user’s
knowledge. The most important of these classes is that
of rewrite rules, which are used in the process of reduc-
ing an expression to a simpler form. Rewrite rules, when
they worked as planned, provide the benefit of relieving
the user of some of the details of a proof, but often have
the disadvantage of depriving him of control. Our expe-
rience has convinced us of the prudence of a conservative
approach whereby most lemmas are supplied manually via
hints from the user, but if the application of a simplifying
lemma is considered to be generally desirable, it may be
classified as a rewrite rule. In some cases, a lemma may be
listed as a rewrite rule but left in a disabled state, offering
the user the choice of using it in a hint or enabling it for
automatic application. Illustrations will be provided by the
examples below.
The library comprises six ACL2 “books”, i.e., files of lem-
mas and definitions. Of the combined set of approximately
600 library lemmas, we shall list only a few representa-
tive examples in the space allowed here. For the sake of
readability, we shall use conventional mathematical nota-
tion rather than the formal syntax of LISP, but the reader is
encouraged to consult the actual ACL2 source files.
The books of the library are logically partitioned into three
sections:

A. Bit Vectors

Much of the library pertains to the basic operations on bit
vectors and the underlying general theory of integer arith-
metic. These results are organized into two books:� basic : Definitions and basic properties of the relevant
built-in arithmetic functions, especially floor (also known
as thegreatest integerfunction), quotient and remainder,
and exponentiation (87 lemmas).� bits : Behavior of the primitive operations on bit vec-
tors, including bit extraction, concatenation, and logical
operations, as described in Section II-A (189 lemmas).

The bookbits is the largest and most widely used of
the library. It contains a relatively large number of rewrite
rules. These include associative and commutative laws of
the primitive operations, for which the prover has special
heuristics for establishing equalities between expressions
constructed from these functions. Various other rewrite
rules have a similar effect, namely, the transformation of
certain types of expressions into a canonical form:

Lemma (x & y)[n℄ = x[n℄ & y[n℄.
The following is an example of a disabled rewrite rule that
may be enabled as appropriate:

Lemma If i < m+ n, then

fx[m� 1 : 0℄; y[n� 1 : 0℄g[i : j℄= 8<: y[i : j℄ if i < nx[i� n : j � n℄ if j > nfx[i� n : 0℄; y[n� 1 : j℄g if j < n � i:
In general, a rewrite rule is appropriate when the right side
of an equality is invariably a simpler expression than the
left side, as in the examples below:

Lemma If j � i, ` � k, andj = k + 1, thenfx[i : j℄; x[k : `℄g = x[i : `℄:
Lemma If k � i� j, thenx[i : j℄[k : `℄ = x[k + j : `+ j℄:
Lemma (2n � 1) & x = x[n� 1 : 0℄.
Lemma (2n � 1) | x[n� 1 : 0℄ = 2n � 1.

In cases such as the following, in which an equation might
be used as a transformation in either direction, control is
best retained by the user:

Lemma x & (2i � 2j) = 2jx[i� 1 : j℄.
Lemma (2mx) & y[n� 1 : 0℄ = 2m(x & y[n� 1 : m℄).
Lemma If m � n, y < 2m, andx < 2n�m, then(2mx) | y = 2ms+ y:
B. Floating-Point Arithmetic

The general theory of floating-point arithmetic is covered
in three books:� float : Characterization of representable rational num-
bers and their decomposition into sign, exponent, and sig-
nificand (51 lemmas).� reps : Encoding and decoding of rationals with respect
to various (IEEE and other) representation schemes, in-
cluding both implicit and explicit leading-one formats; de-
normals; characterization of representable numbers; con-
version between formats and rebiasing of exponents (50
lemmas).� round : Properties of IEEE rounding as well as vari-
ous rounding modes used internally by AMD floating-point
units; results pertaining to the implementation and correct-
ness of a number of standard implementations of rounding
(193 lemmas).

Floating point representation is based on the observation
that every nonzero rational numberx admits a unique fac-
torization, x = sgn(x)sig(x)2expo(x);
wheresgn(x) 2 f1;�1g, 1 � sig(x) < 2, andexpo(x) is
an integer. The lemmas of the bookfloat deal with the
properties of these functions, such as the following:

Lemma If x > 0, then2expo(x) � x < 2expo(x)+1.
Lemma sig(sig(x)) = sig(x).
Lemma sig(2nx) = sig(x).
Lemma expo(2nx) = expo(x) + n.

Lemma expo(x) + expo(y) � expo(xy) � expo(x) +expo(y) + 1.

The theory of representability is based on the predicateex-
actp, which determines whether a rationalx admits a bi-
nary expansion consisting ofn bits. More formally,ex-
actp(x,n)is true if and only if2n+1�expo(x)x is an integer.
Among the lemmas pertaining to this predicate are the fol-
lowing:

Lemma If exatp(x; n), thenexatp(2kx; n).
Lemma If m < n andexatp(x;m), thenexatp(x; n).
Lemma If x is a bit vector of widthn, thenexatp(x; n).
Lemma If exatp(x;m) and exatp(y; n), thenexatp(xy;m+ n).
Lemma If x > 0 andexatp(x; n), then the leasty > n
such thatexatp(y; n) is y = x+ 2expo(x)+1�n.

Our formalization of the IEEE rounding modes is based the
three functionstrunc (round-to-zero),away (round-away-
from-zero), andnear (round-to-nearest-even), which are
defined in terms of the floor function. For example,trun(x; n) = sgn(x)b2n�1�expo(x)jxj2expo(x)+1�n:
The bookround includes lemmas characterizing the be-
havior of these functions:

Lemma If x > 0, thenx� 2expo(x)+1�n < trun(x; n) � x:
Lemma If m � n, thentrun(trun(x; n);m) = trun(x;m):
Lemma exatp(x; n) , trun(x; n) = x.

Lemma trun(2kx; n) = 2ktrun(x; n).
A number of lemmas relate rounding to the bit vector prim-
itives:

Lemma If 0 < k < n � m and2n�1 � x < 2n, thentrun(x; k) = x & (2m � 2n�k):
Lemma If 0 < k < m and2n�1 � x < 2n, thentrun(x;m) = trun(x; k) +2n�mx[n� k� 1 : n�m℄:

One of the non-standard rounding modes used in our analy-
sis issticky rounding. If exatp(x; n), thenstiky(x; n) =x, and otherwise,stiky(x; n) = trun(x; n� 1) + sgn(x)2expo(x)+1�n:
The significance of this function is that the result of round-
ing x to n bits, according to any IEEE rounding mode, can
always be recovered fromstiky(x; n+ 2):
Lemma If m > n, thentrun(x; n) = trun(stiky(x;m); n):
Lemma If m > n, thenaway(x; n) = away(stiky(x;m); n):
Lemma If m � n+ 2, thennear(x; n) = near(stiky(x;m); n):
Here is a property of sticky rounding that is in dealing with
rounded sums:

Lemma Let k0 = k + expo(x) � expo(y) andk00 = k +expo(x + y) � expo(y). If k > 1, k0 > 1, k00 > 1, andexatp(x; k0 � 1), thenx+ stiky(y; k) = stiky(x+ y; k00):
C. Special-Purpose Techniques

The final book of the library,fadd (30 lemmas), deals
with a number of standard techniques that are commonly
used in the implementation and optimization of floating-
point operations, including methods of carry propagation
and generation, sticky bit computation, leading-one predic-
tion, and multiplier encoding. The contents of this book do
not properly belong to the general theory of floating-point
arithmetic, but they are relevant to a variety of FPU designs
and are therefore suitable for inclusion in the library.
For example, various optimizations in the addition of bit
vectors are based on the functionsgenandprop, defined
recursively as follows:gen(x; y; i; j) = 8<: 0 if i < jx[i℄ if i � j andx[i℄ = y[i℄gen(x; y; i� 1; j) otherwise

andprop(x; y; i; j) =8<: 1 if i < j0 if i � j andx[i℄ = y[i℄prop(x; y; i� 1; j) otherwise.

The value ofgen(x; y; i; j) indicates whether a carry bit is
generatedby the sumx[i : j℄+y[i : j℄. If gen(x; y; i; j) =

0, then prop(x; y; i; j) determines whether an incoming
carry is propagatedacross the same slice. We have the
following equivalent formulations:

Lemmagen(x; y; i; j) = 1, x[i : j℄ + y[i : j℄ � 2i+1�j .
Lemmaprop(x; y; i; j) = 1 , x[i : j℄ + y[i : j℄ = 2i+1�j � 1.

Lemmaprop(x; y; i; j) = 1 , x[i : j℄ ˆ y[i : j℄ = 2i+1�j � 1.

Various properties ofgenandprop allow them to be com-
puted efficiently:

Lemma If i > k � j, thengen(x; y; i; j) = gen(x; y; i; k + 1) |gen(x; y; k; j) & prop(x; y; i; k + 1):
Lemma If i > k � j, thenprop(x; y; i; j) = prop(x; y; i; k + 1) & prop(x; y; k; j):
The addition of bit vectors may be optimized by means of
lemmas such as the following, which allows a sum to be
decomposed into bit slices:

Lemma(x+y)[i : j℄ = (x[i : j℄+y[i : j℄+gen(x; y; i; j-1))[i-j : 0℄.
Another example of an efficient addition technique, the fol-
lowing result is used as an optimization in the computation
of rounded sums. Suppose that two bit vectorsa andb are
to be added, along with a carry bit. For the purpose of
rounding, we would like to predict the exactness, i.e, the
number of trailing zeroes, ofa + b + . The following
lemma provides a quantity� that may be computed in con-
stant time (independent of the width ofa andb) and has the
same number of trailing zeroes as the sum.

Lemma Let a andb be bits vectors of widthn, let be 0 or
1, and letk < n. Let� = � ˜ (a ^ b)[n� 1 : 0℄ if = 0a ^ b if = 1,� = � 2(a j b) if = 02(a & b) if = 1,

and � = ˜ (� ^�)[n : 0℄:
Then (a+ b+)[k : 0℄ = 0 , � [k : 0℄ = 0:

V. SUMMARY OF RESULTS

Following the methodology outlined above, we have veri-
fied the correctness, including IEEE-compliance [IEEE85],
of floating-point modules of the AMD microprocessor se-
ries that perform addition, multiplication, comparison, di-
vision, and square root extraction. Our efforts have ex-
posed a number of design flaws, many of which had sur-
vived extensive testing through simulation, and all of which
were corrected before fabrication in silicon.
The ability to represent behavioral specifications in the na-
tive language of hardware designers has proved to be of
great value. Our earlier verification efforts were based on
formulations of correctness written directly in ACL2, de-
rived from an informal and unreliable understanding of the
designers’ intent. In contrast, this new approach brings the
designer into the specification process and allows a consid-
erably higher level of confidence in the result. It also pro-
vides an effective means of communication among design-
ers and users, replacing the less dependable documentation
practices on which they have traditionally relied. The col-
laborative formulation of these specifications has exposed
a number of bugs resulting from poorly understood inter-
face constraints much earlier in the design process than
they would otherwise have been found.
The use of formal specifications in simulation has also
proved beneficial. Our application of this technology has
not been limited to floating-point data paths: we have writ-
ten similar specifications of several blocks of control logic,
which have been used for both formal analysis and testing
through co-simulation. As a consequence of the high level
of abstraction that characterizes the design of these specifi-
cations, they have been effective in exposing bugs that went
undetected by standard testing methods, which are gener-
ally tied more closely to the implementation.
While it is recognized that theorem proving offers a higher
level of assurance than other methods of hardware verifica-
tion, it remains notoriously labor-intensive. We have found,
however, that a significant part of the total effort of verify-
ing a floating-point RTL design is effectively reusable. As
our ACL2 library has evolved, the time required for the ver-
ification of comparable modules has noticeably decreased.
Since no part of this library is specific to AMD designs or
to Verilog constructs, it is our hope that it may be of use to
others who are interested in verifying floating-point algo-
rithms and RTL.

REFERENCES

[STE90] STEELE, G.L., JR., Common Lisp The Language, 2nd
edition, Digital Press, 1990.

[ACL2] ACL2 home page.
www.cs.utexas.edu/users/moore/acl2/.

[GMP] GNU Multiple Precision Arithmetic Library.
www.swox.com/gmp/.

[IEEE85] INSTITUTE OF ELECTRICAL AND ELECTRONIC EN-
GINEERS, IEEE Standard for Binary Floating Point Arithmetic,
Std. 754-1985, New York, NY, 1985.

[KAU00a] KAUFMANN , M., P. MANOLIOS, AND J S. MOORE,
Computer-Aided Reasoning: An Approach. Kluwer Academic
Press, 2000.

[KAU00b] K AUFMANN , M., P. MANOLIOS, AND J S. MOORE,
editors, Computer-Aided Reasoning: ACL2 Case Studies. Kluwer
Academic Press, 2000.

[KAU00d] K AUFMANN , M. AND D. M. RUSSINOFF, Verifica-
tion of pipeline circuits, Proceedings ACL2 Workshop 2000,Oct.
2000.
www.cs.utexas.edu/users/moore/acl2/workshop-
2000/.

[KAU03] K AUFMANN , M., A tool for simplifying files of ACL2
definitions, Proceedings ACL2 Workshop 2003, July 2003.
www.cs.utexas.edu/users/moore/acl2/workshop-
2003/.

[MOO98] MOORE, J, T. LYNCH, AND M. K AUFMANN , A me-
chanically checked proof of the correctness of the kernel oftheAMD5K86 floating point division algorithm,IEEE Transactions
on Computers, 47:9, September, 1998.

[RUS98] RUSSINOFF, D.M., A mechanically checked proof of
IEEE compliance of the AMD-K7 floating point multiplication,
division, and square root instructions, London Mathematical So-
ciety Journal of Computation and Mathematics (1), 148-200,De-
cember, 1998.
www.russinoff.com/papers/k7-div-sqrt.html .

[RUS99] RUSSINOFF, D.M., A mechanically checked proof of
IEEE compliance of the AMD-K5 floating point square root mi-
crocode, Formal Methods in System Design 14, 75-125 (1999).
www.russinoff.com/papers/fsqrt.html .

[RUS00a] RUSSINOFF, D.M., A case study in formal verifica-
tion of register-transfer logic with ACL2: the floating point adder
of the AMD Athlon processor, invited paper, FMCAD 2000.
www.russinoff.com/papers/fadd.html .

[RUS00b] RUSSINOFF, D.M. AND A. FLATAU , RTL verifica-
tion: a floating-point multiplier, in [KAU00b], pp. 201–232.
www.russinoff.com/papers/acl2.html .

