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Abstract

We describe a mechanical proof system for concurrent programs, based
on a formalization of the temporal framework of Manna and Pnueli as an
extension of the computational logic of Boyer and Moore. The system
provides a natural representation of specifications of concurrent programs
as temporal logic formulas, which are automatically translated into terms
that are subject to verification by the Boyer-Moore prover. Several spe-
cialized derived rules of inference are introduced to the prover in order to
facilitate the verification of invariance (safety) and eventuality (liveness)
properties. The utility of the system is illustrated by a correctness proof
for a two-process program that computes binomial coefficients.

1 Introduction

Although computer programming is potentially an exact science, few programs
are actually subjected to formal verification. Proofs of specifications for even the
simplest programs are often difficult to produce and unmanageably complicated.
Hand-generated proofs may contain errors that are no easier to detect than
programming errors. Automatic theorem proving, therefore, is crucial to the
process of reasoning formally about programs. The ultimate practicality of
program verification will be determined by the extent to which the programmer
can be relieved of the details of generating and checking correctness proofs
through the application of mechanical provers.

Effective use of today’s theorem provers, however, typically requires expertise
that is uncommon among software engineers. Detailed knowledge of a prover’s
heuristics is often necessary in order to guide it successfully through a proof.
Moreover, the classical logics underlying these systems are unsuitable for mod-
eling some aspects of real programs, such as nondeterminism and concurrency.
The Boyer-Moore prover [BoM79,BoM88a], as described in Section 2, is a par-
ticularly powerful verification tool, but is nonetheless susceptible to these criti-
cisms. Based on a computational logic designed for reasoning inductively about
recursive functions, this system provides no natural representation of concurrent
programs or their specifications.



Considerable recent research [ChM88,Kro87,MaP81] has been devoted to
the development of alternative formalisms for program specification and verifi-
cation based on temporal logic and the state-transition program model. This ap-
proach allows natural representations of nondeterministic concurrent programs
and their execution properties. Verification of these properties remains a tedious
process, however, since no mechanical support has been provided for these for-
malisms.

Our goal is to combine the expressiveness of temporal logic with the power
of mechanical theorem proving in the design of a simple concurrent program
verification system. Our programming language, as presented in Section 3, is a
reification of the Manna-Pnueli temporal framework [MaP81,MaP84], grounded
in the Boyer-Moore logic. In Section 4, we describe a scheme for formally
representing programs and their execution states as terms in this logic. This
ultimately allows conjectured temporal properties of programs to be encoded as
static formulas, which may then be submitted to the prover.

In Section 5, we derive a set of inference rules that embody strategies for
proving two important classes of these formulas, corresponding to invariance
(or safety) and eventuality (or liveness) properties. An invariance property is
proved simply by showing that it is preserved across all possible transitions.
Proving an eventuality is a more interesting problem, solved by means of well-
founded orderings of program states. Here, we exploit a unique feature of the
Boyer-Moore system: a built-in theory of ordinals. As an illustration of both
of these property types, and as a demonstration of the utility of our system,
we describe the semi-automatic verification of the correctness of a two-process
program that computes binomial coefficients.

2 The Boyer-Moore System

Here we describe the ngthm version of the system, which is documented in [BoM88a]
and includes the extensions described in [BGK89]. It is founded on a quantifier-
free first-order logic with equality and a syntax resembling that of LISP. Thus,
terms are constructed from parentheses and symbols denoting variables and
functions. By convention, lower-case alphabetic characters, which do not ap-
pear in symbols of the logic, are used to denote metavariables representing
terms.
The basic theory includes axioms characterizing four primitive functions:

e TRUE and FALSE are functions of zero arguments. The constants (TRUE)
and (FALSE), abbreviated as T and F, respectively, serve as distinct truth
values, as ensured by the axiom T # F.

e EQUAL is a binary function. The value of (EQUAL 1 r) is either T or F,
according to whether 1 =r.

e IF is a ternary function. The value of (IF t 1 r) is the value of r if
t =F, and the value of 1 otherwise.



In terms of these primitives, functions are defined corresponding to each of
the logical connectives, e.g.,

(IMPLIES P @ =(IF P (IF Q T F) T).

This allows formulas to be encoded as terms, i.e., given any formula ¢ we may
construct a term t such that

¢« (¢ #F)

is a theorem. For example, the formula X #Y — (F X Y) = (G X) is encoded
as the term

(IMPLIES (NOT (EQUAL X Y)) (EQUAL (F X Y) (G X))).

When a term t appears in a context where a formula is expected, it is understood
to be an abbreviation for the formula t # F.

Variables occurring in axioms and theorems are understood to be universally
quantified. Thus, if a term t is a theorem and s is substitution of terms for
variables, then the result t/s of applying s to t may be inferred as a theorem
by the rule of instantiation.

The logic also includes

e a principle that generates sets of axioms specifying new types of induc-
tively constructed objects,

e a principle for admitting axioms that define new recursive functions, and

e a principle of induction by which theorems pertaining to these objects and
functions may be inferred.

The basic theory contains three types of inductively constructed objects:

e The type number formalizes Peano arithmetic through axioms involving
the recognizer NUMBERP, the constant (ZERQ), and the successor function
ADD1. Other arithmetic functions are defined in terms of these, including
SUB1 (the inverse of ADD1), LEQ (the standard partial order), LESSP (strict
partial order), ZEROP (a predicate that fails iff its argument is a non-
zero number), PLUS, DIFFERENCE, TIMES, and QUOTIENT (the basic binary
operations), and FACT (the factorial function).

e The type cons formalizes ordered pairs by means of the recognizer LISTP,
the constructor CONS, and the accessors CAR and CDR. Functions corre-
sponding to other familiar list-processing functions of LISP, such as ASSOC,
MEMBER, and LIST, are defined in terms of these primitives.

e The type litatom consists of an object corresponding to each symbol of
the logic. The litatom corresponding to the symbol x is abbreviated as
’X.



Variable-free terms that are constructed by means of CONS from numbers,
litatoms, and objects belonging to user-defined data types are called explicit
values. It may be shown [Kau86] that the set of all explicit values constitutes a
model for the logic. We shall refer to this model as the intended model.

Various syntactic conventions similar to those of LISP allow explicit values
to be expressed succinctly. For example, the explicit value

(CONS 4 (CONS (CONS ’Z 5) °NIL))

is abbreviated as (4 (Z . 5)). Under these conventions, there is a natural
extension of the correspondence between symbols and literal atoms that assigns
to an arbitrary term t an explicit value, denoted ’t, called its quotation, e.g.,
the quotation of (PLUS X 3) is the explicit value denoted by ’ (PLUS X 3).

Along with this encoding of terms, there is an obvious scheme for encod-
ing variable substitutions as alists (i.e., lists of conses). Thus, the substitution
{X < 2,Y < 3} is represented by the alist >((X . 2) (Y . 3)). This cor-
respondence motivates the definition of the function EVAL, which behaves as a
built-in interpreter for the logic. This function takes two arguments, which are
expected to be a quotation of a term ’t and an alist s representing a substitu-
tion s. If the term t is tame [BoM88b], which means roughly that it involves
only primitive function symbols and those with tame recursive definitions, and
if each variable occurring in t also occurs in s, then (EVAL ’t s) =t/s. Thus,
the following is a theorem:

(EQUAL (EVAL *(PLUS X Y) ’((X . 2) (Y . 3))) 5).

The ordinals comprise another built-in data type, which includes the num-
bers as a subtype. The ordinals are recognized by the predicate ORDINALP and
are ordered by the relation ORD-LESSP, which extends LESSP. Their purpose is
to represent well-founded orders that are more complex than the order of the
natural numbers, such as lexicographic orders. For example, we may embed the
lexicographically ordered set of all pairs of numbers in the ordinals by defining
an ordinal-valued binary function LEX2 such that for any numbers x1, y1, x2,
and y2,

(EQUAL (ORD-LESSP (LEX2 x1 y1) (LEX2 x2 y2))
(OR (LESSP x1 x2) (AND (EQUAL x1 x2) (LESSP y1 y2))))

holds. Similarly, we may define the function LEX3 to represent the lexicograph-
ically ordered set of all triples of natural numbers. (We shall make use of this
in Section 5.)

When a term is presented as a conjecture to the theorem prover, various
heuristics are applied in an attempt to establish it as a theorem. It is often the
case that guidance from the user is required. Thus, the conjecture might be
preceded by a sequence of simpler lemmas leading to the desired result. Hints
may be provided to facilitate the proofs of these lemmas. These hints may
include instantiations of previously proved lemmas, suggestions of induction
schemes, and instructions to avoid using certain lemmas that might lead in a
bad direction.



In order to avoid duplication of effort in proving a class of conjectures that
conform to an obvious pattern, it may be possible to establish a derived rule
of inference that is applicable to all members of the class. Such rules may be
derived according to the following procedure, for which the system provides
mechanical support (see [BGK89]):

1. Introduce as an axiom a term (a (£f1) ... (fn)), involving some O-ary
functions f1,... ,fn not appearing in any other axiom.

2. Prove as a theorem a term (c (f1) ... (fn)).

Subsequently, whenever a term (a tl ... tn), resulting from the axiom by
replacing the constants (£f1),..., (fn) by any variable-free terms t1,... ,tn,
is provable, the rule may be invoked to infer the corresponding theorem (c t1

. tn). We shall introduce several derived rules of inference in Section 5 in
connection with certain classes of program properties. In each case, it may be
assumed that the rule was derived by the procedure outlined above.

3 A Model of Concurrency

Our concurrent programming language is based on both the logic described in
Section 2 and the model of concurrency presented in [MaP81]. According to
this model, a program is composed of a finite set of processes and is associated
with a finite set of state variables, including

a) input variables, which remain constant throughout execution and are re-
quired to satisfy some input condition,

b) global variables, which are assigned initial values expressed in terms of the
input variables and may be manipulated by any of the processes, and

c) program counters, each of which is associated with some process.

Each process is represented as a graph, the nodes of which are the admissi-
ble values of the corresponding program counter. One node of each process is
identified as the start node and is the initial value of the program counter. Each
arc of a process is associated with a precondition for traversal and a transition
value corresponding to each global variable of the program.

In our reification of this model, all state variables and process nodes are
symbols of the Boyer-Moore logic, while the input condition and all initial values
and transition values of global variables are terms of the logic. We define a state
term of a program P to be a tame term in which only state variables of P occur
as variable symbols. We shall assume that all initial and transition values and
preconditions are state terms, and moreover, that only input variables occur in
the initial values.

A state of a program P is a variable substitution that assigns explicit values
to the state variables of P. The wvalue of a state term t with respect to a state
sis t/s. t is satisfied by s if t/s is true in the intended model.

An initial state of P is one that satisfies all of the following terms:



a) the input condition of P,
b) (EQUAL y v), for each global variable v with initial value y, and
c) (EQUAL p ’n), for each program counter p with start node n.

In order to ensure that P has at least one initial state, we shall always assume
that the input condition of a program is satisfiable.

Let @ be a process of program P corresponding to the program counter p
and let « be an arc of () from node n to node m with precondition c. Then « is
enabled with respect to a state s if s satisfies

(AND (EQUAL p ’n) c).

In this case, we shall also say that @) is enabled with respect to s. Furthermore,
Q transforms s into a second state s’ with respect to P if the following additional
conditions are satisfied:

a) p/s’' = ’m,
b) y/s' = t/s for each global variable y with transition value t, and

c) s and s’ agree on each input variable and each program counter other than
P

A state s’ is a successor of a state s with respect to P if either s’ = s or some
process of P transforms s into s’. An ezecution of P is a sequence of states
(s0,S1,...) such that sq is an initial state of P and s;41 is a successor of s; for
each 1.

As an illustration of these definitions, we shall describe a simple concurrent
program BC, adapted from an example that appears in [MaP81]. This program
consists of two processes, m and d, represented in Figure 1 both graphically and
as linear text. Note that the arc preconditions and transition values, which are
omitted from the graphical representation, may be read from the text. Thus,
the arc from DO to D1 has only the trivial transition values and the precondition
(NOT (EQUAL Y2 K)).

This program is designed to compute the binomial coefficient determined by
its inputs N and K, i.e., the value returned by the following function:

Definition 1

(BINOMIAL N K)

(QUOTIENT (FACT N) (TIMES (FACT (DIFFERENCE N K)) (FACT X)))

Process m performs the multiplication: using Y1 as a loop variable, it multiplies
the accumulator Y3 successively by each number exceeding (DIFFERENCE N K)
but not N. Concurrently, process d performs the division: using Y2 as a loop
variable, it divides Y3 by each positive number not exceeding K. Note that the
precondition (LEQ (PLUS Y1 Y2) N) for the arc from D2 to D3 is designed to



Program BC

State variables: N, K (inputs); Y1, Y2, Y3 (globals); M, D (pcs)
Input condition: (AND (AND (NUMBERP K) (NUMBERP N)) (LEQ K N))

Initial values: Y1 < N, Y2+ 0, Y3+ 1
Start nodes: M < M0, D < DO

Process m
MO: if (EQUAL Y1 (DIFFERENCE N K)) MO
then goto M3
M1: Y3 « (TIMES Y1 Y3)
M2: Y1 ¢ (SUB1 Y1)
goto MO M2
M3:  halt
Process d
DO: if (EQUAL Y2 K) then goto D4
D1: Y2« (ADD1 Y2) DO
D2: loop until (LEQ (PLUS Y1 Y2) N)
D3: Y3 « (QUOTIENT Y3 Y2) D3
goto DO
D4: halt D2

Figure 1: A Concurrent Program

M3

M1

D4
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postpone the division until Y2 is guaranteed to be a factor of Y3: at D2, Y3 is a
multiple of N!/(Y1!(Y2 <1)!), which is divisible by Y2 if the precondition holds.

An execution of this program may be considered to terminate if some state
of the execution (and hence each subsequent state) satisfies the term

(AND (EQUAL M °M3) (EQUAL D ’D4)).

As we shall see, the value of Y3 at termination is (BINOMIAL N K), that is, any
execution state of BC that satisfies the above term must also satisfy

(EQUAL Y3 (BINOMIAL N K)).

However, it is not the case that every execution of BC terminates. For example,
if an execution reaches a state in which the program counter D has the value D2
and the precondition

(NOT (LEQ (PLUS Y1 Y2) N))

of the loop at D2 is satisfied, then the execution may continue by repeatedly
traversing that loop and never traversing any arc of process m. In fact, according
to our definition, the sequence (s, sg,-..) is a valid execution for any initial
state sg.

In order to provide an accurate model of concurrency, since it is unrealistic
to imagine one process to be infinitely slow relative to another, we must impose
some fairness condition on our execution sequences. The following version of
fairness, which is commonly known as weak fairness, is suitable for our purpose:
an execution (sg,s1,...) of a program P is fair if for each process Q of P and
each i, if Q is enabled with respect to s; for all j > ¢, then for some j > i, Q
transforms s; into s;4; with respect to P. Thus, in a fair execution, a process
cannot remain enabled forever without any of its arcs being traversed.

Properties of program executions are conveniently described by formulas that
are constructed from state terms by means of the logical connectives “—” and
“=" and the temporal operators “0” and “<¢”. The semantics of such formulas
are defined as follows: If ¥ = (sg, s1,...) is a sequence of states of a program P,
then for each i > 0, let ©(¥ = (s, 5;41,...). The sequence X satisfies a formula

¢ if

a is a state term for P and sg satisfies ¢,

o)
b) ¢ = =) and X fails to satisfy 1,

)
)
c) ¢ =1 — 6 and ¥ satisfies either —¢) or 6,
d) ¢ = O¢ and T satisfies ¢ for all i, or
e) ¢ = Oy and () satisfies ¢ for some i.

Finally, a program P satisfies ¢ if for every fair execution ¥ of P and every
i >0, 2 satisfies ¢.



Program properties that are of common interest generally fall into two cat-
egories. The first of these is the class of invariance properties, which are repre-
sented by formulas of the form

r — Os (1)

where r and s are state terms. Note that such a formula is satisfied by a program
if for every fair execution in which r is satisfied by some state, s is satisfied by
that and every later state. The properties described by these formulas include
mutual exclusion, deadlock freedom, and partial correctness. For example, the
following represents the partial correctness of our binomial coefficient program
BC:

O(IMPLIES (AND (EQUAL M ’M3) (EQUAL D ’D4))
(EQUAL Y3 (BINOMIAL N K)))

The second interesting category is the class of eventuality properties, which
are represented by instances of the formula

r— Os (2)

A program satisfies this formula if every execution state that satisfies the term
r is eventually followed by a state satisfying the term s. The corresponding
properties include termination, accessibility, and responsiveness. For example,
the termination property of program BC' is represented as

<& (AND (EQUAL M °M3) (EQUAL D °D4)).

4 Formalization of the Model

In this section, we describe a scheme for representing programs and their exe-
cutions in the Boyer-Moore logic. We then introduce axioms that characterize
fair executions, thus allowing program properties to be encoded as terms in the
logic. That is, given a formula ¢ representing a conjectured temporal property
of a program P, we shall establish a method for automatically generating a term
that is true in the intended model iff ¢ is satisfied by P. This term may then
be submitted to the theorem prover for mechanical verification.

Processes and programs are encoded as list structures. A process is repre-
sented as a list of length 2, consisting of a literal atom representing its program
counter and a list of objects representing its nodes. Each of these node repre-
sentations is itself a list with two members: the literal atom corresponding to
the node and a list whose members represent the arcs emanating from the node.
An arc is encoded as a list of three objects: the literal atom corresponding to
the terminal node of the arc, the quotation of the arc’s precondition, and an
alist associating global variables with (the quotations of) their transition values.
(A global variable that is its own transition value is omitted from this alist.)

According to this scheme, the processes m and d of our example program
BC are encoded as the values of the constant functions M and D, respectively:



Definition 2

M) = (M ((MO ((M3 (EQUAL Y1 (DIFFERENCE N K)) NIL)
(M1 (NOT (EQUAL Y1 (DIFFERENCE N K))) NIL)))
(M1 ((M2 (TRUE) ((Y3 . (TIMES Y3 Y1))))))
(M2 ((MO (TRUE) ((Y1 . (SUB1 Y1))))))
(M3 NIL)))

Definition 3

(D) = (D ((DO ((D4 (EQUAL Y2 K) NIL)
(D1 (NOT (EQUAL Y2 K)) NIL)))
(D1 ((D2 (TRUE) ((Y2 ADD1 Y2)))))
(D2 ((D3 (NOT (LESSP N (PLUS Y1 Y2))) NIL)
(D2 (LESSP N (PLUS Y1 Y2)) NIL)))
(D3 ((DO (TRUE) ((Y3 . (QUOTIENT Y3 Y2))))))
(D4 NIL)))

A program is encoded as a list of length 5 whose members correspond to
its input variables, global variables, program counters, input condition, and
processes. The first member of this list is an alist, associating the input variables
with some set of values that satisfy the input condition. The sole purpose
of these values is to allow the system to verify the satisfiability of the input
condition (which is required by an earlier assumption). The next two members
of the list are also alists, associating global variables with their initial values
and program counters with their start nodes. Thus, BC' is represented by the
constant (BC), defined by

Definition 4

(BC) = (LIST "((N . 5) (K . 3))
(Y1 . N) (Y2 . 0) (Y3 . 1))
>((M . MO) (D . DO))
> (AND (AND (NUMBERP K) (NUMBERP N)) (LEQ K N))
(LIST (M) (D)))

Naturally, program states are encoded as alists associating state variables
with their values. For example, the initial state suggested by the above encoding
of BC becomes the alist

>((N . B5) (K. 3) (Yr.5) (Y2. 0)
(Y3 . 1) (M . M0) (D . DO)).

Note that this scheme provides a convenient representation of the value of a
state term with respect to a state by means of EVAL. In particular, a state term
t is satisfied by a state encoded as a iff (EVAL ’t a) is a theorem.

We shall require several predicates, all of which may be defined as recur-
sive functions in the logic (as has been done in [Rus90]), and which behave as
described below with respect to our encoding scheme:

10



(PROGRAMP p) ¢ p is (an encoding of) a program;

(INITIALP s p) < s is an initial state of a program p;

(ENABLEDP q s) & a process q is enabled with respect to a state s;

(TRANSP q s0 sl p) & q transforms sO into s1 with respect to p;

(SUCCEEDSP sO s1 p) & sl is a successor of sO with respect to p.

Once defined, these predicates may be used to construct a formal characteriza-
tion of fair executions. This characterization will take the form of two axioms
that constrain the behavior of a binary function X. Let P be a program with
encoding p. Our intention is that the sequence

(Xp0),Xp1),Xp2),...)

represents an arbitrary fair execution of P. The first axiom ensures that this
sequence is an execution of P, and also, for convenience, coerces non-numerical
indices to 0:

Axiom 1

(AND (IMPLIES (PROGRAMP P) (INITIALP (X P 0) P))
(IF (ZEROP I)
(EQUAL (X P I) (X P 0))
(SUCCEEDSP (X P (SUB1 I)) (X P I) P)))

Fairness of an execution of P may be characterized as follows: for each
process () of P and for each index i, there is some index w > i such that either
@ is not enabled in the w® state of the execution, or @ transforms the w'®
state into the (w + 1)t state. This property is formalized by our second axiom,
which involves a new ternary function W:

Axiom 2

(AND (LEQ I (W Q I P))
(IMPLIES (AND (PROGRAMP P) (MEMBER Q (PROCESSES P))
(ENABLEDP Q (X P (W Q I P))))
(TRANSP Q (X P (W Q I P))
(X P (ADD1 (W Q I P))) P)))

Our definitions ensure that every program has a fair execution. It follows that
Axioms 1 and 2 preserve the consistency of the logic. In fact, it is possible to ver-
ify this by explicitly defining functions X and W that may be shown mechanically
to satisfy these two axioms (see [Rus90]).

In the presence of these axioms, it is a simple matter to generate a term
corresponding to a given invariance property. If r and s are state terms for P,
then Formula (1) is satisfied by P iff the following term is true in the intended
model:

11



(IMPLIES (AND (EVAL ’r (X p I)) (LEQ I J)) (3)
(EVAL ’s (X p J3)))

In the special case r = T, this formula is equivalent to
(EVAL ’s (X p J)) (4)

The formulation of eventuality properties is complicated by the absence of
existential quantifiers. In order to circumvent this, we introduce a function N,
constrained by

Axiom 3

(AND (LEQ I (NI P R))
(IMPLIES (AND (EVAL R (X P K)) (LEQ I K))
(EVAL R (X P (NI PR)))))

Thus, if a state term r is satisfied by some state (X p K) in our fair execution
of P, where (LEQ I K), then (N I p ’r) is one such K. Axiom 3 clearly does
not violate the consistency of our theory.

Now, if r and s are state terms for P, then the eventuality property given
by Formula (2) is satisfied by P iff the following is true in the intended model:

(IMPLIES (EVAL ’r (X p I)) (EVAL ’s (X p (N I p ’s)))) (5)
In the special case r = T, this reduces to

(EVAL ’s (X p (N J p ’s))) (6)

5 Verification of Program properties

Proving conjectures of types (3) <(6) generally involves obscure induction ar-
guments that the prover is unable to construct without considerable guidance
from the user. However, since the same arguments are applicable to different
instances of these terms, they need only be carried out once and established as
rules of inference that may be applied repeatedly.

For example, instances of (4) may be proved by means of the following, which
allows the use of a previously derived invariant i in the proof of an invariant s
of a program p:

Derived Rule of Inference 1

(AND (PROGRAMP p)
(IMPLIES (INITIALP X0 p) (EVAL ’s X0))
(IMPLIES (AND (SUCCEEDSP X1 X2 p) (EVAL ’s X1) (EVAL ’i X1))
(EVAL ’s X2))
(EVAL ’i (X p 1))

12



(EVAL ’s (X p J))

In fact, instances of (4) may often be proved mechanically with no guidance other
than the instruction to apply Rule of Inference 1, possibly using some specified
established invariant i. For example, we may prove the partial correctness of
program BC' (formula (11) below) in this way by applying this rule to the term
generated by each of five invariance properties. The first of these states that Y1
is at least N &K, with equality holding at M3 and possibly at MO:

O(IF (EQUAL M °M3) (EQUAL Y1 (DIFFERENCE N K)) (7)
(OR (LESSP (DIFFERENCE N K) Y1)
(AND (EQUAL M ’MO)
(EQUAL Y1 (DIFFERENCE N K)))))

This invariant is proved without any hint, i.e., 1 = T in this case.
A similar invariant gives K as an upper bound on Y2; equality holds at D4
but not at D1, and Y2 > 0 at D2 and at D3:

O(AND (AND (NUMBERP Y2) (LEQ Y2 X)) (8)
(IF (EQUAL D ’D1) (LESSP Y2 K))
(IF (EQUAL D ’D4) (EQUAL Y2 K)
(OR (EQUAL D ’DO) (NOT (ZEROP Y2)))))

The proof of (8) involves the input condition of the program, which therefore
instantiates i in the rule of inference.

The next invariant, for which no hint is needed, states that Y1 + Y2&1 < N
at D2, and Y1 + Y2 < N elsewhere:

O(LEQ (PLUS Y1 (IF (EQUAL D ’D2) (SUB1 Y2) Y2)) N) (9)

The following result may be paraphrased as the invariance of Y3 = N!/(Y1!Y2!),
except that Y1 must be replaced by Y1 <1 at M2, and Y2 must be replaced by
Y2 &1 at D2 and at D3:

O(EQUAL Y3 (10)
(QUOTIENT (FACT N)
(TIMES (FACT (IF (EQUAL M ’M2)
(SUB1 Y1)
Y1))
(FACT (IF (MEMBER D ’ (D2 D3))

(SUB1 Y2)

¥2)))))

13



The proof of (10) depends on (7), (8), and (9), hence, in applying Derived Rule
of Inference 1, i is given as the conjunction of these three terms. This proof also
depends on a number of properties of natural numbers, including the theorem
that ¢! is divisible by the product a!b! under the assumption that a + b < c.
Once these properties are encoded and proved as rewrite rules, (10) may be
proved automatically.

Finally, the partial correctness result is derived as a consequence of (7), (8),
and (10):

O(IMPLIES (AND (EQUAL M °M3) (EQUAL D ’D4)) (11)
(EQUAL Y3 (BINOMIAL N K)))

Our method for verifying eventuality properties is based on well-founded
orderings of states. We identify a well-founded measure with respect to which
the state of P decreases as execution proceeds and such that the conjectured
property corresponds to a minimal value of the measure. This measure is repre-
sented as a term m, the value of which with respect to each state is an ordinal,
ie.,

(ORDINALP (EVAL 'm (X p I)))

is a theorem.

While in general there is no measure that decreases at each execution step,
we may find a measure that decreases under action by one process and remains
constant under action by all other processes. This process may vary from one
state to another, and is given by the value of some term h. If we can show
that this value remains constant and that the process is enabled as long as the
value of m is constant, then fairness may be invoked to show that the value of m
eventually decreases. The following rule formalizes this strategy for formulas of

type (6):
Derived Rule of Inference 2

(AND (PROGRAMP p)
(ORDINALP (EVAL ’m X))
(MEMBER (EVAL ’h X) (PROCESSES p))
(IMPLIES (EQUAL (EVAL ’m X1) (EVAL ’m X2))
(EQUAL (EVAL ’h X1) (EVAL ’h X2)))
(EVAL ’i (X p J))
(IMPLIES (AND (NOT (EVAL ’s X)) (EVAL ’i X))
(OR (ENABLEDP (EVAL ’h X) X)
(NOT (MEMBER (CDR (ASSOC (PC (EVAL ’h X)) X))
(NODES (EVAL ’h X))))))
(IMPLIES (AND (MEMBER Q (PROCESSES p)) (TRANSP Q X1 X2 p)
(EVAL ’i X1)
(NOT (EVAL ’s X1)) (NOT (EVAL ’s X2)))
(IF (EQUAL Q (EVAL ’h X1))
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(ORD-LESSP (EVAL ’m X2) (EVAL ’m X1))
(NOT (ORD-LESSP (EVAL ’m X1) (EVAL ’m X2))))))

(EVAL ’s X p (N J p ’s)))

The functions PC, NODES, and PROCESSES, which appear in this rule, return
the program counter and a list of the node labels of a process, and a list of the
processes of a program, respectively. Thus, according to the first four hypothe-
ses, m is an ordinal-valued measure and the value of h is a process of a program
p, which is the same for two states with the same measure.

The fifth hypothesis simply states that i is an invariant of p. The sixth
requires that with respect to any state that satisfies i but not s, the process
determined by h is enabled, assuming that the value of its program counter is a
valid node label. Finally, according to the seventh hypothesis, under action by
a process Q of p, as long as i is satisfied and s is not, the value of m decreases
if Q is the value of h and otherwise remains constant.

As an illustration of the utility of this rule, we shall describe a derivation of
the termination property

<& (AND (EQUAL M ’M3) (EQUAL D °D4))

of program BC', which completes a proof of its total correctness. In this case,
p is (BC) and ’s is the quotation of the above term. The construction of h is
based on the observation that prior to the halting of process m, it is possible to
traverse an arc of process d (namely the loop at D2) without progressing toward
termination. (It follows from (9) and (10) that the loop is never enabled once
process m has halted.) Thus, h is taken to be the term

(IF (EQUAL M °M3) (D) (M))

Next, we construct a term m representing a well-founded measure. This
measure will be a lexicographic order based on three components. Since Y1
decreases to 0 and Y2 increases to K as an execution approaches termination,
the primary component of our measure is the quantity (PLUS Y1 (DIFFERENCE
K Y2)). For fixed values of Y1 and Y2, the program counter M assumes the
successive values MO, M1, and M2, while D assumes the values D2, D3, DO, and D1.
Thus, the secondary and ternary components are

(LOC M ’ (M3 M2 M1 MO))
and
(LOC D ’(D4 D1 DO D3 D2))

respectively, where (LOC X L) is defined to be the number of entries in the
list L that precede the first occurrence of X. We make use of the function LEX3
(discussed in Section 2), defining m to be

(LEX3 (PLUS Y1 (DIFFERENCE K Y2))
(LOC M ’ (M3 M2 M1 MO))
(LOC D (D4 D1 DO D3 D2)))

The termination of BC' may now be established simply by invoking Rule 2.
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6 Conclusion

Although the Boyer-Moore system was originally intended for the verification
of properties of recursive functions, it has two important features that have
allowed us to model and verify properties of concurrent programs. One of these
is a built-in interpreter for the logic, which is essential to our scheme for encoding
program properties as terms. The other is a representation of the ordinals, which
allows proofs of eventuality properties based on arbitrarily complex well-founded
relations.

The theory outlined here has been implemented as a verification system
that has been used to produce mechanical proofs of correctness for a variety of
programs, including an incremental garbage collector [Rus91], several programs
that achieve mutual exclusion, and the example discussed herein. This system
is composed of a set of axioms that extend the basic theory of the Boyer-Moore
logic, along with a functional interface to the theorem prover that generates
terms corresponding to conjectured program properties.

Our extension to the basic theory, consisting of the axioms and definitions
of the functions introduced in Section 4, has been observed to be both provably
consistent and adequate for representing invariance and eventuality properties
of concurrent programs. Of course, the proofs of these properties may be quite
complicated. Generating or understanding them may require intimate knowl-
edge of the logic and theorem prover, especially the induction mechanism. For-
tunately, however, these proofs generally conform to several patterns, which have
been captured in the derived rules of inference presented in Section 5. These
rules have all been verified mechanically to produce only logical consequences
of our theory. While this process was somewhat tedious, requiring the proof
of several hundred auxilliary lemmas, the results have been found to be quite
useful, providing fairly quick derivations of conjectures that would otherwise
admit only very complicated proofs.

Our interface to the Boyer-Moore system includes a parser that allows a
concurrent program to be entered in the form of linear text (as in Figure 1),
automatically encoded as a constant in the logic, and mechanically verified
to satisfy our definitions. The generation of a term corresponding to a given
conjectured property of a program, expressed as an instance of either (6) or
(7), is then also performed automatically. Finally, this term is submitted to the
theorem prover, along with a rule of inference selected according to its form.
A hint facility allows the user to identify previously established properties to
be used in a proof, as well as (in the case of eventuality properties) a relevant
well-founded measure.

The value of this proof system lies in its utilization of the power of the
Boyer-Moore prover through a scheme that shields its user from the details of
its implementation. Thus, once the requisite arithmetic rewrite rules were estab-
lished, the correctness of our example binomial coefficient program could have
been verified by a user with no knowledge of either the internal representation
of the program and its properties or the operation of the prover. It should be
noted, however, that in order to guide our system effectively, one must begin
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with a general notion of the structure of the proof of a given conjecture. The
system can only be expected to relieve the user of the more tedious aspects of
the proof process.
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