
Contents1 Introdution 12 Floating Point Arithmeti 32.1 Bit Vetors . 42.2 Floating Point Representations . 92.3 Rounding . 113 Multipliation 153.1 The Program FPU-MUL . 153.2 Basi Results . 183.3 The Operations OP-MUL, OP-DIV, and OP-SQRT 213.4 The Operation OP-LAST . 273.5 The Operation OP-BACK . 294 Division and Square Root 324.1 The Program FPU-DIV-SQRT . 324.2 Initial Approximation . 324.3 The Operation OP-DIV . 384.4 The Operation OP-SQRT . 424.5 Final Rounding . 475 Conlusion 52

i

A Mehanially Cheked Proof of IEEE Complianeof the Floating Point Multipliation, Division, andSquare Root Algorithms of the AMD-K7TM ProessorDavid M. Russino�Advaned Miro Devies, In.Austin, TXJanuary 28, 1998AbstratWe desribe a mehanially veri�ed proof of orretness of the oating pointmultipliation, division, and square root instrutions of The AMD-K7 miropro-essor. The instrutions are implemented in hardware and represented here byregister-transfer level spei�ations, the primitives of whih are logial operationson bit vetors. On the other hand, the statements of orretness, derived from IEEEStandard 754, are arithmeti in nature and onsiderable more abstrat. Therefore,we begin by developing a theory of bit vetors and their role in oating point repre-sentations and rounding. We then present the hardware model and a rigorous proofof its orretness. All of our de�nitions, lemmas, and theorems have been formallyenoded in the ACL2 logi, and every step in the proof has been mehaniallyheked with the ACL2 prover.1 IntrodutionOne of the hallenges of formal hardware veri�ation is the \semanti gap" betweenabstrat behavioral spei�ations and onrete hardware models. Dealing e�etivelywith this problem requires a formalism that is exible enough to represent onepts atdi�erent levels of abstration. In partiular, spei�ations of oating point operationsare most naturally expressed in numerial terms, while their hardware implementationsare ommonly modeled at the level of registers and bit vetors.Conventional mathematial analysis may be usefully applied to numerial algorithms,but generally fails to provide any assurane regarding the orretness of hardware imple-mentations. On the other hand, automati �nite-state tehniques, whih have been usedto verify low-level spei�ations of arithmeti iruits [3, 4℄, lak the expressive powerto represent high-level mathematial properties. General-purpose theorem provers o�eran important alternative to �nite-state tools, as they provide a framework for formalnumerial analysis as well as mehanial support for heking properties of detailedlow-level models.In our previous work [8℄ and that of Moore et al. [6℄ on the AMD-K5 oating pointunit, the ACL2 theorem prover [1℄ was used to support the veri�ation of the IEEEompliane [5℄ of the AMD-K5 oating point division and square root operations. The1

implementation of these instrutions was based on miroode that aessed existinghardware for addition, subtration, multipliation, and rounding. It was appropriate,therefore, to model the instrutions in a language in whih the primitive operationsinluded the omputation of rounded produts and sums, whih were assumed to be im-plemented orretly. Consequently, the analysis was onveniently limited to the familiarrealm of oating point numbers and rational arithmeti.In ontrast, the division and square root instrutions of the AMD-K7 miroproessor,whih were reently designed at AMD by Stuart Oberman [7℄, are implemented diretlyin hardware. In order to gain on�dene in their orretness, it is desirable to modelthese instrutions at the register-transfer level, where the basi operations are logialfuntions of bit vetors. Veri�ation then requires bridging the gap between these low-level data and operations and the abstrat mathematial objets and funtions that theyrepresent.The subjet of this paper is a mehanially veri�ed proof of orretness of the AMD-K7 oating point multipliation, division, and square root instrutions. The proof isbased on a formal desription of the hardware, derived from an exeutable model thatwas written in C and used for preliminary testing. The instrutions are de�ned in termsof bitwise logial operations and integer addition and multipliation, whih are treatedas primitives.The statements of orretness are based on IEEE standard 754 [5℄, whih stipulatesthat eah operation... shall be performed as if it �rst produed an intermediate result orret toin�nite preision and with unbounded range, and then rounded that resultaording to one of the [supported℄ modesThus, if rnd(x; r; p) denotes the result of rounding a number x aording to a spei�edrounding mode r and degree of preision p, and u is the value omputed for the produtof oating point numbers a and b in the ontext of r and p, thenu = rnd(a � b; r; p): (1)Similarly, if v and w are the values omputed for the quotient of a and b, and the squareroot of b, respetively, then v = rnd(a=b; r; p) (2)and w = rnd(pb; r; p): (3)The deision to use ACL2, however, has inuened our formulation of this last spei-�ation. As a subset of Common Lisp [9℄, ACL2 inludes the rational numbers as a datatype but not the reals. Consequently, we are somewhat limited in our formalization.The reader will notie that many of our lemmas are truths about real numbers but arepresented here as propositions of rational arithmeti. More ritially, sine the squareroot itself is not a rational funtion, we are unable to formalize Equation (3) diretly.Instead, we prove the following rational version: For any nonnegative rational numbers` and h, if `2 � P � h2, thenrnd(`; r; p) � w � rnd(h; r; p): (4)As shown in [8℄, the equivalene of (3) and (4) is a simple onsequene of (a) the mono-toniity of rounding, and (b) the observation that for �xed r and p, the funtion rndis onstant in some neighborhood of any given irrational number.2

Applied to the design of a devie as omplex as a oating point divider, mathemat-ial proof provides a level of on�dene that annot be ahieved through testing alone.In the present ase, initial proof attempts revealed two design aws that had survivedsome 80 million test vetors. The value of mehanial veri�ation in this ontext isalso lear: omprehensive analysis of a ommerial oating point design is diÆult ifnot impossible without omputer assistane; in any ase, the level of investment in itsorretness requires a more eÆient means of assurane than the onventional soialproess by whih mathematial results are usually on�rmed. This is not an argument,however, for irumventing the normal review proess. The obligation to support asienti� laim annot be satis�ed simply by announing that its orretness has beenaÆrmed by an arane automated proof system, the soundness of whih itself is open toquestion. Moreover, the advantages of a oherent, surveyable proof extend beyond theissue of reliability: it is the only means by whih a theory or result may be fully under-stood, applied, generalized, and assimilated into the mathematial domain. Traditionalmathematial notation is learly a better hoie of medium for suh an exposition thanany formal language.Sine mahine-assisted proofs have inherent advantages as well as disadvantages withrespet to more traditional methods, we endeavor to ombine the bene�ts of both ap-proahes. In the following setions, we present a detailed proof of orretness, basedon elementary mathematis and using only standard terminology and notation. In Se-tion 2, we establish a general theory of oating point numbers, whih should be reusablein a wide variety of appliations. This is an extension of the theory presented in [8℄,inluding some additional properties of the rounding funtions, but more signi�antly,a omprehensive treatment of bit vetors and their role in oating point representa-tion. The spei� hardware model is presented in Setions 3 and 4, along with preiseformulations and detailed proofs of the above Equations (1), (2), and (4).For the most part, eah step in the proof may be readily heked by hand, requiringno speial bakground in either mathematis or omputer hardware. The only exep-tion ours in Setion 4.2, where the auray of an approximation derived from a setof tables depends on properties of the tables that an only be veri�ed by extensive (al-though straightforward) omputation, involving approximately 105 table aesses and106 arithmeti operations. The results of these alulations are stated without proof inLemmas 4.1, 4.2, and 4.3.On the other hand, along with the table alulations, every step in the proof, inlud-ing every theorem and lemma presented below, has been formally enoded in the ACL2logi and mehanially heked with the ACL2 prover, in the interest of eliminating thepossibility of human error. The input to the prover, ulminating in formal versions ofour three main theorems, onsisted of some 250 de�nitions and 3000 lemmas, in additionto the relevant de�nitions and lemmas of the previously developed general theory [8℄.For the interested reader, the �les ontaining this input are inluded as an appendix.2 Floating Point ArithmetiThis setion is a formalization of the oating point representation of rational numbersand rounding. The sets of rational numbers, positive rationals, integers, positive integers,and natural numbers (nonnegative integers) will be denoted by the symbols Q;Q+ ;Z;Z+,and N, respetively. If m 2 Z, n 2 Z+, and m = nq+ r, where q 2 Z, r 2 N, and r < n,then we shall write rem(m;n) = r. 3

For x 2 Q, bx and dxe denote the oor and eiling of x, respetively, de�ned to bethe unique integers satisfying bx � x < bx+1 and dxe � x > dxe�1: We shall assumefamiliarity with the basi properties of these funtions, inluding the following:(1) If n 2 Z, then bx+ n = bx+ n.(2) If n 2 Z+, then bbx=n = bx=n.(3) If m 2 Z and n 2 Z+, then b�(m+ 1)=n = �bm=n � 1.2.1 Bit VetorsWe shall exploit the natural orrespondene between the bit vetors of length n andthe natural numbers in the range 0 � x < 2n, under whih the vetor bn�1bn�2 � � � b1b0,where eah bk 2 f0; 1g, orresponds to x = Pn�1k=0 2kbk. The kth bit of x, x[k℄ = bk, isformally de�ned as follows:De�nition 2.1 For all x; k 2 N, x[k℄ = rem(bx=2k; 2).We have the following alternate haraterization of x[k℄:Lemma 2.1 For all x; k 2 N, x[k℄ = � rem(x; 2) if k = 0bx=2[k � 1℄ if k > 0:Proof: For k > 0, x[k℄ = rem(bx=2k; 2) = rem(bbx=2=2k�1; 2) = bx=2[k � 1℄:2Lemma 2.2 For all x; n; k 2 N,(a) if x < 2n, then x[n℄ = 0;(b) if k < n and 2n � 2k � x < 2n, then x[k℄ = 1.Proof: (a) x[n℄ = rem(bx=2n; 2) = rem(0; 2) = 0.(b) Sine 2n�k � 1 � x=2k < 2n�k, rem(bx=2k; 2) = rem(2n�k � 1; 2) = 1. 2Lemma 2.3 For all x;m; n 2 N,(a) (x+ 2n)[n℄ 6= x[n℄; (b) if m > n, then rem(x; 2m)[n℄ = x[n℄.Proof: For any m � n and q 2 N,(x+ 2mq)[n℄ = rem(b(x + 2mq)=2n; 2) = rem(bx=2n+ 2m�nq; 2):If m = n, then rem(bx=2n+ 2m�n; 2) = rem(bx=2n+ 1; 2) 6= rem(bx=2n; 2) = x[n℄;if m > n, then 2m�nq is even and rem(bx=2n+ 2m�nq; 2) = rem(bx=2n; 2) = x[n℄: 2The left and right shift funtions take three arguments: a bit vetor x, its length n,and a value s 2 f0; 1g to be shifted in:De�nition 2.2 Let x; n; s 2 N with x < 2n and s < 2.(a) shl(x; s; n) = rem(2x+ s; 2n); (b) shr(x; s; n) = bx=2+ 2n�1s.Conatenation is also a funtion of three arguments: two bit vetors, x and y, andthe length n of y:De�nition 2.3 For all x; y; n 2 N, at(x; y; n) = 2nx+ y.4

The following funtion extrats a �eld of bits:De�nition 2.4 For all x; i; j 2 N, x[i : j℄ = brem(x; 2i+1)=2j.Lemma 2.4 For all x; y; i; j 2 N, if rem(x; 2i+1) = rem(y; 2i+1), then x[i : j℄ = y[i : j℄:Proof: x[i : j℄ = brem(x; 2i+1)=2j = brem(y; 2i+1)=2j = y[i : j℄. 2Lemma 2.5 For all x; i; j; k; ` 2 N,(a) if i � k and j � k, then x[i : j℄ = bx=2k[i� k : j � k℄;(b) if i � j + k, then x[i : j℄[k℄ = x[k + j℄;() if i � j + k, then x[i : j℄[k : `℄ = x[k + j : `+ j℄.Proof: (a) Let x = 2i+1q + r, where 0 � r < 2i+1. Thenbx=2k = b2i�k+1q + r=2k = 2i�k+1q + br=2k;hene rem(bx=2k; 2i�k+1) = br=2kand bx=2k[i� k : j � k℄ = bbr=2k=2j�k = br=2j = brem(x; 2i+1)=2j = x[i : j℄:(b) Using Lemma 2.3,x[i : j℄[k℄ = rem(bbrem(x; 2i+1)=2j=2k; 2) = rem(brem(x; 2i+1)=2k+j; 2)= rem(x; 2i+1)[k + j℄ = x[k + j℄:() Using (a),x[i : j℄[k : `℄ = bx=2j[i� j : 0℄[k : `℄ = rem(bx=2j; 2i�j+1)[k : `℄= brem(rem(bx=2j; 2i�j+1); 2k+1)=2` = brem(bx=2j; 2k+1)=2`= bx=2j[k : `℄ = x[k + j : `+ j℄:2We have two unary operations on bit vetors, omplement and derement:De�nition 2.5 For all x; n 2 N, if x < 2n, then(a) omp1(x; n) = 2n � x� 1; (b) de1(x; n) = rem(2n + x� 1; 2n).We have three binary logial operations, and, or, and exlusive or:De�nition 2.6 For all x; y 2 N,(a) x & y = 8<: 0 if x = 02(bx=2 & by=2) + 1 if x and y are both odd2(bx=2 & by=2) otherwise:(b) x | y = 8<: y if x = 02(bx=2 | by=2) if x and y are both even2(bx=2 | by=2) + 1 otherwise:() x ^ y =8<: y if x = 02(bx=2 ^ by=2) if rem(x; 2) = rem(y; 2)2(bx=2 ^ by=2) + 1 otherwise:5

The remainder of this subsetion is a olletion of properties of the binary logialoperations.Lemma 2.6 For all x; y 2 N,(a) x & y = 2(bx=2 & by=2) + (rem(x; 2) & rem(y; 2));(b) x | y = 2(bx=2 | by=2) + (rem(x; 2) | rem(y; 2)).Proof: The equivalenes are easily heked for all possible values of rem(x; 2) andrem(y; 2). 2Lemma 2.7 For all x; y; z 2 N,(a) x & 0 = 0; (e) (x & y) & z = x & (y & z);(b) x | 0 = x; (f) (x | y) | z = x | (y | z);() x & y = y & x; (g) x | (y & z) = (x | y) & (x | z);(d) x | y = y | x; (h) x & (y | z) = (x & y) | (x & z).Proof: First note that Lemma 2.6 impliesb(x & y)=2 = bx=2 & by=2 and rem(x & y; 2) = rem(x; 2) & rem(y; 2)and b(x | y)=2 = bx=2 | by=2 and rem(x | y; 2) = rem(x; 2) | rem(y; 2):We shall prove (h); the other proofs are similar:It is easily veri�ed that the statement holds for arguments in f0; 1g. Thus,rem(x & (y | z); 2) = rem(x; 2) & rem(y | z; 2)= rem(x; 2) & (rem(y; 2) | rem(z; 2))= (rem(x; 2) & rem(y; 2)) | (rem(x; 2) & rem(z; 2))= rem(x & y; 2)) | (rem(x & z; 2)= rem((x & y) | (x & z); 2):Now, by indutive hypothesis,b(x & (y | z))=2 = bx=2 & b(y | z)=2= bx=2 & (by=2 | bz=2)= (b(x & y)=2) | (b(x & z)=2)= (bx=2 & by=2) | (bx=2 & bz=2)= b((x & y) | (x & z))=2:Therefore, x & (y | z) = b(x & (y | z))=2+ rem(x & (y | z); 2)= b((x & y) | (x & z))=2+ rem((x & y) | (x & z); 2)= (x & y) | (x & z):2Lemma 2.8 Let x; y; n 2 N.(a) if x < 2n and y < 2n, then x | y < 2n;(b) if y < 2n, then (2nx) | y = 2nx+ y;() (2nx) | (2ny) = 2n(x | y);(d) rem(x | y; 2n) = rem(x; 2n) | rem(y; 2n).6

Proof: (a) For n > 0, bx=2 < 2n�1 and by=2 < 2n�1, whih implies bx=2 | by=2 <2n�1, hene x | y � 2(bx=2 | by=2) + 1 � 2(2n�1 � 1) + 1 < 2n:(b) For n > 0, sine by=2 < 2n�1,(2nx) | y = 2(b2nx=2 | by=2) + rem(2nx; 2) | rem(y; 2)= 2(2n�1x | by=2) + 0 | rem(y; 2)= 2(2n�1x+ by=2) + rem(y; 2)= 2nx+ 2by=2+ rem(y; 2)= 2nx+ y:() For n > 0,(2nx) | (2ny) = 2(b2nx=2 | b2nx=2) + rem(2nx; 2) | rem(2ny; 2)= 2(2n�1x | 2n�1y) + 0 | 0 = 2(2n�1(x | y)) + 0= 2n(x | y):(d) Let x = 2nq1 + r1 and y = 2nq2 + r2, where 0 � r1 < 2n and 0 � r2 < 2n. Thenx | y = (2nq1 + r1) | (2nq2 + r2) = (2nq1 | r1) | (2nq2 | r2)= (2nq1 | 2nq2) | (r1 | r2) = (2n(q1 | q2)) | (r1 | r2)= 2n(q1 | q2) + (r1 | r2):But r1 | r2 < 2n, hene rem(x | y; 2n) = r1 | r2 = rem(x; 2n) | rem(y; 2n). 2Lemma 2.9 Let x; y; n 2 N.(a) x & y � x; () rem(x & y; 2n) = rem(x; 2n) & y;(b) 2nx & y = 2n(x & by=2n); (d) if x < 2n, then x & y = x & rem(y; 2n).Proof: (a) If x = 0, then x & y = 0 � x, and for x > 0,x & y = 2(bx=2 & by=2) + (rem(x; 2) & rem(y; 2)) � 2bx=2+ rem(x; 2)= x:(b) For n > 0,2nx & y = 2(b2nx=2 & by=2) + rem(2nx; 2) & rem(y; 2)= 2(2n�1x & by=2) + 0 & rem(y; 2)= 2(2n�1(x & bby=2=2n�1)) + 0= 2n(x & by=2n):() Let x = 2nq + r, 0 � r < 2n. Then 0 � r & y � r < 2n andx & y = (2nq + r) & y = (2nq | r) & y= (2nq & y) | (r & y) = (2n(q & by=2n) | (r & y)= (2n(q & by=2n) + (r & y):Therefore, rem(x & y; 2n) = r & y = rem(x; 2n) & y.(d) Sine x & y � x < 2n, x & y = rem(x & y; 2n) = x & rem(y; 2n): 27

Lemma 2.10 Let x; y; n 2 N.(a) (x & y)[n℄ = x[n℄ & y[n℄; (b) (x | y)[n℄ = x[n℄ | y[n℄.Proof: The proofs are similar; we present the proof of (a), whih proeeds by indu-tion: For n = 0,(x & y)[0℄ = rem(x & y; 2) = rem(x; 2) & rem(y; 2) = x[0℄ & y[0℄;for n > 0, (x & y)[n℄ = b(x & y)=2[n� 1℄ = (bx=2 & by=2)[n� 1℄= bx=2[n� 1℄ & by=2[n� 1℄ = x[n℄ & y[n℄:2Lemma 2.11 Let x; n; k 2 N, k < n.(a) x & 2k = 2kx[k℄; () x & (2n � 2k) = 2k(x[n� 1 : k℄);(b) x | 2k = x+ 2k(1� x[k℄);Proof: (a) In the ase k = 0, we havex & 1 = 2(bx=2 & 0) + rem(x; 2) = rem(x; 2) = x[0℄;and for k > 0, by Lemma 2.1,x & 2k = 2(bx=2 & 2k�1) = 2(2k�1bx=2[k � 1℄) = 2kx[k℄:(b) For k = 0, we havex | 1 = 2(bx=2 | 0) + 1 = 2bx=2+ 1 = x+ 1� rem(x; 2) = x+ 1� x[0℄;and for k > 0,x | 2k = 2fbx=2 | 2k�1g+ rem(x; 2)= 2�bx=2+ 2k�1(1� bx=2[k � 1℄)	+ rem(x; 2)= 2bx=2+ rem(x; 2) + 2k(1� bx=2[k � 1℄)= x+ 2k(1� x[k℄):() It suÆes to prove the identity under the assumption x < 2n, beause then, byLemmas 2.9 and 2.4, we have for arbitrary x:x & (2n � 2k) = rem(x; 2n) & (2n � 2k) = rem(x; 2n)[n : k℄ = x[n : k℄:For k = 0, we show by indution that x & (2n � 1) = x. The ase n = 0 is trivial,and for n > 0, sine b(2n � 1)=2 = 2n�1 � 1; we havex & (2n � 1) = 2(bx=2 & (2n�1 � 1)) + rem(x; 2)= 2bx=2+ rem(x; 2) = x:Now, for k > 0,x & (2n � 2k) = 2(bx=2 & (2n�1 � 2k�1)) = 2 � 2k�1bx=2[n� 2 : k � 1℄= 2kbrem(bx=2; 2n�1)=2k�1 = 2kbbx=2=2k�1= 2kbx=2k = 2k(x[n� 1 : k℄):28

Lemma 2.12 Let n; k; ` 2 N, ` � k < n. Then(2n � 2` � 1) & (2n � 2k) = � 2n � 2k+1 if ` = k2n � 2k if ` < k:Proof: Applying Lemma 2.11 (), we have(2n � 2` � 1) & (2n � 2k) = 2k(2n � 2` � 1)[n� 1 : k℄ = 2kb(2n � 2` � 1)=2k= 2k(2n�k + b�(2` + 1)=2k= 2n � 2k(b2`�k+ 1):22.2 Floating Point RepresentationsFloating point representation is based on the observation that every nonzero rationalnumber x admits a unique fatorization,x = sgn(x)sig(x)2expo(x);where sgn(x) 2 f1;�1g (the sign of x), 1 � sig(x) < 2 (the signi�and of x), andexpo(x) 2 Z (the exponent of x).De�nition 2.7 Let x 2 Q. If x 6= 0, then(a) sgn(x) = x=jxj;(b) expo(x) is the unique integer that satis�es 2expo(x) � jxj < 2expo(x)+1;() sig(x) = jxj2�expo(x).A oating point representation of x onsists of three bit vetors, orresponding tosgn(x), sig(x), and expo(x). A format is de�ned by the number of bits alloated tosig(x) and expo(x):De�nition 2.8 Let � = (�; �) 2 Z+ � Z+. Then � is a oating point format. A �-enoding is a triple (s;m; e) 2 N � N � N suh that s < 2, m < 2�, and e < 2�.If z = (s;m; e), then s = get-sign(z), m = get-man(z), and e = get-expo(z). Ifm � 2��1, then z is a normal �-enoding.The formats that are supported by the AMD-K7 oating point operations inlude(24; 7), (53; 10), and (64; 15), whih orrespond to single, double, and extended preisionas spei�ed by IEEE, as well as a larger format, (68; 18). In addition, in order to allow forthe rounding error inurred by our iterative division and square root algorithms, whihare required to produe results that are orretly rounded to 68 bits, the multiplier mustsupport a somewhat more preise internal format. One of the objetives of our analysis isto determine the minimum required size of this format, and hene the minimum widthof the multiplier. Thus, we introdue an integer parameter M , whih represents themultiplier width and determines the internal format (M; 18). We assume that M � 75,for as we shall see in Setion 4, our proofs of orretness for division and square rootwill depend on this onstraint.In our formulation of the algorithms, the oating point formats are enoded as sym-bols:De�nition 2.9 A preision ontrol spei�er is any of the symbols9

PC-32, PC-64, PC-80, PC-87, and PC-*,whih orrespond to the oating point formats(24; 7), (53; 10), (64; 15), (68; 18), and (M; 18),respetively. The �rst four of these symbols are alled external preision ontrol spei-�ers. If � is any preision ontrol spei�er and � = (�; �) is the orresponding format,then mbits(�) = �:The number x represented by a normal (�; �)-enoding (s;m; e) is given by sgn(x) =(�1)s, sig(x) = 2��1m, and expo(x) = e� (2��1 � 1). Thus, the exponent is biased inorder to provide for an exponent range 1� 2��1 � expo(x) � 2��1:De�nition 2.10 Let z = (s;m; e) be a �-enoding, where � = (�; �) is a oating pointformat. Then deode(z; �) = (�1)s �m � 2e�2��1��+2: In the ase � = (M; 18), we shalldesignate x simply as an enoding, and deode(x; (M; 18)) will be denoted as x̂.Our haraterization of the rational numbers that are represented by normal enod-ings is based on the following:De�nition 2.11 Let x 2 Q and n 2 Z+. Then x is n-exat i� sig(x)2n�1 2 Z.The following basi property of n-exat numbers is proved in [8℄:Lemma 2.13 If x 2 Q+ , n 2 Z+, and x is n-exat, then the least n-exat number thatis greater than x is x+ 2expo(x)+1�n.We shall also require this trivial haraterization of n-exat bit vetors:Lemma 2.14 Let x; n; k 2 Z+, 2n�1 � x < 2n. and k < n. The following are equiva-lent: (a) 2k divides x; () x[n� 1 : k℄ = x=2k;(b) x is (n� k)-exat; (d) x[k � 1 : 0℄ = 0.De�nition 2.12 Let x 2 Q and let � = (�; �) be a oating point format. Then x is�-representable i� x is �-exat and �2��1+1 � expo(x) � 2��1. If � = (M; 18), thenwe shall say that x is representable.The inverse of deode is given by the following:De�nition 2.13 Let � = (�; �) be a oating point format and let x be �-representable,x 6= 0. Then enode(x; �) = (s;m; e); where(a) if sgn(x) = 1, then s = 0, and if sgn(x) = �1, then s = 1;(b) m = sig(x)2��1;() e = expo(x) + 2��1 � 1.Lemma 2.15 Let � = (�; �) be a oating point format, let z = (s;m; e) be a normal�-enoding, and let x = deode(z; �).(a) sgn(x) = (�1)s; (d) x is �-representable;(b) sig(x) = m=2��1; (e) enode(x; �) = z.() expo(x) = e� 2��1 + 1;Proof: Let � = (�; �). Thenx = (�1)sm2e�(2��1�1)��+1 = (�1)s(m21��)2e�(2��1�1):But 2��1 � m < 2� yields 1 � m21�� < 2, whih implies (a), (b), and (). Now (d)follows from the relation 0 � e < 2�, and (e) from De�nition 2.13. 210

2.3 RoundingA rounding mode is a funtion M that omputes an n-exat number M(x; n) orre-sponding to an arbitrary rational x and a degree of preision n 2 Z+. We de�ne �verounding modes:De�nition 2.14 A rounding mode is any of the funtions trun, away, near, inf,and minf, where, for x 2 Q and n 2 Z+,(a) trun(x; n) = sgn(x)b2n�1sig(x)2expo(x)�n+1;(b) away(x; n) = sgn(x)d2n�1sig(x)e2expo(x)�n+1;() if z = b2n�1sig(x) and f = 2n�1sig(x)� z, thennear(x; n) = 8>><>>: trun(x; n) if f < 1=2away(x; n) if f > 1=2trun(x; n) if f = 1=2 and z is evenaway(x; n) if f = 1=2 and z is odd;(d) inf(x; n) = � away(x; n) if x � 0trun(x; n) if x < 0;(e) minf(x; n) = � trun(x; n) if x � 0away(x; n) if x < 0:Only four of these modes are supported by the IEEE standard. In our representationof the algorithms, they will be enoded as symbols:De�nition 2.15 A rounding ontrol spei�er is any of the symbolsRC-CHOP, RC-POS, RC-NEG, and RC-NEAR,whih orrespond to the rounding modestrun, inf, minf, and near,respetively. Let � be a rounding ontrol spei�er orresponding to the rounding modeM, let � be a preision ontrol spei�er, and let x 2 Q. Thenrnd(x; �; �) =M(x;mbits(�)):Some of the basi properties of the rounding modes, whih are proved in [8℄, arelisted in the following eight lemmas:Lemma 2.16 If x 2 Q, M is a rounding mode, and n 2 Z+, then(a) sgn(M(x; n)) = sgn(x);(b) if M2 ftrun; away; nearg, thenM(�x; n) = �M(x; n).Lemma 2.17 If x; y 2 Q, x � y,M is a rounding mode, and n 2 Z+, thenM(x; n) �M(y; n):11

Lemma 2.18 If x 2 Q, M is a rounding mode, and n 2 Z+, then(a)M(x; n) is n-exat; (b) if x is n-exat, then x =M(x; n).Lemma 2.19 If x 2 Q, M is a rounding mode other than near, m;n 2 Z+, and m � n,then M(M(x; n);m) =M(x;m):Lemma 2.20 If x 2 Q and n 2 Z+, thenjxj � 2expo(x)�n+1 < jtrun(x; n)j � jxj � jaway(x; n)j < jxj+ 2expo(x)�n+1:Lemma 2.21 If x 2 Q and n 2 Z+, then(a) expo(trun(x; n)) = expo(x);(b) expo(away(x; n)) = expo(x) unless jaway(x; n)j = 2expo(x)+1.Lemma 2.22 If x; a 2 Q, n 2 Z+, and a is n-exat, then(a) if a � jxj, then a � jtrun(x; n)j; (b) if a � jxj, then a � jaway(x; n)j.Lemma 2.23 Let x; y 2 Q and n 2 Z+. If y is n-exat, then jx� yj � jx�near(x; n)j.We shall require a number of properties in addition to the above. The next lemmaprovides an implementation of trunation of bit vetors.Lemma 2.24 Let x;m; n; k 2 N. If 0 < k < n � m and 2n�1 � x < 2n, thentrun(x; k) = x & (2m � 2n�k):Proof: By Lemma 2.11,trun(x; k) = b2k�1�expo(x)x2expo(x)+1�k = bx=2n�k2n�k= 2n�k(x[n� 1 : n� k℄) = x & (2n � 2n�k):But by Lemma 2.9,x & (2m � 2n�k) = x & rem(2m � 2n�k; 2n) = x & (2n � 2n�k):2Lemma 2.24 is also the basis for our implementations of the other rounding modes,whih therefore must be haraterized in terms of trunation:Lemma 2.25 Let x 2 Q+ , m 2 Z+, and n 2 Z+. If x is m-exat and m � n, thenaway(x; n) = trun(x+ 2expo(x)+1(2�n � 2�m); n):Proof: Let a = trun(x+ 2expo(x)+1(2�n � 2�m); n). Sinea < x+ 2expo(x)+1�n � away(x; n) + 2expo(away(x;n))+1�n;a � away(x; n) by Lemma 2.13.If x is n-exat, then a � trun(x; n) = x = away(x; n), and hene a = away(x; n).Thus, we may assume x is not n-exat. But then sine x > trun(x; n) and x is m-exat,x � trun(x; n) + 2expo(x)+1�m12

and henex+ 2expo(x)+1(2�n � 2�m) � trun(x; n) + 2expo(x)+1�n = away(x; n);whih implies a � away(x; n). 2The remainder of this setion addresses the properties of near rounding, onludingwith its haraterization as a trunated sum.Lemma 2.26 If x 2 Q and n 2 Z+, then jx� near(x; n)j � 2expo(x)�n.Proof: By Lemma 2.16, we may assume x > 0. Let a = trun(x; n) + 2expo(x)+1�n.By Lemmas 2.18 and 2.23, if the statement fails, thentrun(x; n) < x� 2expo(x)�n < x+ 2expo(x)�n < away(x; n);hene a < away(x; n). Then by Lemmas 2.13 and 2.22(a), we have a < x, ontraditingLemma 2.22(b). 2Lemma 2.27 Let x 2 Q and n 2 Z+. If x is (n+ 1)-exat but not n-exat, then(a) trun(x; n) = x� sgn(x)2expo(x)�n; (b) away(x; n) = x+ sgn(x)2expo(x)�n:Proof Again we may assume x > 0. Let a = x � 2expo(x)�n and b = x + 2expo(x)�n.Sine x > 2expo(x), x � 2expo(x) + 2expo(x)+1�n by Lemma 2.13, hene a � 2expo(x) andexpo(a) = expo(x).By hypothesis, x2n�expo(x) is odd. Let x2n�expo(x) = 2k + 1. Thena2n�1�expo(a) = (x� 2expo(x)�n)2n�1�expo(x) = (2k + 1)=2� 1=2 = k 2 Z:Thus, a is n-exat, and by Lemma 2.13, so is a+2expo(a)+1�n = b. Now by Lemma 2.22,a � trun(x; n), but if a < trun(x; n), then Lemma 2.13 would imply b � trun(x; n),ontraditing x < b. This establishes (a), and the proof of (b) is similar. 2Lemma 2.28 Let x; a 2 Q+ , and n 2 Z+. If a is n-exat, then(a) if x > a+ 2expo(a)�n, then near(x; n) � a+ 2expo(a)+1�n;(b) if x < a+ 2expo(a)�n, then near(x; n) � a;() if x > a� 2expo(x)�n, then near(x; n) � a.Proof: (a) Let b = a + 2expo(a)+1�n. If near(x; n) < b, then Lemma 2.13 yieldsnear(x; n) � a, hene jnear(x; n)� xj > jnear(x; n) � bj; ontraditing Lemma 2.23.(b) If near(x; n) > a, then near(x; n) � b, and a ontradition may be derived asin (a).() By Lemma 2.17, we may assume x < a. Let = a�2expo(x)+1�n. Then < x < a.Sine a > x � 2expo(x), a � 2expo(x) + 2expo(x)+1�n, and hene x > � 2expo(x), whihimplies expo() = expo(x). But expo() � expo(a) and therefore2n�1�expo() = a2n�1�expo() � 1 2 Z;i.e., is n-exat. Now sine x > a�2expo(x)�n = +2expo()�n; (a) implies near(x; n) �+ 2expo()+1�n = a: 2Lemma 2.29 Let n 2 Z, n > 1, and x 2 Q. If x is (n+ 1)-exat but not n-exat, thennear(x; n) is (n� 1)-exat. 13

Proof: Again we may assume x > 0. Let z = b2n�1sig(x) and f = 2n�1sig(x)� z.Sine 2n�1sig(x) =2 Z, 0 < f < 1. But 2nsig(x) = 2z+2f 2 Z, hene 2f 2 Z and f = 12 .If z is even, then near(x; n) = trun(x; n) = z2expo(x)+1�nand by Lemma 2.21,2n�2�expo(near(x;n))near(x; n) = 2n�2�expo(x)z2expo(x)+1�n = z=2 2 Z:If z is odd, then near(x; n) = away(x; n) = (z + 1)2expo(x)+1�n:We may assume away(x; n) 6= 2expo(x)+1, hene by Lemma 2.21,2n�2�expo(near(x;n))near(x; n) = 2n�2�expo(x)(z + 1)2expo(x)+1�n = (z + 1)=2 2 Z:2Lemma 2.30 Let n 2 Z, n > 1, and x 2 Q+ . If x+ 2expo(x)�n � 2expo(x)+1, thennear(x; n) = 2expo(x)+1 = trun(x+ 2expo(x)�n; n):Proof: Suppose near(x; n) 6= 2expo(x)+1. Then Lemma 2.21 implies near(x; n) <2expo(x)+1 and by Lemmas 2.13 and 2.26,2expo(x)+1 � near(x; n) + 2expo(x)+1�n � x� 2expo(x)�n + 2expo(x)+1�n= x+ 2expo(x)�n � 2expo(x)+1:It follows that x = 2expo(x)+1 � 2expo(x)�n is (n + 1)-exat but not n-exat, whilenear(x; n) = 2expo(x)+1 � 2expo(x)+1�n is n-exat but not (n � 1)-exat, ontraditingLemma 2.29.Now suppose 2expo(x)+1 6= trun(x + 2expo(x)�n; n). Sine 2expo(x)+1 is n-exat,2expo(x)+1 < trun(x+ 2expo(x)�n; n) by Lemma 2.22. But then by Lemma 2.13,trun(x+ 2expo(x)�n; n) � 2expo(x)+1 + 2expo(x)+2�n > x+ 2expo(x)�n:2Lemma 2.31 If n 2 Z, n > 1, and x 2 Q+ , thennear(x; n) = � trun(x+ 2expo(x)�n; n� 1) if x is (n+ 1)-exat but not n-exattrun(x+ 2expo(x)�n; n) otherwise:Proof: If x+ 2expo(x)�n � 2expo(x)+1, then by Lemmas 2.19 and 2.30,near(x; n) = 2expo(x)+1 = trun(x+ 2expo(x)�n; n) = trun(x + 2expo(x)�n; n� 1):Thus, we may assume x + 2expo(x)�n < 2expo(x)+1, and it follows from Lemmas 2.21and 2.26 that expo(near(x; n)) = expo(x + 2expo(x)�n) = expo(x):Case 1: x is n-exatBy Lemma 2.22, trun(x+ 2expo(x)�n; n) � x. But sinetrun(x+ 2expo(x)�n; n) � x+ 2expo(x)�n < x+ 2expo(x)+1�n;14

Lemma 2.13 yields trun(x+ 2expo(x)�n; n) � x, henetrun(x+ 2expo(x)�n; n) = x = near(x; n):Case 2: x is not (n+ 1)-exatWe have near(x; n) > x � 2expo(x)�n, for otherwise we would have near(x; n) =x� 2expo(x)�n by Lemma 2.26, and sine near(x; n) is (n+ 1)-exat, so would benear(x; n) + 2expo(near(x;n))�n = x� 2expo(x)�n + 2expo(near(x;n))�n = x:Sine near(x; n) � x+2expo(x)�n, near(x; n) � trun(x+2expo(x)�n; n) by Lemma 2.22.But sinetrun(x+ 2expo(x)�n; n) � x+ 2expo(x)�n < near(x; n) + 2expo(x)+1�n;trun(x+ 2expo(x)�n; n) � near(x; n).Case 3: x is (n+ 1)-exat but not n-exatFirst suppose near(x; n) > x. Sine near(x; n) is (n + 1)-exat, near(x; n) � x +2expo(x)�n, hene near(x; n) = x+ 2expo(x)�n, and by Lemma 2.29,trun(x+ 2expo(x)�n; n� 1) = trun(near(x; n); n � 1) = near(x; n):Now suppose near(x; n) < x. Then near(x; n) < x+2expo(x)�n implies near(x; n) �trun(x+ 2expo(x)�n; n� 1). But sinetrun(x+ 2expo(x)�n; n� 1) � x+ 2expo(x)�n = x� 2expo(x)�n + 2expo(x)+1�n< near(x; n) + 2expo(x)+2�n;we have trun(x+ 2expo(x)�n; n� 1) � near(x; n). 23 Multipliation3.1 The Program FPU-MULThe multipliation algorithm is represented by the program FPU-MUL, as listed inFigures 1 and 2. The program is oded in a simple language, onsisting of assignmentsand onditional branhes. The primitive operations are logial operations on bit vetorsand integer addition and multipliation, the implementation of whih is not addressedhere.The algorithm is intended to be implemented with three distint (integer) multipliers,whih operate on the same two M -bit fators, yielding idential produts of either 2Mor 2M � 1 bits. The output of the �rst multiplier is manipulated under the assumptionthat overow ours, i.e., the produt has 2M bits. In parallel, the output of the seondmultiplier is similarly manipulated under the opposite assumption. Meanwhile, the mostsigni�ant bit produed by the third multiplier is examined to determine whih of the�rst two results will atually be used while the other is disarded.The inputs to this program inlude two enodings, x and y, of the numbers to bemultiplied, as well as two spei�ers, r and p, whih ontrol the rounding of the produt.Irrespetive of this rounding, the result is returned in the (M; 18) format. Thus, theoutput z is expeted to satisfy ẑ = rnd(x̂ŷ; r; p):15

Program FPU-MUL(op,p,lastp,r,x,y,z,r,d,inexat):sign get-sign(x) ^ get-sign(y);man-unrounded get-man(x) � get-man(y);overflow man-unrounded[2M � 1℄;if man-unrounded[lsb(p)� 3 : 0℄ = 0then stiky-no-overflow 0else stiky-no-overflow 1;stiky-with-overflow stiky-no-overflow | man-unrounded[lsb(p)� 2℄;inexat-no-overflow stiky-with-overflow;inexat-with-overflow inexat-no-overflow | man-unrounded[lsb(p)� 1℄;if op = OP-BACKthen if overflow = 1then inexat inexat-with-overflowelse inexat inexat-no-overflow;if op = OP-BACK thenronst-with-overflow omp1(2Mget-man(d); 2M)else if op = OP-LAST thenronst-with-overflow 2lsb(lastp)�2else if r = RC-NEAR thenronst-with-overflow 2lsb(p)�1else if (sign = 1 ^ r = RC-NEG) _ (sign = 0 ^ r = RC-POS) thenronst-with-overflow 2lsb(p) � 1else ronst-with-overflow 0;ronst-no-overflow shr(ronst-with-overflow; 0; 2M);if op = OP-BACKthen fadd-with-overflow (man-unrounded+ ronst-with-overflow + 1)[2M : 0℄;add-no-overflow (man-unrounded+ ronst-no-overflow + 1)[2M � 1 : 0℄gelse fadd-with-overflow (man-unrounded+ ronst-with-overflow)[2M : 0℄;add-no-overflow (man-unrounded+ ronst-no-overflow)[2M � 1 : 0℄g;round-arryout-no-overflow add-no-overflow[2M � 1℄;round-arryout-with-overflow add-with-overflow[2M ℄;if op = OP-LASTthen ftrun-with-overflow 22M � 2lsb(lastp)�1;trun-no-overflow 22M � 2lsb(lastp)�2gelse ftrun-with-overflow 22M � 2lsb(p);trun-no-overflow 22M � 2lsb(p)�1g;Figure 1: FPU-MUL
16

if r = RC-NEAR^ stiky-no-overflow = 0 ^ add-no-overflow[lsb(p)� 2℄ = 0then man-rounded-no-overflow (22M�2round-arryout-no-overflow | add-no-overflow)& ((22M � 1� 2lsb(p)�1) & trun-no-overflow)else man-rounded-no-overflow (22M�2round-arryout-no-overflow | add-no-overflow)& trun-no-overflow;if r = RC-NEAR^ stiky-with-overflow = 0 ^ add-with-overflow[lsb(p)� 1℄ = 0then man-rounded-with-overflow (22M�1round-arryout-with-overflow | add-with-overflow)& ((22M � 1� 2lsb(p)) & trun-with-overflow);else man-rounded-with-overflow (22M�1round-arryout-with-overflow | add-with-overflow)& trun-with-overflow;exp-unrounded (get-expo(x) + get-expo(y) + 217 + 1)[17 : 0℄;exp-rounded-with-overflow (exp-unrounded+ round-arryout-with-overflow + 1)[17 : 0℄;exp-rounded-no-overflow (exp-unrounded+ round-arryout-no-overflow)[17 : 0℄;if get-man(x) = 0 thenz (sign; 0; get-expo(x))else if get-man(y) = 0 thenz (sign; 0; get-expo(y))else if overflow = 1 thenz (sign;man-rounded-with-overflow[2M � 1 : M ℄; exp-rounded-with-overflow)else z (sign;man-rounded-no-overflow[2M � 2 : M � 1℄; exp-rounded-no-overflow);if op = OP-DIV thenif overflow = 1 thenr (0; omp1(man-unrounded; 2M)[2M � 2 : M � 1℄; 217 � 2)else if round-arryout-no-overflow = 0 thenr (0; omp1(man-unrounded; 2M)[2M � 1 : M ℄; 217 � 1)else r (0; 2M � 1; 217 � 2)else if op = OP-SQRT thenif overflow = 1 thenr (0; (omp1(man-unrounded; 2M) | 22M�1)[2M � 1 : M ℄; 217 � 2)else if round-arryout-no-overflow = 0 thenr (0; shr(omp1(man-unrounded; 2M)[2M � 2 : 0℄; 1; 2M)[2M � 1 : M ℄; 217 � 1)else r (0; 2M � 1; 217 � 2)Figure 2: FPU-MUL (ontinued)
17

As a notational onveniene, the following funtion gives the position of the least signif-iant bit of a 2M -bit integer that has been rounded to a given degree of preision:De�nition 3.1 For any preision ontrol spei�er �, lsb(�) = 2M �mbits(�).In addition to omputing produts, the multipliation hardware performs severalauxiliary funtions in support of the divide and square root operations. These arespei�ed by the input op, the value of whih may be any of the symbols OP-MUL, OP-DIV,OP-SQRT, OP-LAST, and OP-BACK.Basi oating point multipliation is performed in the ase op = OP-MUL: the inputsx and y are simply multiplied and rounded aording to the spei�ers p and r, and theIEEE ompliant result is returned as the output z, as desribed by Theorem 1. The sameholds for op = OP-DIV and op = OP-SQRT, but an additional output r is returned in theseases: for OP-DIV, r̂ is an approximation of 2� x̂ŷ; for OP-SQRT, r̂ is an approximationof (3� x̂ŷ)=2. The errors of these approximations are given by Lemma 3.5.When FPU-MUL is alled by division or square root, p is always PC-*, indiatingthe internal format (M; 18). However, on the �nal iteration of either of these operations,signaled by OP-LAST, the produt is rounded to a lower preision, as determined by theinput lastp. This behavior is desribed formally by Lemma 3.7.Finally, the symbol OP-BACK indiates a bak multipliation to determine whether theprodut previously omputed by OP-LAST is an overestimate or an underestimate of theexat value sought. The value given by the input d is subtrated from the produt of xand y. In the ase of division, x is the denominator, y is the approximate quotient, andd is the numerator; in the square root ase, both x and y are the approximate squareroot and d is the radiand. In both ases, the results of the omparison are given by theoutputs z and inexat, as stated in Lemma 3.8.Thus, our analysis will be based on an exeution ofFPU-MUL(op,p,lastp,r,x,y,z,r,d,inexat),under the following assumptions regarding the inputs:(a) op 2 fOP-MUL; OP-DIV; OP-SQRT; OP-LAST; OP-BACKg;(b) p is a preision ontrol spei�er;() if op = OP-LAST, then lastp is an external preision ontrol spei�er;(d) r is a rounding ontrol spei�er;(e) x and y are normal enodings;(f) if op = OP-BACK, then d is a normal enoding.3.2 Basi ResultsFor onveniene, we introdue several auxiliary variables. First, we de�nestiky = � stiky-with-overflow if overflow = 1stiky-no-overflow if overflow = 0:Eah of the variables ronst, add, round-arryout, trun, man-rounded, and expo-rounded is de�ned in the analogous manner. We also de�ne18

P = � 2M if overflow = 12M � 1 if overflow = 0,� = mbits(p);andtrun0 = � trun; if r 6= RC-NEAR or stiky = 1 or add[P � �� 1℄ = 1trun & (22M � 1� 2P��); otherwise:Lemma 3.1(a) sig(man-unrounded) = sig(x̂)sig(ŷ)=2overflow;(b) expo(man-unrounded) = P � 1;() sig(x̂ŷ) = sig(man-unrounded);(d) expo(x̂ŷ) = expo(x̂) + expo(ŷ) + overflow.Proof: Sine x and y are normal enodings,22M�2 � man-unrounded = get-man(x) � get-man(y) < 22M ;and (b) follows from Lemma 2.2.By Lemma 2.15,man-unrounded = 2M�1sig(x̂)2M�1sig(ŷ)= sig(x̂)sig(ŷ)2�overflow22M�2+overflow= sig(x̂)sig(ŷ)2�overflow2expo(man-unrounded);whih implies (a).To derive () and (d), we need only observe thatx̂ŷ = sgn(x̂)sig(x̂)2expo(x̂)sgn(ŷ)sig(ŷ)2expo(ŷ)= sgn(x̂ŷ) �sig(x̂)sig(ŷ)=2overflow� 2expo(x̂)+expo(ŷ)+overflow:2Lemma 3.2(a) stiky = 0 i� man-unrounded is (�+ 1)-exat;(b) inexat = 0 i� man-unrounded is �-exat;Proof: We have stiky-no-overflow = 0, 2lsb(p)�2 divides man-unrounded, andstiky-with-overflow = 0, 2lsb(p)�2 divides man-unrounded and man-unrounded[lsb(p)� 2℄ = 0, 2lsb(p)�2 divides man-unrounded and 2 divides man-unrounded=2lsb(p)�2, 2lsb(p)�1 divides man-unrounded.Thus, stiky = 0 i� 2P�(�+1) divides man-unrounded, and (a) follows from Lemma 2.14.Similarly, it may be shown that inexat = 0 i� 2P�� divides man-unrounded, whihimplies (b). 2 19

Lemma 3.3(a) man-rounded = (2P�1round-arryout) | (add & trun0);(b) man-rounded[P � 1℄ = 1;() expo(man-rounded) � expo(add) = P � 1 + round-arryout;(d) man-rounded is divisible by 2P�M .Proof: (a) In all ases,man-rounded = (2P�1round-arryout | add) & trun0and trun0[P � 1℄ = 1. Thus, by Lemmas 2.7 and 2.11,man-rounded = (2P�1round-arryout & trun0) | (add & trun0)= 2P�1round-arryout | (add & trun0)(b) By Lemma 2.10, we may assume round-arryout = 0 and heneman-rounded[P � 1℄ = add[P � 1℄:Note thatadd = � rem(man-unrounded+ ronst+ 1; 2P+1) if op = OP-BACKrem(man-unrounded+ ronst; 2P+1) otherwise;and that sineman-unrounded+ ronst+ 1 � (2P � 1) + (2P � 1) + 1 < 2P+1;we have 2P�1 � man-unrounded � add < 2P+1:But sine round-arryout = add[P ℄ = 0, Lemma 2.2 implies add < 2P and heneadd[P � 1℄ = 1.() If round-arryout = 0, thenman-rounded = add & trun0 � add < 2P ;by Lemma 2.9, and man-rounded[P � 1℄ = 1 implies man-rounded � 2p�1, heneexpo(man-rounded) = expo(add) = P � 1:On the other hand, if round-arryout = add[P ℄ = 1, then expo(add) = P , whileman-rounded < 2P+1 by Lemma 2.8, hene expo(man-rounded) � P .(d) Sine 2P�M divides trun, the result follows from Lemmas 2.9 and 2.8. 2Lemma 3.4 z is a normal enoding and(a) sgn(ẑ) = sgn(x̂ŷ);(b) sig(ẑ) = rem(man-rounded; 2P)=2P�1;() rem(expo(ẑ); 218) = rem(expo(x̂ŷ) + round-arryout; 218).
20

Proof: First, observe thatz = (sign;man-rounded[P � 1 : P �M ℄; exp-rounded):Let � = rem(man-rounded; 2P). By Lemma 2.3,�[P � 1℄ = man-rounded[P � 1℄ = 1;hene expo(�) = P � 1. Sine man-rounded is divisible by 2P�M , so is �. Thus, byLemmas 2.4 and 2.14,get-man(z) = man-rounded[P � 1 : P �M ℄ = �[P � 1 : P �M ℄ = �=2P�M :It follows thatexpo(get-man(z)) = expo(�)� (P �M) = (P � 1)� (P �M) = M � 1:Sineget-expo(z) = exp-rounded = rem(exp-unrounded+ round-arryout+ overflow; 218);0 < get-expo(z) < 218, and hene z is a normal enoding. The proof is ompleted byapplying Lemma 2.15:(a) sgn(ẑ) = (�1)sign, hene sgn(ẑ) = 1, sign = 0, get-sign(x) = get-sign(y),sgn(x̂) = sgn(ŷ), sgn(x̂ŷ) = 1.(b) sig(ẑ) = get-man(z)=2M�1 = (�=2P�M)=2M�1 = �=2P�1.() expo(ẑ) = get-expo(z)� (217 � 1), whereget-expo(z)= rem(exp-unrounded+ round-arryout + overflow; 218)= rem(get-expo(x) + get-expo(y) + 217 + 1 + round-arryout+ overflow; 218)= rem(expo(x̂) + expo(ŷ) + 218 � 2 + 217 + 1 + round-arryout+ overflow; 218)= rem(expo(x̂) + expo(ŷ) + overflow + 217 � 1 + round-arryout; 218)= rem(expo(x̂ŷ) + 217 � 1 + round-arryout; 218):23.3 The Operations OP-MUL, OP-DIV, and OP-SQRTThis is our statement of IEEE ompliane for multipliation:Theorem 1 Assume that op 2 fOP-MUL; OP-DIV; OP-SQRTg, r is a rounding ontrolspei�er, p is a preision ontrol spei�er, and x and y are normal enodings. Ifrnd(x̂ŷ; r; p) is representable, then ẑ = rnd(x̂ŷ; r; p).Proof: Let r0 =8<: RC-NEG if r = RC-POSRC-POS if r = RC-NEGr otherwise.Then rnd(�x̂ŷ; r; p) = �rnd(x̂ŷ; r0; p). Also, by inspetion of the ode that de�nesFPU-MUL, it is easy to see that replaing either get-sign(x) or get-sign(y) by its om-plement and r by r0 has the e�et of negating ẑ. It follows that it suÆes to prove thetheorem under the assumptions x̂ > 0 and ŷ > 0, whih imply that sign = 0.21

Note that (under these assumptions)ronst = 8<: 2P���1 if r = RC-NEAR2P�� � 1 if r = RC-POS0 otherwise:In all ases, ronst < 2P . Sine man-unrounded < 2P as well,add = rem(man-unrounded+ ronst; 2P+1) = man-unrounded+ ronst:If r = RC-NEAR and stiky = add[P � �� 1℄ = 0, then by Lemma 2.12,trun0 = (22M � 2P��) & (22M � 1� 2P��) = (22M � 2P��+1);and otherwise trun0 = (22M � 2P��):We shall show thatrem(man-rounded; 2P) = rnd(man-unrounded; r; p)2�round-arryout;by onsidering the following ases:Case 1: round-arryout = 0Sine man-rounded < 2P by Lemma 3.3, we must showman-rounded = rnd(man-unrounded; r; p):Subase 1.1: r = RC-NEARFirst suppose stiky = add[P � �� 1℄ = 0. Then Lemma 2.3 impliesman-unrounded[P � �� 1℄ = 1;and by Lemmas 3.2 and 2.14, man-unrounded is (�+ 1)-exat but not �-exat. Thus,by Lemmas 3.3, 2.24, and 2.31,man-rounded = (man-unrounded+ 2P���1) & (22M � 2P��+1)= trun(man-unrounded+ 2P���1; �� 1)= near(man-unrounded; �)= rnd(man-unrounded; r; p):In the remaining ase, man-unrounded is either �-exat or not (� + 1)-exat, and thesame three lemmas yieldman-rounded = (man-unrounded+ 2P���1) & (22M � 2P��)= trun(man-unrounded+ 2P���1; �)= near(man-unrounded; �)= rnd(man-unrounded; r; p):Subase 1.2: r = RC-POS 22

By Lemmas 2.24 and 2.25,man-rounded = (man-unrounded+ 2P�� � 1) & (22M � 2P��)= trun(man-unrounded+ 2P�� � 1; �)= away(man-unrounded; �)= rnd(man-unrounded; r; p):Subase 1.3: r = RC-CHOP or r = RC-NEGBy Lemma 2.24,man-rounded = man-unrounded & (22M � 2P��)= trun(man-unrounded; �)= rnd(man-unrounded; r; p):Case 2: round-arryout = 1In this ase, 2P � add = man-unrounded+ ronst < 2P + ronst;whih implies 0 � rem(add; 2P) < ronst < 2P��:By Lemmas 3.3, 2.9, and 2.8,rem(man-rounded; 2P) = rem(2P�1 | (add & trun0); 2P)= 2P�1 | (rem(add; 2P) & trun0)= 2P�1 | (rem(add; 2P) & rem(trun0; 2P��))= 2P�1 | (rem(add; 2P) & 0)= 2P�1:Thus, it suÆes to show that rnd(man-unrounded; r; p) = 2P .Subase 2.1: r = RC-NEARSine man-unrounded+ 2P�1�� = man-unrounded+ ronst � 2P ;near(man-unrounded; �) = 2P by Lemma 2.30.Subase 2.2: r = RC-POSLet a = 2P � 2P��. Thenman-unrounded � 2P � ronst = 2P � 2P�� + 1 > a;and sine a is �-exat,away(man-unrounded; �) � a+ 2expo(a)+1�� = a+ 2P�� = 2P ;whih implies away(man-unrounded; �) = 2P .Subase 2.3: r = RC-CHOP or r = RC-NEGThis ase is preluded by our earlier observation that 0 < ronst.23

The proof is ompleted by applying Lemmas 3.4 and 3.1, whih yieldsgn(ẑ) = sgn(x̂ŷ) = 1;sig(ẑ) = rnd(man-unrounded; r; p)2�round-arryout�P+1= rnd(sig(x̂ŷ); r; p)2�round-arryout;and for some k 2 Z, expo(ẑ) = expo(x̂ŷ) + round-arryout+ 218k:Thus, ẑ = rnd(sig(x̂ŷ); r; p)2expo(x̂ŷ)+218k = rnd(x̂ŷ; r; p)2218k:But sine rnd(x̂ŷ; r; p) is representable, i.e., 1 � 2�17 � expo(rnd(x̂ŷ; r; p)) � 217,and the same is true of ẑ,j218kj = jexpo(ẑ)� expo(rnd(x̂ŷ; r; p))j < 218;and hene k = 0. 2In the OP-DIV and OP-SQRT ases, an additional value is returned:Lemma 3.5 Let op 2 fOP-DIV; OP-SQRTg, p = PC-*, and r = RC-NEAR. Assume thatx and y are normal enodings, 3=2 < sig(x̂)sig(ŷ) < 3, and j1� x̂ŷj < 1=8. Then(a) r is a normal enoding;(b) r̂ < 1, ẑ � 1;() if op = OP-DIV, then 2� x̂ŷ � 21�M � r̂ < 2� x̂ŷ;(d) if op = OP-SQRT, then (3� x̂ŷ)=2� 21�M � r̂ < (3� x̂ŷ)=2:Proof: First note that the hypothesis implies that expo(x̂ŷ) is either 0 or �1, and itfollows from Lemma 3.4 thatexpo(ẑ) = expo(x̂ŷ) + round-arryout:We onsider the following ases:Case 1: overflow = 1In this ase, expo(man-unrounded) = 2M � 1, but by Lemma 3.1,man-unrounded = sig(x̂ŷ)22M�1 = sig(x̂)sig(ŷ)22M�2 < 3 � 22M�2and hene add = man-unrounded+ 2M�1 < 3 � 22M�2 + 2M�1 < 22Mand round-arryout = 0. We have expo(ẑ) = expo(x̂ŷ) = 0, for otherwisex̂ŷ = sig(x̂ŷ)=2 = sig(x̂)sig(ŷ)=4 < 3=4;ontraditing j1� x̂ŷj < 1=8. Thus,x̂ŷ = sig(x̂ŷ) = sig(man-unrounded) = man-unrounded=22M�1:24

Also note thatomp1(man-unrounded; 2M) = 22M �man-unrounded� 1� 22M � 22M�1 � 1 < 22M�1:Subase 1.1: op = OP-DIVget-man(r) = omp1(man-unrounded; 2M)[2M � 2 : M � 1℄= b(22M �man-unrounded� 1)=2M�1= 2M+1 + b�(man-unrounded+ 1)=2M�1= 2M+1 � bman-unrounded=2M�1 � 1:But bman-unrounded=2M�1 � man-unrounded=2M�1 = 2M x̂ŷand bman-unrounded=2M�1 > man-unrounded=2M�1 � 1 = 2M x̂ŷ � 1;hene 2M�1 � 2M+1 � 2M x̂ŷ � 1 � get-man(r) < 2M+1 � 2M x̂ŷ � 2Mand r is normal. Sine expo(r̂) = 217 � 2� (217 � 1) = �1, r̂ < 1 � ẑ and2� x̂ŷ � 2�M � r̂ = 2�Mget-man(r) < 2� x̂ŷ:Subase 1.2: op = OP-SQRTBy Lemmas 2.2 and 2.11,omp1(man-unrounded; 2M) | 22M�1 = omp1(man-unrounded; 2M) + 22M�1= 22M + 22M�1 �man-unrounded� 1< 22M ;hene get-man(r) = (omp1(man-unrounded; 2M) | 22M�1)[2M � 1 : M ℄= (22M + 22M�1 �man-unrounded� 1)[2M � 1 : M ℄= b(22M + 22M�1 �man-unrounded� 1)=2M= 2M + 2M�1 + b�(man-unrounded+ 1)=2M= 3 � 2M�1 � bman-unrounded=2M � 1:But bman-unrounded=2M � man-unrounded=2M = 2M�1x̂ŷand bman-unrounded=2M > man-unrounded=2M � 1 = 2M�1x̂ŷ � 1;implying 2M�1 � 2M�1(3� x̂ŷ)� 1 � get-man(r) < 2M�1(3� x̂ŷ) � 2M ;hene r is normal. Again, expo(r̂) = �1 and r̂ < 1 � ẑ. Thus(3� x̂ŷ)=2� 2�M � r̂ = get-man(r)=2M < (3� x̂ŷ)=2:25

Case 2: overflow = 0In this ase, expo(man-unrounded) = 2M � 2, and expo(x̂ŷ) = �1, for otherwisex̂ŷ = sig(x̂ŷ) = sig(x̂)sig(ŷ) > 3=2;ontraditing j1� x̂ŷj < 1=8. Thusx̂ŷ = sig(x̂ŷ)=2 = sig(man-unrounded)=2 = man-unrounded=22M�1:Subase 2.1: round-arryout = 0Sine expo(ẑ) = expo(x̂ŷ) = �1, ẑ < 1.Subase 2.1.1: op = OP-DIVget-man(r) = (22M �man-unrounded� 1)[2M � 1 : M ℄= b(22M �man-unrounded� 1)=2M= 2M + b�(man-unrounded+ 1)=2M= 2M � bman-unrounded=2M � 1:In this ase, 2M�1x̂ŷ � 1 < bman-unrounded=2M � 2M�1x̂ŷand 2M�1 � 1 < 2M � 2M�1x̂ŷ � 1 � get-man(r) < 2M � 2M�1x̂ŷ < 2M :Sine expo(r̂) = (217 � 1)� (217 � 1) = 0, r̂ � 1 > ẑ, and2� x̂ŷ � 21�M � r̂ = get-man(r)=2M�1 < 2� x̂ŷ:Subase 2.1.2: op = OP-SQRTNote thatomp1(man-unrounded; 2M) = 22M �man-unrounded� 1 � 22M � 22M�1 = 22M�1;while omp1(man-unrounded; 2M) < 22M , henerem(omp1(man-unrounded; 22M); 22M�1)= omp1(man-unrounded; 2M)� 22M�1= 22M�1 �man-unrounded� 1:Therefore, applying Lemma 2.11, we haveget-man(r) = shr(omp1(man-unrounded; 2M)[2M � 2 : 0℄; 1; 2M)[2M � 1 : M ℄= shr(rem(omp1(man-unrounded; 2M); 22M�1); 1; 2M)[2M � 1 : M ℄= shr(22M�1 �man-unrounded� 1; 1; 2M)[2M � 1 : M ℄= (22M�1 + b(22M�1 �man-unrounded� 1)=2)[2M � 1 : M ℄= b(22M�1 + b(22M�1 �man-unrounded� 1)=2)=2M= 2M�1 + bb(22M�1 �man-unrounded� 1)=2)=2M= 2M�1 + b(22M�1 �man-unrounded� 1)=2M+1= 2M�1 + 2M�2 + b�(man-unrounded+ 1)=2M+1)= 3 � 2M�2 � bman-unrounded=2M+1 � 1:26

But 2M�2x̂ŷ � 1 < bman-unrounded=2M+1 � 2M�2x̂ŷ;hene 2M�1 � 1 < 2M�2(3� x̂ŷ)� 1 � get-man(r) < 2M�2(3� x̂ŷ) < 2M :Again, expo(r̂) = 0, r̂ � 1 > ẑ, and(3� x̂ŷ)=2� 21�M � r̂ = get-man(r)=2M�1 < (3� x̂ŷ)=2:Subase 2.2: round-arryout = 1In this ase, get-man(r) = 2M �1 and r̂ = 1�2�M < 1, while expo(ẑ) = expo(x̂ŷ)+1 = 0, so ẑ � 1. Sine add = man-unrounded+ 2M�2 � 22M�1, we have22M�1 � 2M�2 � man-unrounded < 22M�1and hene 1� 2�1�M � x̂ŷ < 1;whih implies 2� x̂ŷ � (2�M + 2�1�M) � r̂ < 2� x̂ŷ � 2�Mand (3� x̂ŷ)=2� (2�M + 2�2�M) � r̂ < (3� x̂ŷ)=2� 2�M :2The following orollary of Lemma 3.5 allows the outputs of FPU-MUL to be used asinputs on the next iteration of FPU-DIV-SQRT:Lemma 3.6 Let op 2 fOP-DIV; OP-SQRTg, p = PC-*, and r = RC-NEAR. Assume thatx and y are normal enodings, 3=2 < sig(x̂)sig(ŷ) < 3, and j1� x̂ŷj < 1=8. Then(a) if op = OP-DIV, then 3=2 < sig(ẑ)sig(r̂) < 3;(b) if op = OP-SQRT, then 3=2 < sig(ẑ)sig(near(r̂2;M)) < 3;Proof: Note �rst that by Theorem 1, j1� ẑj � 1=8. Now suppose that ẑ < 1. Then7=8 � ẑ < 1. If op = OP-DIV, then 1 � r̂ < 2� x̂ŷ � 9=8, hene sig(ẑ)sig(r̂) = 2ẑr̂ and3=2 < 7=4 � 2ẑr̂ < 9=4 < 3. For the ase op = OP-SQRT, let w = near(r̂2;M). Sine1 � r̂ < (3 � x̂ŷ)=2 < 17=16, 1 � r̂2 < 289=256 < 3=2, whih implies 1 � w < 3=2.Thus, sig(ẑ)sig(w) = 2ẑw and 3=2 < 7=4 < 2ẑw < 3.On the other hand, if ẑ � 1, then 1 � ẑ < 9=8. If op = OP-DIV, then 1 > r̂ �2� x̂ŷ � 21�M � 7=8� 21�M > 3=4, and again sig(ẑ)sig(r̂) = 2ẑr̂, where 3=2 < 2ẑr̂ <9=4 < 3. If op = OP-SQRT, then 1 > r̂ � (3� x̂ŷ)=2� 21�M � 15=16� 21�M > 7=8 and1 > r̂2 > 49=64, whih implies 1 >� w � 49=64 > 3=4. Thus, sig(ẑ)sig(w) = 2ẑw and3=2 < 2ẑw � 9=4 < 3.23.4 The Operation OP-LASTIn the OP-LAST ase, the produt is rounded to mbits(lastp) + 1 bits, essentially bynear rounding:
27

Lemma 3.7 If op = OP-LAST, p = PC-*, r = RC-NEAR, mbits(lastp) = �, x and yare normal enodings, and2�217(2� 2���1) � jx̂ŷj < 2217(2� 2���1);then(a) ẑ is (�+ 1)-exat; (b) expo(x̂ŷ) � expo(ẑ); () jẑ � x̂ŷj � 2expo(x̂ŷ)���1:Proof: Note that add = man-unrounded+ 2P���2and by Lemma 2.12, trun = 22M � 2P���1 = trun0:Let � = rem(man-rounded; 2P). We shall show thatj�2round-arryout �man-unroundedj � 2P���2and that 1� 217 � expo(x̂ŷ) + round-arryout � 217;by onsidering the following two ases:Case 1: round-arryout = 0By Lemma 3.3, expo(add) = expo(man-rounded) = P � 1, hene� = man-rounded = add & (22M � 2P���1) = trun(add; �+ 1)by Lemma 2.24. Thus, by Lemma 2.20,� � add = man-unrounded+ 2P���2and � > add� 2(P�1)�(�+1)+1 = man-unrounded� 2P���2:If expo(x̂ŷ) = 2�17, then 2�217(2� 2���1) � jx̂ŷj < 2�217+1, heneman-unrounded = 2P�1sig(x̂ŷ) � 2P�1(2� 2���1) = 2P � 2P���2;ontraditing add < 2P . Thus, 1� 217 � expo(x̂ŷ) � 217:Case 2: round-arryout = 1In this ase,2P � add = man-unrounded+ 2P���2 < 2P + 2P���2;whih implies j2P �man-unroundedj < 2P���2as well as rem(add; 2P) < 2P���2:Thus, by Lemmas 3.3, 2.9, 2.8, and 2.7,� = rem(2P�1 | (add & trun0); 2P) = 2P�1 | (rem(add; 2P) & trun0)= 2P�1 | (rem(add; 2P) & rem(trun0; 2P���2)) = 2P�1 | (rem(add; 2P) & 0)= 2P�1; 28

and therefore j2��man-unroundedj = j2P �man-unroundedj < 2P���2:If expo(x̂ŷ) = 217, then 2217 � jx̂ŷj < 2217(2� 2���1), heneman-unrounded = 2P�1sig(x̂ŷ) < 2P�1(2� 2���1) = 2P � 2P���2;ontraditing add � 2P . Thus, 1� 217 � expo(x̂ŷ) + 1 � 217:Note that in both ases, � is (�+1)-exat, hene so is ẑ, sine sig(ẑ) = �21�P . Sine1� 217 � expo(x̂ŷ) + round-arryout � 217;and expo(ẑ) must lie in the same interval,expo(ẑ) = expo(x̂ŷ) + round-arryout:Thus, jẑ � x̂ŷj = j�21�P 2expo(x̂ŷ)+round-arryout � sig(x̂ŷ)2expo(x̂ŷ)j= 2expo(x̂ŷ)+1�P j�2round-arryout �man-unroundedj� 2expo(x̂ŷ)+1�P 2P���2= 2expo(x̂ŷ)���1:23.5 The Operation OP-BACKIn the OP-BACK ase, the produt is ompared, by way of subtration, to the input d.The results of the omparison are given by the outputs z and inexat:Lemma 3.8 If op = OP-BACK, p = PC-*, r = RC-CHOP, x and y are normal enodings,and jx̂ŷ � d̂j < 2expo(d̂)�3, then(a) jx̂ŷj < jd̂j , get-man(z)[M � 2℄ = 1;(b) x̂ŷ = d̂, get-man(z)[M � 2 : 0℄ = inexat = 0.Proof: (a) Sineronst-with-overflow = omp1(2Mget-man(d); 2M)= 22M � 2Mget-man(d)� 1and ronst-no-overflow = shr(ronst-with-overflow; 0; 2M)= b(22M � 2Mget-man(d)� 1)=2= 22M�1 � 2M�1get-man(d)� 1;we have ronst = 2P � 2P�Mget-man(d)� 1;29

and thus add = rem(2P +man-unrounded� 2P�Mget-man(d); 2P+1)= rem(2P + 2P�1sig(x̂ŷ)� 2P�1sig(d̂); 2P+1)= rem(2P�1(2 + sig(x̂ŷ)� sig(d̂)); 2P+1)= 2P�1(2 + sig(x̂ŷ)� sig(d̂)):Note also that trun0 = trun = 22M � 2P�M :By Lemmas 2.4, 2.5, 2.11, and 3.3,get-man(z)[M � 2 : 0℄ = (man-rounded[P � 1 : P �M ℄)[M � 2 : 0℄= man-rounded[P � 2 : P �M ℄= (add & trun0)[P � 2 : P �M ℄= (2P�Madd[2M � 1 : P �M ℄)[P � 2 : P �M ℄= add[2M � 1 : P �M ℄[M � 2 : 0℄= add[P � 2 : P �M ℄= �[P � 2 : P �M ℄;where � = rem(add; 2P�1). In partiular, by Lemma 2.5,get-man(z)[M � 2℄ = get-man(z)[M � 2 : 0℄[M � 2℄= �[P � 2 : P �M ℄[M � 2℄ = �[P � 2℄:We must show �[P � 2℄ = 1, jx̂ŷj < jd̂j:Sine jx̂ŷ � d̂j = j2expo(x̂ŷ)�expo(d̂)sig(x̂ŷ)� sig(d̂)j2expo(d̂) < 2expo(d̂)�3;we have j2expo(x̂ŷ)�expo(d̂)sig(x̂ŷ)� sig(d̂)j < 2�3;whih implies jexpo(x̂ŷ)� expo(d̂)j � 1. Thus, we have three ases to onsider:Case 1: expo(x̂ŷ) = expo(d̂)In this ase, jsig(x̂ŷ)� sig(d̂)j < 2�3.Suppose �rst that jx̂ŷj < jd̂j. Then sig(x̂ŷ) < sig(d̂) and2P > add = 2P�1(2 + sig(x̂ŷ)� sig(d̂)) > 2P�1(2� 2�3) > 2P�1 + 2P�2:Thus, 2P�2 < � < 2P�1;and �[P � 2℄ = 1 by Lemma 2.2.On the other hand, if jx̂ŷj � jd̂j, then sig(x̂ŷ) � sig(d̂) and2P � add < 2P�1(2 + 2�3) < 2P + 2P�2;hene � < 2P�2 and �[P � 2℄ = 0. 30

Case 2: expo(x̂ŷ) = expo(d̂) + 1Here, jx̂ŷj > jd̂j and 0 < 2sig(x̂ŷ)� sig(d̂) < 2�3:Thus, sig(x̂ŷ) < 12sig(d̂) + 2�4 � 1 + 2�4and sig(d̂) > 2sig(x̂ŷ)� 2�3 � 2� 2�3:It follows that add < 2P�1(2 + 1 + 2�4 � 2 + 2�3) < 2P�1 + 2P�2:But add > 2P�1(2 + 1� 2) = 2P�1, hene � < 2P�2 and �[P � 2℄ = 0.Case 3: expo(x̂ŷ) = expo(d̂)� 1In this ase, jx̂ŷj < jd̂j and0 < sig(d̂)� 12sig(x̂ŷ) < 2�3:Thus, sig(d̂) < 1 + 2�3, sig(x̂ŷ) > 2� 2�2, andadd > 2P�1(2 + 2� 2�2 � 1� 2�3) > 3 � 2P�1 � 2P�2 = 2 � 2P�1 + 2P�2:But add < 2P�1(2 + 2� 1) = 3 � 2P�1;hene � > 2P�2 and �[P � 2℄ = 1.(b) Note that by Lemmas 3.1 and 3.2, inexat = 0 i� x̂ŷ isM -exat. Thus, if x̂ŷ = d̂,then inexat = 0 and add = 2P , whih implies � = 0, and hene get-man(z)[M � 2 :0℄ = 0.Conversely, supposeget-man(z)[M � 2 : 0℄ = �[P � 2 : P �M ℄ = inexat = 0:Then sig(x̂ŷ) is M -exat, i.e., 2M�1sig(x̂ŷ) 2 Z, hene 2P�1sig(x̂ŷ) is divisible by2P�M . Similarly, 2P�1sig(d̂) is divisible by 2P�M , and hene, so are add and �. Thus,� = (�=2P�M)2P�M = b�=2P�M2P�M = �[P � 2 : P �M ℄2P�M = 0:Sine x̂ŷ = �d̂ is impossible, we need only show jx̂ŷj = jd̂j. In view of (a), we mayassume jx̂ŷj � jd̂j. Thus, there are two ases to onsider:Case 1: expo(x̂ŷ) = expo(d̂)In this ase, sig(x̂ŷ) � sig(d̂), whih implies� = 2P�1(sig(x̂ŷ)� sig(d̂)) = 0;hene sig(x̂ŷ) = sig(d̂) and jx̂ŷj = jd̂j.Case 2: expo(x̂ŷ) = expo(d̂) + 1If this were to our, then we would have� = 2P�1(1 + sig(x̂ŷ)� sig(d̂)) = 0;implying sig(d̂) = 1 + sig(x̂ŷ) � 2, whih is impossible. 231

4 Division and Square Root4.1 The Program FPU-DIV-SQRTThe hardware for division and square root is represented by the program FPU-DIV-SQRT, shown in Figures 3 and 4. Our analysis will be based on an exeution ofFPU-DIV-SQRT(op,p,r,a,b,z),with inputs as follows:(a) op 2 fOP-DIV; OP-SQRTg;(b) p is an external preision ontrol spei�er;() r is a rounding ontrol spei�er;(d) a and b are normal enodings.In the ase op = OP-DIV, the output z represents an appropriately rounded approxima-tion of the quotient â=b̂; when op = OP-SQRT, a is ignored and an approximation of pb̂is returned.Both operations are based on Goldshmidt's Algorithm [2℄, a variant of Newton-Raphson approximation. Our analysis of division will involve a sequene �0; �1; �2; �3 ofapproximations to 1=b̂, where �0 is derived from a table and the other �i are omputed bythree suessive Newton-Raphson iterations. The square root involves a similar sequeneof approximations to 1=pb̂.Although the algorithm does not expliitly ompute the �i for i > 0, a sequene ofalls to FPU-MUL produes an enoding q of either â�i or b̂�i, modulo rounding error,aording to whether op = OP-DIV or op = OP-SQRT, where (a) i = 1 if p = PC-32,(b) i = 2 if p = PC-64, and () i = 3 if p = PC-80 or p = PC-87. Lemmas 4.9 and 4.13give estimates of the errors jq̂ � â=b̂j and jq̂�pb̂j. Note that the onstraint M � 75 onthe multiplier width is required in the proofs of these lemmas.The approximation q̂ is ompared to the exat value by means of a �nal all to FPU-MUL with op = OP-BACK. Using the results of this omparison, q is then adjusted toprodue the orretly rounded result z. The orretness of this result is guaranteed byTheorems 2 and 3.4.2 Initial ApproximationThe initial approximation x0 to the reiproal of b, in the ase op = OP-DIV, is derivedfrom a pair of tables, eah onsisting of 210 bit vetors, whih we represent by the fun-tions reip-rom-p and reip-rom-n. If sig(b̂) has the binary representation 1:b1b2b3 : : :,then the bit vetors b1b2 : : : b9b10 = get-man(b)[M � 2 : M � 11℄andb1 : : : b5b11 : : : b15 = at(get-man(b)[M � 2 : M � 6℄; get-man(b)[M � 12 : M � 16℄; 5)are used as indies into these tables. The results are added and the 16-bit sum isappended to a leading 1 and M � 17 trailing 0's to produe get-man(x0). For op =32

Program FPU-DIV-SQRT(op,p,r,a,b,z):if op = OP-DIV thenfsign get-sign(a) ^ get-sign(b);p-value reip-rom-p(get-man(b)[M � 2 : M � 11℄);n-value reip-rom-n(at(get-man(b)[M � 2 : M � 6℄;get-man(b)[M � 12 : M � 16℄;5));estimate (p-value+ n-value)[16 : 0℄;x0 (get-sign(b);2M�17estimate | 2M�1,(218 � 2 + omp1(get-expo(b); 18) + estimate[16℄)[17 : 0℄);FPU -MUL(OP-DIV; PC-*; NIL; RC-NEAR; b; x0; d0; r0; NIL; NIL);FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; a; x0; n0; NIL; NIL; NIL);if p = PC-32then FPU -MUL(OP-LAST; PC-*; p; RC-NEAR; n0; r0; q; NIL; NIL; NIL)else fFPU -MUL(OP-DIV; PC-*; NIL; RC-NEAR; d0; r0; d1; r1; NIL; NIL);FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; n0; r0; n1; NIL; NIL; NIL);if p = PC-64then FPU -MUL(OP-LAST; PC-*; p; RC-NEAR; n1; r1; q; NIL; NIL; NIL)else fFPU -MUL(OP-DIV; PC-*; NIL; RC-NEAR; d1; r1; d2; r2; NIL; NIL);FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; n1; r1; n2; NIL; NIL; NIL);FPU -MUL(OP-LAST; PC-*; p; RC-NEAR; n2; r2; q; NIL; NIL; NIL)gg;FPU -MUL(OP-BACK; PC-*; NIL; RC-CHOP; b; q; rem; NIL; a; inexat)gelse if op = OP-SQRT thenfsign 0;p-value sqrt-rom-p(at(get-expo(b)[0℄; get-man(b)[M � 2 : M � 11℄; 10));n-value sqrt-rom-n(at(get-expo(b)[0℄;at(get-man(b)[M � 2 : M � 6℄;get-man(b)[M � 12 : M � 16℄;5);10));estimate (p-value+ n-value)[16 : 0℄;x0 (get-sign(b);2M�17estimate | 2M�1,shr((218 + 217 � 3 + omp1(get-expo(b); 19) + estimate[16℄)[18 : 0℄; 0; 19));FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; x0; x0; t0; NIL; NIL; NIL);FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; b; x0; d0; NIL; NIL; NIL);FPU -MUL(OP-SQRT; PC-*; NIL; RC-NEAR; b; t0; n0; r0; NIL; NIL);Figure 3: FPU-DIV-SQRT
33

if p = PC-32then FPU -MUL(OP-LAST; PC-*; p; RC-NEAR; d0; r0; q; NIL; NIL; NIL)else fFPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; r0; r0; t1; NIL; NIL; NIL);FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; d0; r0; d1; NIL; NIL; NIL);FPU -MUL(OP-SQRT; PC-*; NIL; RC-NEAR; n0; t1; n1; r1; NIL; NIL);if p = PC-64then FPU -MUL(OP-LAST; PC-*; p; RC-NEAR; d1; r1; q; NIL; NIL; NIL)else fFPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; r1; r1; t2; NIL; NIL; NIL);FPU -MUL(OP-MUL; PC-*; NIL; RC-NEAR; d1; r1; d2; NIL; NIL; NIL);FPU -MUL(OP-SQRT; PC-*; NIL; RC-NEAR; n1; t2; n2; r2; NIL; NIL);FPU -MUL(OP-LAST; PC-*; p; RC-NEAR; d2; r2; q; NIL; NIL; NIL)gg;FPU -MUL(OP-BACK; PC-*; NIL; RC-CHOP; q; q; rem; NIL; b; inexat)g;if get-man(rem)[M � 2 : 0℄ = 0then rem-zero omp1(inexat; 1)else rem-zero 0;rem-neg omp1(get-man(rem)[M � 2℄; 1) &omp1(rem-zero; 1);rem-pos get-man(rem)[M � 2℄;q-lsb get-man(q)[M �mbits(p)℄;q-guard get-man(q)[M �mbits(p)� 1℄;if op = OP-DIV^ get-man(a) = 0 thenz (sign; 0; get-expo(a))else if op = OP-SQRT^ get-man(b) = 0 thenz (sign; 0; get-expo(b))else if ((r = RC-POS^ sign = 1) _ (r = RC-NEG^ sign = 0) _ r = RC-CHOP)^q-guard = 0 ^ rem-neg = 1 thenif get-man(q) & (2M � 2M�mbits(p)) = 2M�1then z (sign; 2M � 2M�mbits(p); de1(get-expo(q); 18))else z (sign;((get-man(q) & (2M � 2M�mbits(p))) + 2M � 2M�mbits(p))[M � 1 : 0℄;get-expo(q))else if (((r = RC-POS^ sign = 0) _ (r = RC-NEG^ sign = 1))^(q-guard = 1 _ rem-pos = 1))_(r = RC-NEAR^ q-guard = 1 ^ rem-pos = 1)_(r = RC-NEAR^ q-guard = 1 ^ rem-zero = 1 ^ q-lsb = 1) thenif get-man(q) & (2M � 2M�mbits(p)) = 2M � 2M�mbits(p)then z (sign; 2M�1; (get-expo(q) + 1)[17 : 0℄)else z (sign;((get-man(q) & (2M � 2M�mbits(p))) + 2M�mbits(p))[M � 1 : 0℄;get-expo(q))else z (sign; get-man(q) & (2M � 2M�mbits(p)); get-expo(q)).Figure 4: FPU-DIV-SQRT (ontinued)34

OP-SQRT, a separate pair of tables, represented by the funtions sqrt-rom-p and sqrt-rom-n, is similarly used to derive an initial approximation to the reiproal of the squareroot of b.The funtions R0, S0, and S1, whih are de�ned in terms of these funtions, representthe omputation of get-man(x0) in the three ases listed in Lemma 4.4 below.De�nition 4.1 For all i 2 N,(a) R0(i) = 216 + reip-rom-p(i[14 : 5℄) + reip-rom-n(at(i[14 : 10℄; i[4 : 0℄; 5));(b) S0(i) = 216 + sqrt-rom-p(i[14 : 5℄) + sqrt-rom-n(at(i[14 : 10℄; i[4 : 0℄; 5));() S1(i) = 216 + sqrt-rom-p(210 + i[14 : 5℄)+sqrt-rom-n(210 + at(i[14 : 10℄; i[4 : 0℄; 5)).While spae does not allow a omplete listing of the tables here, we list instead thefollowing three lemmas, whih ontain all required relevant information, and whih haveall been veri�ed by diret omputation, using ACL2:Lemma 4.1 For all i 2 N, if i < 215, then R0(i) 2 N, S0(i) 2 N, S1(i) 2 N, andexpo(R0(i)) = expo(S0(i)) = expo(S1(i)) = 16:Lemma 4.2 For all i 2 N, if i < 215, then(a) 232 � 3 � 216 < R0(i)(215 + i) < R0(i)(215 + i+ 1) < 232 + 3 � 216;(b) 248 � 3 � 232 < S0(i)2(215 + i) < S0(i)2(215 + i+ 1) < 248 + 3 � 232;() 249 � 3 � 233 < S1(i)2(215 + i) < S1(i)2(215 + i+ 1) < 249 + 3 � 233;Lemma 4.3 For all i 2 N, if i < 215, then S0(i)2 < 233 � S1(i)2:The relationship between x0 and b may be desribed in terms of R0, S0, and S1:Lemma 4.4 Let I = get-man(b)[M � 2 : M � 16℄. Assume that if op = OP-DIV, thenget-expo(b) � 218 � 3. Then x0 is normal and(a) sgn(x̂0) = � sgn(b̂) if op = OP-DIV1 if op = OP-SQRT;(b) sig(x̂0) =8<: 2�16R0(I) if op = OP-DIV2�16S0(I) if op = OP-SQRT and get-expo(b)[0℄ = 02�16S1(I) if op = OP-SQRT and get-expo(b)[0℄ = 1;() expo(x̂0) = � �expo(b̂)� 1 if op = OP-DIV�bexpo(b̂)=2 � 1 if op = OP-SQRT:Proof: First onsider the ase op = OP-DIV. By Lemma 2.5,get-man(b)[M � 2 : M � 11℄ = get-man(b)[M � 2 : M � 16℄[14 : 5℄ = I [14 : 5℄;hene p-value = reip-rom-p(I [14 : 5℄). Similarly,n-value = reip-rom-n(at(I [14 : 10℄; I [4 : 0℄; 5)):35

By Lemma 4.1, p-value+ n-value = R0(I)� 216 < 217 � 216 = 216;hene estimate = p-value+ n-value < 216and by Lemma 2.8,get-man(x0) = 2M�17estimate | 2M�1 = 2M�17(estimate | 216)= 2M�17(estimate+ 216) = 2M�17R0(I):Sine estimate[16℄ = 0 and get-expo(b) � 218 � 3,get-expo(x0) = rem(218 � 2 + 218 � get-expo(b)� 1; 218) = 218 � 3� get-expo(b):The OP-DIV ase now follows easily from Lemmas 4.1 and 2.15.In the ase op = OP-SQRT, we may similarly show that get-man(x0) = 2M�17Sj(I),where j = get-expo(b)[0℄. Now(218 + 217 � 3 + omp1(get-expo(b); 19) + estimate[16℄)[18 : 0℄= (218 + 217 � 3 + omp1(get-expo(b); 19))[18 : 0℄= rem(218 + 217 � 3 + omp1(get-expo(b); 19); 219)= rem(218 + 217 � 3 + 219 � get-expo(b)� 1; 219)= rem(218 + 217 � 3 + 219 � (expo(b̂) + 217 � 1)� 1; 219)= rem(218 � expo(b̂)� 3; 219)= 218 � expo(b̂)� 3:Thus, get-expo(x0) = shr(218 � expo(b̂)� 3; 0; 19)= b(218 � expo(b̂)� 3)=2= 217 � 1 + b�(expo(b̂) + 1)=2;and expo(x̂0) = b�(expo(b̂) + 1)=2 = �bexpo(b̂)=2 � 1:2The error assoiated with x0 is haraterized by the next two lemmas, whih alsoestablish the bounds required by Lemma 3.5:Lemma 4.5 If op = OP-DIV and get-expo(b) � 218 � 3, then(a) j1� x̂0b̂j < 3 � 2�16; (b) 3=2 < sig(x̂0)sig(b̂) < 3.Proof: (a) By Lemma 4.4,x̂0b̂ = sig(x̂0)sig(b̂)2expo(x̂0)+expo(b̂) = sig(x̂0)sig(b̂)=2:Let I = get-man(b)[M � 2 : M � 16℄. Sine 2M�1 � get-man(b) < 2M ,I = brem(get-man(b); 2M�1)=2M�16 = b(get-man(b)� 2M�1)=2M�16= bget-man(b)=2M�16 � 215; 36

hene get-man(b)=2M�16 � 215 � 1 < I � get-man(b)=2M�16 � 215;whih along with Lemma 2.15, implies2�15(215 + I) � sig(b̂) < 2�15(215 + I + 1):Thus, by Lemmas 4.4 and 4.2,1� 3 � 2�16 < 2�32R0(I)(215 + I) � x̂0b̂ < 2�32R0(I)(215 + I + 1) < 1 + 3 � 2�16:(b) This follows from (a) and the observation that sig(x̂0)sig(b̂) = 2x̂0b̂. 2Lemma 4.6 If op = OP-SQRT, b̂ > 0, and get-expo(b) � 218 � 3, then(a) j1� x̂02b̂j < 3 � 2�16;(b) 3=2 < sig(x̂02)sig(b̂) < 3;() x̂02 is representable.Proof: Let I = get-man(b)[M � 2 : M � 16℄ and expo(b̂) = 2r + s, where 0 � s � 1.Case 1: s = 0(a) In this ase, get-expo(b)[0℄ = 1. By Lemma 4.4,x̂02b̂ = sig(x̂0)2sig(b̂)22expo(x̂0)+expo(b̂) = sig(x̂0)2sig(b̂)22(�r�1)+2r= sig(x̂0)2sig(b̂)=4 = 2�34S1(I)2sig(b̂):Thus, by Lemma 4.2,1� 3 � 2�16 < 2�49S1(I)2(215 + I) � x̂02b̂ < 2�49S1(I)2(215 + I + 1) < 1 + 3 � 2�16:(b) By Lemmas 4.4 and 4.3, sig(x̂0)2 = 2�32S1(I)2 � 2, whih implies sig(x̂02) =sig(x̂0)2=2. Thus, x̂02b̂ = sig(x̂0)2sig(b̂)=4 = sig(x̂02)sig(b̂)=2:The laim now follows from (a).() By Lemmas 4.1 and 4.4, x̂0 is 17-exat, and it follows that x̂02 is M -exat. Sineexpo(b̂) � 1� 217, expo(x̂0) � �b(1� 217)=2 � 1 = 216 � 1and expo(x̂02) � 2expo(x̂0) + 1 � 217 � 1:But sine expo(b̂) = get-expo(b)� (217 � 1) � (218 � 3)� (217 � 1) = 217 � 2,x̂02 = sig(x̂02)sig(b̂)=2b̂ � sig(b̂)=2b̂ = 2�1�expo(b̂) � 21�217 ;hene expo(x̂02) � 1� 217.Case 2: s = 1(a) In this ase, get-expo(b)[0℄ = 0. By Lemma 4.4,x̂02b̂ = sig(x̂0)2sig(b̂)22expo(x̂0)+expo(b̂) = sig(x̂0)2sig(b̂)22(�r�1)+2r+1= sig(x̂0)2sig(b̂)=2 = 2�33S0(I)2sig(b̂):37

Thus, by Lemma 4.2,1� 3 � 2�16 < 2�48S0(I)2(215 + I) � x̂02b̂ < 2�48S0(I)2(215 + I + 1) < 1 + 3 � 2�16:(b) By Lemmas 4.4 and 4.3, sig(x̂0)2 = 2�32S0(I)2 < 2, whih implies sig(x̂02) =sig(x̂0)2. Thus, x̂02b̂ = sig(x̂0)2sig(b̂)=2 = sig(x̂02)sig(b̂)=2:2() As in Case 1, x̂02 is M -exat and expo(x̂02) � 217 � 1. Sine expo(b̂) � 217 � 2and expo(b̂) is odd, expo(b̂) � 217 � 3, heneexpo(x̂0) � �b(217 � 3)=2 � 1 = 1� 216and expo(x̂02) � 2expo(x̂0) � 2� 217:4.3 The Operation OP-DIVGiven an initial approximation �0 of 1=b̂, the Newton-Raphson formula�i = �i�1(2� b̂�i�1)gives a onverging sequene of approximations �1; �2; : : : The relative error of �i is�����1=b̂� �i1=b̂ ����� = j1� b̂�ij:Thus, the following lemma (whih is proved by simple arithmeti) shows that this se-quene is quadratially onvergent:Lemma 4.7 Let b; x 2 Q and let y = x(2� bx). Then 1� by = (1� bx)2:Using Lemma 4.7, we shall derive an error estimate for q̂ as an approximation of â=b̂.First, we prove the following tehnial lemma:Lemma 4.8 Assume q̂ is (�+ 1)-exat, where � � 1, and q̂ 6= 0. Let � 2 Q satisfyexpo(�) � expo(q̂);jq̂ � �j � 2expo(�)���1;and jâ=b̂� �j < 2expo(â=b̂)���2:Then jq̂ � â=b̂j < 2min(expo(q̂);expo(â=b̂))��:Proof: First note that jq̂j � 34 j�j > 916 jâ=b̂j, hene expo(q̂) � expo(â=b̂)� 1. Sinejq̂ � â=b̂j � jq̂ � �j+ jâ=b̂� �j < 2expo(q̂)���1 + 2expo(q̂)���1 = 2expo(q̂)��;we may assume expo(â=b̂) < expo(q̂). But jâ=b̂j > jq̂j=2, hene expo(â=b̂) = expo(q̂)� 1.We may also assume expo(�) = expo(q̂), for otherwise expo(�) � expo(â=b̂) andjq̂ � â=b̂j � jq̂ � �j+ jâ=b̂� �j < 2expo(�)���1 + 2expo(â=b̂)���1 � 2expo(â=b̂)��:38

If jq̂j > 2expo(q̂), then jq̂j � 2expo(q̂) + 2expo(q̂)�� by Lemma 2.13, andjq̂ � â=b̂j � jq̂j � jâ=b̂j > 2expo(q̂) + 2expo(q̂)�� � 2expo(â=b̂)+1 = 2expo(q̂)��:Therefore, jq̂j = 2expo(q̂), whih implies j�j � jq̂j andjq � â=b̂j = jq̂j � jâ=b̂j � j�j � jâ=b̂j � j� � â=b̂j < 2expo(â=b̂)��:2We shall assume here that â and b̂ are both positive; this assumption will be relievedin the proof of the main theorem:Lemma 4.9 Assume op = OP-DIV, â > 0, b̂ > 0, expo(b̂) � 217 � 2, 3 � 2�217 < jâ=b̂j <3 � 2217�1, and mbits(p) = �. Then q is normal, q̂ is (�+ 1)-exat andjq̂ � â=b̂j < 2min(expo(q̂);expo(â=b̂))��:Proof: Let � = 2�M , � = 2expo(â=b̂), and � = 3=216. We de�ne a sequene ofapproximations �i of â=b̂ by�i = � x̂0 if i = 0�i�1(2� b̂�i�1) if i > 0.Sine â and b̂ are positive, so are the �i, as well as every produt omputed by FPU-MUL.By Lemmas 4.5 and 4.7, j1� b̂�ij < �2i for all i. Thus, b̂�i < 1+ �2i and 2� b̂�i < 1+ �2i.We also have â�i = (â=b̂)(b̂�i) < 2�(1 + �2i)and jâ=b̂� â�ij = (â=b̂)j1� b̂�ij < (â=b̂)�2i < 2��2i :By Theorem 1, d̂0 = near(b̂x̂0;M) = near(b̂�0;M), hene by Lemma 2.26,jd̂0 � b̂�0j � 2expo(b̂�0)�M � 2�M = �:Note that our bounds for jâ=b̂j ensure that the hypotheses of Theorem 1 are satis�ed byx = a and y = x0. Thus,jn̂0 � â�0j � 2expo(â�0)�M � 2expo(â=b̂)+1�M = 2��;and by Lemma 3.5 (the hypotheses of whih are ensured by Lemma 4.5),0 < 2� b̂�0 � 2� � r̂0 < 2� b̂�0:Therefore,n̂0r̂0 < (â�0 + 2��)(2� b̂�0) = â�1 + 2��(2� b̂�0) < â�1 + 2��(1 + �)< â�1 + 2�� + 2�13��;n̂0r̂0 � (â�0 � 2��)(2� b̂�0 � 2�) = â�1 � 2��(2� b̂�0)� 2�â�0 + 4�2�> â�1 � 2��(1 + �)� 2�2�(1 + �) > â�1 � 6�� � 2�12��;39

and jn̂0r̂0 � â=b̂j � jn̂0r̂0 � â�1j+ jâ�1 � â=b̂j < 7�� + 2��2< (7 � 2�75 + 9 � 2�31)� < 2�27�= 2expo(â=b̂)�27:Suppose p = PC-32. Then � = 24 andjn̂0r̂0 � â=b̂j < 2expo(â=b̂)�27 < 2expo(â=b̂)���2:By Lemma 3.7, q̂ is (�+1)-exat, expo(n̂0r̂0) � expo(q̂), and jn̂0r̂0�q̂j � 2expo(n̂0r̂0)���1.We may now invoke Lemma 4.8 with � = n̂0r̂0, whih yields the desired inequality.Thus, we may assume that p 6= PC-32. Nowd̂0r̂0 < (b̂�0 + �)(2� b̂�0) = b̂�1 + �(2� b̂�0) < b̂�1 + �+ 2�14�;d̂0r̂0 � (b̂�0 � �)(2� b̂�0 � 2�) = b̂�1 � 2�b̂�0 � �(2� b̂�0) + 2�2> b̂�1 � 2�(1 + �)� �(1 + �) > b̂�1 � 3�� 2�13�;and Lemma 2.26 implies jd̂1 � d̂0r̂0j � 2expo(d̂0r̂0)�M � �;hene d̂1 � d̂0r̂0 + � < b̂�1 + 2�+ 2�14�and d̂1 � d̂0r̂0 � � > b̂�1 � 4�� 2�13�:By Lemmas 3.5 and 3.6,r̂1 < 2� d̂0r̂0 < (2� b̂�1) + 3�+ 2�13�and r̂1 � 2� d̂0r̂0 � 2� > (2� b̂�1)� 3�� 2�14� > 0:Continuing in this manner, we havejn̂1 � n̂0r̂0j � 2expo(n̂0r̂0)�M � 2��;n̂1 � n̂0r̂0 + 2�� < â�1 + 4�� + 2�13��;n̂1 � n̂0r̂0 � 2�� > â�1 � 8�� � 2�12��;n̂1r̂1 < (â�1 + 4�� + 2�13��)((2 � b̂�1) + 3�+ 2�13�)< â�2 + (4�� + 2�13��)(1 + �2) + 2�(1 + �2)(3�+ 2�13�)+(4�� + 2�13��)(3� + 2�13�)< â�2 + 10�� + 2�11��;40

n̂1r̂1 > (â�1 � 8�� � 2�12��)((2 � b̂�1)� 3�+ 2�14�)> â�2 � (8�� + 2�12��)(1 + �2)� 2�(1 + �2)(3�+ 2�14�)> â�2 � 14�� � 2�11��;and jn̂1r̂1 � â=b̂j � jn̂1r̂1 � â�2j+ jâ�2 � â=b̂j < 15�� + 2�11�� + 2��4< (15 � 2�75 + 81 � 2�63)� < 2�56�= 2expo(â=b̂)�56:Suppose p = PC-64, and therefore � = 53. Thenjn̂1r̂1 � â=b̂j < 2expo(â=b̂)�56 < 2expo(â=b̂)���2:The remaining hypotheses of Lemma 4.8, with n̂1r̂1 substituted for �, again follow fromLemma 3.7, and the desired inequality follows.Thus, we may assume p = PC-80 or p = PC-87. Continuing, we haved̂1r̂1 < (b̂�1 + 2�+ 2�14�)((2 � b̂�1) + 3�+ 2�13�)< b̂�2 + (2�+ 2�14�)(1 + �2) + (3�+ 2�13�)(1 + �2)+(2�+ 2�14�)(3� + 2�13�)< b̂�2 + 5�+ 2�12�;d̂1r̂1 > (b̂�1 � 4�� 2�13�)((2 � b̂�1)� 3�� 2�14�)> b̂�2 � (4�+ 2�13�)(1 + �2)� (1 + �2)(3�+ 2�14�)> b̂�2 � 7�� 2�12�;r̂2 < 2� d̂1r̂1 < (2� b̂�2) + 7�+ 2�12�;r̂2 � 2� d̂1r̂1 � 2� > (2� b̂�2)� 7�� 2�12� > 0;jn̂2 � n̂1r̂1j � 2expo(n̂1r̂1)�M � 2��;n̂2 � n̂1r̂1 + 2�� < â�2 + 12�� + 2�11��;n̂2 � n̂1r̂1 � 2�� > â�2 � 16�� � 2�11��;n̂2r̂2 < (â�2 + 12�� + 2�11��)((2 � b̂�2) + 7�+ 2�12�)< â�3 + (12�� + 2�11��)(1 + �4) + 2�(1 + �4)(7�+ 2�12�)+(12�� + 2�11��)(7� + 2�12�)< â�3 + 26�� + 2�9��;and n̂2r̂2 > (â�2 � 16�� � 2�11��)((2 � b̂�2)� 7�+ 2�12�)> â�3 � (16�� + 2�11��)(1 + �4)� 2�(1 + �4)(7�2 + 2�12�)> â�3 � 30�� � 2�9��: 41

Finally, sine � � 68,jn̂2r̂2 � â=b̂j � jn̂2r̂2 � â�3j+ jâ�3 � â=b̂j < 31�� + 2��8< (30 � 2�75 + 81 � 2�110)� < 2�70�� 2expo(â=b̂)���2;and the lemma follows from Lemma 4.8, with � = n̂2r̂2. 24.4 The Operation OP-SQRTThe Newton-Raphson formula for approximating 1=pb̂ is�i = �i�12 (3� b̂�2i�1):Sine the relative error of this approximation is������i � 1=pb̂1=pb̂ ����� = jpb̂�i � 1j < jpb̂�i � 1jjpb̂�i + 1j = jb̂�2 � 1j;onvergene is established by the following lemma, whih is proved in [8℄:Lemma 4.10 Let b; x 2 Q with 0 � bx2 � 4 and let y = x2 (3� bx2). Then0 � 1� by2 � (1� bx2)2:We shall use Lemma 4.10 to derive an error estimate for q in the OP-SQRT ase.Lemma 4.11 For all i 2 N, let �i be de�ned by�i = � x̂0 if i = 0�i�12 (3� b̂�2i�1) if i > 0,and let � = 3=216. Assume that q̂ > 0 and q̂ is (�+ 1)-exat, where � � 24.Let `; h 2 Q suh that 0 � ` � h and `2 � b̂ � h2. Let �; � 2 Q+ and i 2 Z+ suhthat expo(�) � expo(q̂);jq̂ � �j � 2expo(�)���1;jb̂�i � �j < 2bexpo(b̂)=2�;and 2� + 8�2i � 2���1:Then h > q � 2min(expo(q̂);expo(h))��and ` < q + 2min(expo(q̂);expo(`))��:42

Proof: By Lemmas 4.6 and 4.10, 0 � 1� b̂�2i < �2i , where � = 3=216, and hene(b̂�i)2 = b̂(b̂�2i) > b̂(1� �2i) > 2expo(b̂)�1 > (2bexpo(b̂)=2�1)2and b̂�i > 2bexpo(b̂)=2�1.Sine jq̂ � �j � 2expo(�)���1 � �=4, q̂ � 34�. Sine � < 2���2,jb̂�i � �j < 2bexpo(b̂)=2���2 < b̂�i2���1 � b̂�i=4;and hene q̂ � 34� > 916 b̂�i, whih impliesq̂2 > 81256(b̂�i)2 > 81256 b̂(1� �2i) > b̂=4:It follows that expo(q̂) � bexpo(b̂)=2 � 1.Sine h2 � b̂ � b̂(b̂�2i) = (b̂�i)2,h � b̂�i � q̂ � (jq̂ � �j+ jb̂�i � �j) > q̂ � (2expo(�)���1 + 2expo(q̂)���1) � q̂ � 2expo(q̂)��:Therefore, we may assume expo(h) < expo(q̂). But jhj > jq̂j=2, hene expo(h) =expo(q̂) � 1. Also note that expo(h) � bexpo(b̂)=2, for otherwise h < 2bexpo(b̂)=2and b̂ � h2 < 22bexpo(b̂)=2 � 2expo(b̂):We may further assume expo(�) = expo(q̂), for otherwise expo(�) � expo(h) andh � b̂�i � q̂ � (jq̂ � �j+ jb̂�i � �j)> q̂ � (2expo(�)���1 + 2bexpo(b̂)=2���2) � q̂ � 2expo(h)��:If q̂ > 2expo(q̂), then q̂ � 2expo(q̂) + 2expo(q̂)�� by Lemma 2.13, andh > q̂ � 2expo(q̂)�� � 2expo(q̂) = 2expo(h)+1:Therefore, q̂ = 2expo(q̂), whih implies � � q̂ andh � b̂�i = q̂ � (q̂ � b̂�i) � q̂ � (� � b̂�i) > q̂ � 2bexpo(b̂)=2���2 � q̂ � 2expo(h)��:In order to derive the bound for `, we may assume expo(q̂) � expo(`), for otherwise` < q̂ and the inequality holds trivially. Sine (b̂�i)2 > b̂(1� �2i),`2 � b̂ < (b̂�i)2=(1� �2i) < [b̂�i=(1� �2i)℄2;and hene ` < b̂�i=(1� �2i) < b̂�i(1 + 2�2i):Reall that expo(q̂) � bexpo(b̂)=2 � 1 and q̂ > 916 b̂�i, hene b̂�i < 2expo(q̂)+2. Thus,` < b̂�i(1 + 2�2i) < b̂�i + 8�2i2expo(q̂) � q̂ + jq̂ � �j+ j� � b̂�ij+ 8�2i2expo(q̂)< q̂ + 2expo(q̂)���1 + 2bexpo(b̂)=2� + 8�2i2expo(q̂) � q̂ + 2expo(q̂)(2���1 + 2� + 8�2i)� q̂ + 2expo(q̂)(2���1 + 2���1) = q̂ + 2expo(q̂)��:2We shall also require the following lemma, in order to invoke Lemma 3.8.43

Lemma 4.12 Under the hypothesis of Lemma 4.11, jq̂2 � b̂j < 2expo(b̂)�3.Proof: Sine expo(b̂) � 2bexpo(b̂)=2+ 1, b̂ < 2expo(b̂)+1 � (2bexpo(b̂)=2+1)2: Thus,(b̂�i)2 = b̂(b̂�2i) � b̂ < (2bexpo(b̂)=2+1)2and b̂�i < 2bexpo(b̂)=2+1. Now sinejq̂ � b̂�ij � jq̂ � �j+ jb̂�i � �j < 2expo(q̂)�� � 2bexpo(b̂)=2+1��and jq̂ + b̂�ij � 2b̂�i + jq̂ � b̂�ij < 2bexpo(b̂)=2+2 + 2bexpo(b̂)=2+1�� < 2bexpo(b̂)=2+3;we have jq̂2 � (b̂�i)2j = jq̂ � b̂�ijjq̂ + b̂�ij < 22bexpo(b̂)=2+4�� � b̂24��:Thus, jq̂2 � b̂j � jq̂2 � (b̂�i)2j+ b̂j1� b̂�2i j < b̂25�� < 2expo(b̂)+6��:2Lemma 4.13 Assume op = OP-SQRT, b̂ > 0, expo(b̂) � 217 � 2, and let mbits(p) = �.Let `; h 2 Q suh that 0 � ` � h and `2 � b̂ � h2. Then q is normal, q̂ is (�+1)-exat,` < q̂ + 2min(expo(q̂);expo(`))��;h > q̂ � 2min(expo(q̂);expo(h))��;and jq̂2 � b̂j < 2expo(b̂)�3:Proof: Let � = 2�M , � = 2bexpo(b̂)=2, and � = 3=216. For i 2 N, let �i be de�nedas in Lemma 4.11. Then b̂ < 4�2 and j1� b̂�2i j < �2i . For i > 0, b̂�2i � 1 and b̂�i < 2�,whih implies 2expo(b̂�i) � �. On the other hand,(b̂�0)2 = b̂(b̂�20) < 4�2(1 + �) < (2�(1 + �))2;hene b̂�0 < 2�(1 + �) < 4�, whih implies 2expo(b̂�0) � 2�. Also note that for all i,(3� b̂�2i)=2 = 1 + (1� b̂�2i)=2 < 1 + �2i=2. We proeed as in the proof of Lemma 4.9, invoking Lemmas 4.11 and 4.12 in eah ofseveral ases. Aording to Lemma 4.6(), the hypothesis of Theorem 1 is satis�ed byx = y = x̂0. Thus, t̂0 = near(x̂02;M) = x̂02 = �20 :Similarly, d̂0 = near(b̂�0;M)and n̂0 = near(b̂t̂0;M) = near(b̂�20 ;M):44

Therefore, by Lemma 2.26, jd̂0 � b̂�0j � 2expo(b̂�0)�M � 2��and jn̂0 � b̂�20 j � 2expo(b̂�20)�M � �:By Lemmas 3.5 and 4.6,(3� b̂�20)=2� 2� � r̂0 < (3� b̂�20)=2:Thus, d̂0r̂0 < (b̂�0 + 2��)(3� b̂�20)=2 < b̂�1 + 2��(1 + �=2) < b̂�1 + 2�� + 2�14��and d̂0r̂0 > (b̂�0 � 2��)((3� b̂�20)=2� 2�) > b̂�1 � 2��(1 + �=2)� 2�(1 + �)2�> b̂�1 � 6�� � 2�12��:Suppose p = PC-32 and � = 24. We shall apply Lemmas 4.11 and 4.12 with � = d̂0r̂0,i = 1, and � = 7�. Under these substitutions, we havejb̂�i � �j < 7�� = 2bexpo(b̂)=2�and 2� + 8�2i = 14 � 2�M + 8�2 � 14 � 2�75 + 9 � 2�29 < 2�25 = 2���1:The remaining hypotheses of Lemma 4.11 are ensured by Lemma 3.7, and the onlusionfollows.Thus, we may assume p 6= PC-32. Now we have t̂1 = near(r̂02;M), hene jt̂1�r̂02j ��, whih implies t̂1 � (3� b̂�20)2=4 + �and t̂1 � ((3� b̂�20)=2� 2�)2 � �> (3� b̂�20)2=4� 4�(1 + �=2)� �> (3� b̂�20)2=4� 5�� 2�13�:Consequently,n̂0t̂1 � (b�20 + �)((3� b̂�20)2=4 + �) < b̂�21 + (1 + �)�+ �(1 + �=2)2 + �2< b̂�21 + 2�+ 2�13�and n̂0t̂1 � (b�20 � �)((3 � b̂�20)2=4� 5�� 2�13�)> b̂�21 � (1 + �)(5�+ 2�13�)� �(1 + �=2)2 > b̂�21 � 6�� 2�11�:Sine d̂1 = near(d̂0r̂0;M), jd̂1 � d̂0r̂0j � 2expo(d̂0r̂0)�M � 2��, heneb̂�1 � 8�� � 2�12�� < d̂1 < b̂�1 + 4�� + 2�14��:45

Similarly, n̂1 = near(n̂0t̂1;M), jn̂1 � n̂0t̂1j � 2expo(n̂0 t̂1)�M � �, andb̂�21 � 7�� 2�11� < n̂1 < b̂�21 + 3�+ 2�13�:By Lemmas 3.5 and 3.6,r̂1 < (3� n̂0t̂1)=2 < (3� b̂�21)=2 + 3�+ 2�10�and r̂1 � (3� n̂0t̂1)=2� 2� > (3� b̂�21)=2� 3�� 2�12�:Thus, d̂1r̂1 < (b̂�1 + 4�� + 2�14��)((3� b̂�21)=2 + 3�+ 2�10�)< b̂�2 + 2�(3�+ 2�10�) + (4�� + 2�14��)(1 + �2=2)+(3�+ 2�10�)(4�� + 2�14��)< b̂�2 + 10�� + 2�8��and d̂1r̂1 > (b̂�1 � 8�� � 2�12��)((3� b̂�21)=2� 3�� 2�12�)> b̂�2 � 2�(3�+ 2�12�)� (8�� + 2�12��)(1 + �2=2)> b̂�2 � 14�� � 2�10��:Suppose p = PC-64 and � = 53. We shall again invoke Lemmas 4.11 and 4.12, nowwith � = d̂1r̂1, i = 2, and � = 15�. Thusjb̂�i � �j < 15�� = 2bexpo(b̂)=2�and 2� + 8�2i = 30 � 2�M + 8�4 � 30 � 2�75 + 81 � 2�61 < 2�54 = 2���1:The remaining hyptheses of Lemma 4.11 are again ensured by Lemma 3.7.Thus, we may assume p = PC-80 or p = PC-87. Continuing in the same manner,we have jt̂2 � r̂12j � 2expo(r̂12)�M � �;t̂2 < (3� b̂�21)2=4 + 2(1 + �2=2)2(3�+ 2�10�) + (3�+ 2�10�)2 + �< (3� b̂�21)2=4 + 7�+ 2�8�;t̂2 > (3� b̂�21)2=4� 2(1 + �2=2)2(3�+ 2�12�)� �> (3� b̂�21)2=4� 7�+ 2�10�;jd̂2 � d̂1r̂1j � 2expo(d̂1r̂1)�M � 2��;b̂�2 � 16�� � 2�10�� < d̂2 < b̂�2 + 12�� + 2�8��;46

n̂1t̂2 < (b̂�21 + 3�+ 2�13�)((3� b̂�21)2=4 + 7�+ 2�8�)< b̂�22 + (7�+ 2�8�) + (1 + �2=2)2(3�+ 2�13�)+(3�+ 2�13�)(7�+ 2�8�)< b̂�21 + 10�+ 2�7�;n̂1t̂2 > (b̂�21 � 7�� 2�11�)((3� b̂�21)2=4� 7�+ 2�10�)> b̂�22 � (7�+ 2�10�)� (1 + �2=2)2(7�+ 2�11�)> b̂�21 � 14�� 2�9�;r̂2 < (3� n̂1 t̂2)=2 < (3� b̂�22)=2 + 7�+ 2�10�;r̂2 � (3� n̂1t̂2)=2� 2� > (3� b̂�22)=2� 7�� 2�8�;d̂2r̂2 < (b̂�2 + 12�� + 2�8��)((3 � b̂�22)=2 + 7�+ 2�10�)< b̂�3 + 2�(7�+ 2�10�) + (1 + �4=2)(12�� + 2�8��)+(12�� + 2�8��)(7� + 2�10�)< b̂�3 + 26�� + 2�7��;and d̂2r̂2 > (b̂�2 � 16�� � 2�10��)((3 � b̂�22)=2� 7�+ 2�8�)> b̂�3 � 2�(7�+ 2�8�)� (1 + �4=2)(16�� + 2�10��)> b̂�3 � 30�� � 2�6��:Finally, we apply Lemmas 4.11 and 4.12 with � = d̂2r̂2, i = 3, and � = 31�. Thus,jb̂�i � �j < 31�� = 2bexpo(b̂)=2�;and sine � � 68,2� + 8�2i = 62 � 2�M + 8�8 � 62 � 2�75 + 2�112 < 2�69 � 2���1:The proof is ompleted by invoking Lemmas 3.7 and 4.11. 24.5 Final RoundingThe remaining analysis pertains to the latter part of FPU-DIV-SQRT, in whih theapproximation q is adjusted to produe the orretly rounded result.The signi�ane of the variables q-guard and q-lsb is given by the following:Lemma 4.14 Assume that q is normal and q̂ is (�+ 1)-exat, where � = mbits(p).(a) q-guard = 0, q̂ is �-exat;(b) q-lsb = 0, trun(q̂; �) is (�� 1)-exat.
47

Proof: (a) Let m = get-man(q). Then m is (�+ 1)-exat, i.e,m2��expo(m) = m2�+1�M 2 Zand q-guard = m[M � �� 1℄ = rem(bm2�+1�M; 2) = rem(m2�+1�M ; 2):But m is �-exat, m2��M 2 Z, m2�+1�M is even, q-guard = 0:(b) q-lsb = m[M��℄ = rem(bm2��M; 2) and trun(m;�) = bm2��M2M��. Thus,trun(m;�) is (�� 1)-exat , bm2��M2M��2(��1)�1�(M�1) = bm2��M=2 2 Z, bm2��M is even, q-lsb = 0:2The orretness proof for division will be based on the following:Lemma 4.15 Let � = mbits(p). Suppose q is normal, q̂ is (� + 1)-exat, sign = 0,and 21�217 < q̂ < 2217(2� 21��). Let x 2 Q suh that(a) jx� q̂j < 2min(expo(q̂);expo(x))��;(b) if rem-neg = 1, then q̂ > x;() if rem-pos = 1, then q̂ < x;(d) if rem-zero = 1, then q̂ = x.Then z is normal and rnd(x; r; p) = ẑ.Proof: Note that the hypothesis implies that ẑ > 0 and x > 0.Case 1: r = RC-NEG or r = RC-CHOPIn this ase, rnd(x; r; p) = trun(x; �).Subase 1.1: q-guard = 0 and rem-neg = 1By Lemma 4.14, q̂ is �-exat. Also, x < q̂. By Lemma 2.24,get-man(q) & (2M � 2M��) = trun(get-man(q); �) = get-man(q):If get-man(q) = 2M�1, then q̂ = 2expo(q̂), where by hypothesis, expo(q̂) > 1 � 217. Inthis ase, ẑ = (2 � 21��)2expo(q̂)�1 and expo(ẑ) = expo(q̂) � 1. In all other ases, q̂ �2expo(q̂)+21+expo(q̂)��, ẑ = q̂�21+expo(q̂)��, ẑ � 2expo(q̂), and expo(ẑ) = expo(q̂). In anyase, ẑ + 21+expo(ẑ)�� = q̂. Sine trun(x; �) � x < q̂, trun(x; �) � ẑ by Lemma 2.13.Also, trun(x; �) � ẑ, for otherwise we would have x < ẑ, expo(x) � expo(ẑ), andx > q̂ � 2expo(x)�� > q̂ � 21+expo(ẑ)�� = ẑ:Subase 1.2: q-guard = 1In this ase, q̂ is not �-exat, and ẑ = trun(q̂; �). By Lemma 2.27, ẑ = q̂�2expo(q̂)��.Therefore,trun(x; �) � x < q̂ + 2expo(q̂)�� = ẑ + 2expo(q̂)+1�� = ẑ + 2expo(ẑ)+1��;and hene trun(x; �) � ẑ. But sine x > q̂�2expo(q̂)�� = ẑ, trun(x; �) � trun(ẑ; �) =ẑ. 48

Subase 1.3: q-guard = rem-neg = 0q̂ is �-exat, x � q̂, and ẑ = trun(q̂; �) = q̂.In this ase,trun(x; �) � x < q̂ + 2expo(q̂)�� = ẑ + 2expo(ẑ)�� < ẑ + 2expo(ẑ)+1��;whih implies trun(x; �) � ẑ. But x � q̂ = ẑ implies trun(x; �) � ẑ.Case 2: r = RC-POSIn this ase, rnd(x; r; p) = away(x; �).Subase 2.1: q-guard = 1Here, q̂ is (�+1)-exat but not �-exat. By the same reasoning as used in Subase 1.1,we may show that ẑ = trun(q̂; �) + 2expo(q̂)+1��:But then by Lemma 2.27,ẑ = q̂ � 2expo(q̂)�� + 2expo(q̂)+1�� = q̂ + 2expo(q̂)�� = away(q̂; �):Sine x < q̂ + 2expo(q̂)�� = ẑ, away(x; �) � away(ẑ; �) = ẑ. But x > q̂ � 2expo(q̂)�� =trun(q̂; �), hene away(x; �) � trun(q̂; �) + 2expo(q̂)+1�� = ẑ.Subase 2.2: q-guard = 0 and rem-pos = 1.In this ase, q̂ is �-exat, q̂ < x, andẑ = trun(q̂; �) + 2expo(q̂)+1�� = q̂ + 2expo(q̂)+1��:Sine x < ẑ, away(x; �) � away(ẑ; �) = ẑ. But away(x; �) � x > q̂, so away(x; �) �q̂ + 2expo(q̂)+1�� = ẑ.Subase 2.3: q-guard = rem-pos = 0q̂ is �-exat, x � q̂, and ẑ = trun(q̂; �) = q̂. Thus,away(x; �) � away(q̂; �) = q̂ = ẑ:Sine x > q � 2expo(x)��, away(x; �) � near(x; �) � q̂ by Lemma 2.28.Case 3: r = RC-NEAR and q-guard = 0Here, q̂ is �-exat, rnd(x; r; p) = near(x; �), and ẑ = trun(q̂; �) = q̂.Sine x < q̂ + 2expo(q̂)�� implies near(x; �) � q̂ = ẑ by Lemma 2.28(b). But sinex > q̂ � 2expo(x)��, near(x; �) � q̂ by Lemma 2.28().Case 4: r = RC-NEAR and q-guard = 1In this ase, q̂ is (� + 1)-exat but not �-exat. Let a = q � 2expo(q̂)�� and b =q + 2expo(q̂)��. By Lemma 2.27, a = trun(q̂; �) and b = away(q̂; �).Subase 4.1: rem-pos = 1In this ase, ẑ = b and q̂ < x. Sine x < q̂ + 2expo(q̂)�� = b,near(x; �) � near(b; �) = b = ẑ:But x > q = b� 2expo(q̂)�� � b� 2expo(x)��, hene near(x; �) � b.Subase 4.2: rem-neg = 1 49

In this ase, ẑ = trun(q̂; �) = a and x < q̂, hene near(x; �) � a = ẑ by Lemma 2.28,and x > q � 2expo(q̂)�� = a implies near(x; �) � near(a; �) = a.Subase 4.3: rem-zero = 1Here, x = q̂, hene near(x; �) = near(q̂; �). We shall show near(q̂; �) = ẑ. Notethat by Lemma 2.29, near(q̂; �) is (�� 1)-exat.If q-lsb = 1, then ẑ = b and a = trun(q̂; �) is not (� � 1)-exat by Lemma 4.14.Thus, near(q̂; �) 6= a, whih implies near(q̂; �) = b = ẑ.If q-lsb = 0, then ẑ = a, a is (� � 1)-exat by Lemma 4.14. It follows that b is not(�� 1)-exat, and hene near(q̂; �) = a. 2We may now state the orretness theorem for division. Note that the bound onexpo(b̂) is required by Lemma 4.4 and is therefore unavoidable. The other onstraintstates that expo(â=b̂) may not assume either of the limiting values 1�217 and 217. Thisis aeptable sine the hardware would never be expeted to return a value with eitherof those exponents. In partiular, IEEE ompliane only involves exponents that areaommodated by the 80-bit (64; 15) format.Theorem 2 Assume op = OP-DIV, r is a rounding ontrol spei�er, p is an externalpreision ontrol spei�er, and a and b are normal enodings suh that expo(b̂) � 217�2and 2� 217 � expo(â=b̂) � 217 � 1. Then z is a normal enoding andẑ = rnd(â=b̂; r; p):Proof: By the same reasoning that was used in the proof of Theorem 1, we mayassume that â > 0 and b̂ > 0. We need only show that the hypotheses of Lemma 4.15are satis�ed by x = â=b̂.First note that our hypothesis regarding expo(â=b̂) yields the bounds on jâ=b̂j thatare required by Lemma 4.9, whih implies that q̂ is (�+ 1)-exat andjq̂ � â=b̂j < 2min(expo(q̂);expo(â=b̂))��:This in turn implies the bounds on q̂ that are required by Lemma 4.15, as well as q̂ > 0,and hene get-sign(q) = sign = 0:Next, we apply Lemma 3.8 with x = b, y = q, d = a, and z = rem, whih impliesthat jâ=b̂j > jq̂j , jb̂q̂j < jâj , get-man(rem)[M � 2℄ = 1, rem-pos = 1and â=b̂ = q̂ , b̂q̂ = â, get-man(rem)[M � 2 : 0℄ = inexat = 0, rem-zero = 1:But sine exatly one of rem-pos, rem-zero, and rem-neg is nonzero, it follows thatjâ=b̂j < jq̂j , rem-neg = 1;and all hypotheses of Lemma 4.15 are satis�ed. 2In order to prove our orretness result for square root, a modi�ation of Lemma 4.16will be required: 50

Lemma 4.16 Let � = mbits(p). Suppose q is normal, q̂ is (� + 1)-exat, sign = 0,and 21�217 < q̂ < 2217(2� 21��). Let `; h 2 Q suh that(a) `� 2min(expo(q̂);expo(`))�� < q̂ < h+ 2min(expo(q̂);expo(h))��;(b) if rem-neg = 1, then q̂ > `;() if rem-pos = 1, then q̂ < h;(d) if rem-zero = 1, then ` � q̂ � h.Then z is normal and rnd(`; r; p) � ẑ � rnd(h; r; p).Proof: We shall prove the �rst inequality; the proof of the seond is similar.Case 1: rem-neg = 1Sine ` < q̂, we may �nd x suh that ` < x < q̂ and x > q̂ � 2min(expo(q̂);expo(x))��.Then rnd(`; r; p) � rnd(x; r; p), but by Lemma 4.15, rnd(x; r; p) = ẑ.Case 2: rem-pos = 1Choose x so that q̂ < x < q+2min(expo(q̂);expo(x))�� and x > `. Then rnd(`; r; p) �rnd(x; r; p), but by Lemma 4.15, rnd(x; r; p) = ẑ.Case 3: rem-zero = 1Let x = q̂. Then ` � x, hene rnd(`; r; p) � rnd(x; r; p), but by Lemma 4.15,rnd(x; r; p) = ẑ. 2Theorem 3 Assume op = OP-SQRT, r is a rounding ontrol spei�er, p is an externalpreision ontrol spei�er, and b is a normal enoding suh that expo(b̂) � 217 � 2. Let`; h 2 Q suh that 0 � ` � h and `2 � b̂ � h2. Then z is a normal enoding andrnd(`; r; p) � ẑ � rnd(h; r; p):Proof: It suÆes to show that the hypotheses of Lemmas 4.16 are satis�ed. First,by Lemma 4.13, q̂ is (�+ 1)-exat,` < q̂ + 2min(expo(q̂);expo(`))��;and h > q̂ � 2min(expo(q̂);expo(h))��:Substituting 2bexpo(b̂)=2 for ` in the same lemma, we haveq̂ > 2bexpo(b̂)=2 � 2bexpo(b̂)=2�� > 2bexpo(b̂)=2�1 > 0;hene get-sign(q) = 0 = sign:Similarly, substituting 2bexpo(b̂)=2+1 for h yieldsq̂ < 2bexpo(b̂)=2+1 + 2bexpo(b̂)=2+1�� < 2bexpo(b̂)=2+2:Thus, 22�217 < 2bexpo(b̂)=2�1 � q̂ < 2bexpo(b̂)=2+2 < 2217 :Finally, we apply Lemma 3.8 with x = y = q, d = b, and z = rem, whih yields thefollowing:(1) if rem-neg = 1, then q̂2 > b̂ � `2, hene q̂ > `;(2) if rem-pos = 1, then q̂2 < b̂ � h2, hene q̂ < h;(3) if rem-zero = 1, then q̂2 = b̂, hene ` � q̂ � h.Thus, all hypotheses of Lemmas 4.16 are satis�ed. 251

5 ConlusionAs noted in the introdution, the pratial value of formal veri�ation has been illus-trated in this exerise by the detetion of two design aws. Both of these were in thede�nition of the proedure FPU-MUL, but neither a�eted the results of multipliation.One was an error in the spei�ation of the parameter r in the rare ase in whih overow= 0 and round-arryout-no-overow = 1, whih would inevitably have led to erroneousquotients and square roots for ertain inputs. The other was in the alulation of z inthe OP-BACK ase, and might have led to improper rounding of square roots, althoughwe were unable to exhibit a onrete example of this behavior. It was not surprising thatneither problem was exposed by traditional testing methods. One they were identi�ed,however, both were easily orreted before the design was ommitted to silion.Aside from the orretion of errors, formal analysis may also provide insight thatallows improvements in the eÆieny of a design. For example, while the multiplierthat was originally presented to us had a width of 76 bits, we were able to show, byrepresenting it as an inde�nite parameterM , that this width ould e�etively be reduedto 75 bits without sari�ing the auray of any of the operations that the multipliersupports.Although the funtionality of a physial devie annot be absolutely guaranteed bythe properties of a mathematial model, a realisti model an provide a fairly high levelof on�dene. In this ase, our analysis was based on a register-transfer model, farless abstrat than the hardware models that are typially used in formal veri�ationof oating point algorithms. It must be noted, however, that the evidentiality of ourmehanial veri�ation depends on the auray of several stages of manual translation.The original C enoding of the design was translated by hand into a speial-purposehardware desription language, from whih a gate-level implementation was eventuallyonstruted. Meanwhile, our veri�ation began with the pseudoode representation ofthe C program on whih the lemmas and theorems of this paper are based. After detailedproofs of all of these results were derived informally (and this paper was essentiallywritten), the pseudoode was translated into ACL2 along with the lemma statements.Finally, formal proofs of these statements were generated mehanially by guiding theACL2 prover through eah step of the informal proofs.Obviously, our on�dene in the �nal produt would be enhaned if we ould elim-inate or mehanize any of the steps in these translations. This has been a fous of ourmore reent work: we have implemented a mehanial translator from AMD's hardwaredesription language diretly to the logi of ACL2, thereby reduing the possibility ofhuman error in the formalization of hardware designs. In a report that is yet to bereleased, we desribe the use of this translator in the mehanial veri�ation of theAMD-K7 oating point adder.Of ourse, a suessful formal veri�ation projet requires a signi�ant investment.The ost to AMD of the results presented here was �ve months of the author's time,divided approximately equally between writing the informal proofs and heking themmehanially. Muh of this time, however, was spent developing general methods andresults, espeially the theory of oating point arithmeti presented in Setion 2, whihould be reused in any oating point veri�ation e�ort. We have already applied thesame results to several problems, and it is our hope that others will �nd them useful insimilar projets. Thus, the ACL2 formalization of this theory has been made availablethrough the ACL2 Web site.[1℄ 52

Referenes[1℄ ACL2 Web site, http://www.s.utexas.edu/users/moore/al2/.[2℄ Anderson, S.F., Earle, J.G., Goldshmidt, R.E., and Powers, D.M., \The IBM Sys-tem/360 Model 91 Floating Point Exeution Unit", IBM Journal of Researh andDevelopment, 11:34-53, January, 1967.[3℄ Bryant, R.E., \Veri�ation of Arithmeti Funtions with Binary Moment Diagrams",Tehnial Report CMU-CS-94-160, Shool of Computer Siene, Carnegie-MellonUniversity, 1994.[4℄ Clarke, E.M. and Zhao, X., \Word Level Symboli Model Cheking: A New Ap-proah for Verifying Arithmeti Ciruits", Tehnial Report CMU-CS-95-161, Shoolof Computer Siene, Carnegie-Mellon University, 1995.[5℄ Institute of Eletrial and Eletroni Engineers, \IEEE Standard for Binary FloatingPoint Arithmeti", Std. 754-1985, New York, NY, 1985.[6℄ Moore, J, Lynh, T., and Kaufmann, M., \A Mehanially Cheked Proof of theCorretness of the Kernel of the AMD5K86 Floating Point Division Algorithm",IEEE Transations on Computers, 47:9, September, 1998.[7℄ Oberman, S.F., \Division and Square Root for the AMD-K7 FPU", Advaned MiroDevies, Milpitas, CA, Marh, 1997.[8℄ Russino�, D.M., \A Mehanially Cheked Proof of IEEE Compliane of the AMD-K5 Floating Point Square Root Miroode", to appear in Formal Methods in SystemDesign, 1998.http://www.russinoff.om/papers/fsqrt.html.[9℄ Steele, G.L., Jr., Common Lisp The Language, 2nd edition, Digital Press, 1990.

53

