
A Mechanically Veri�ed
Incremental Garbage Collector

David M. Russino�

Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive, Austin, TX 78759

A Mechanically Veri�ed
Incremental Garbage Collector

David M. Russino�

Microelectronics and Computer Technology Corporation

3500 West Balcones Center Drive, Austin, TX 78759

Abstract. As an application of a system designed for concurrent program ver-
i�cation, we describe a formalization and mechanical proof of the correctness of
Ben-Ari's incremental garbage collection algorithm. The proof system is based on
the Manna-Pnueli model of concurrency and is implemented as an extension of
the Boyer-Moore prover. The correctness of the garbage collector is represented
by two theorems, stating a) that nothing except garbage is ever collected (safety),
and b) that all garbage is eventually collected (liveness). We compare our mecha-
nized treatment with several published proofs of the same results.

Keywords. Boyer-Moore prover, concurrent programming, incremental garbage
collection, mechanical program veri�cation.

1 Introduction

As software systems continue to grow in size and complexity, and the cost
of programming errors increases, software reliability becomes more impor-
tant and at the same time more di�cult to achieve. The advent of parallel
processing introduces a new dimension to this problem, calling for more so-
phisticated methods for assuring program correctness. As a result, there
is broadening recognition of the importance of mathematical methods for
verifying program speci�cations.

There is disagreement, however, on the level of formality that is appro-
priate for program veri�cation. Most correctness proofs are developed and
presented in the traditional high-level style that is typical of mathemati-
cal journals. But in comparison with the formulas that mathematicians are
accustomed to manipulating, computer programs are large and unwieldy.
Consequently, these correctness proofs often contain errors that survive the
normal review process.

Mechanical theorem provers o�er an alternative to hand-generated proofs,
with the potential for signi�cant reduction of errors. However, these provers

1

are generally considered to be di�cult to use, requiring tedious attention to
detail and expertise that is not common to software engineers. Moreover,
they are only applicable, even in principle, to programs that are coded in
languages with formal semantic de�nitions. Unfortunately, this requirement
excludes all real programming languages that are in common industrial use
today.

As an illustration of the complexity that is inherent in parallel program-
ming, and of the alternative approaches to program veri�cation, we shall
consider the problem of incremental garbage collection. This is a notori-
ously di�cult problem, originally posed in 1978 by Dijkstra, Lamport, et
al. [DLM78] as an exercise in organizing and verifying the cooperation of
concurrent processes. They described their experience as follows:

Our exercise has not only been very instructive, but at times even
humiliating, as we have fallen into nearly every logical trap pos-
sible . . . It was only too easy to design what looked|sometimes
even for weeks and to many people|like a perfectly valid solu-
tion, until the e�ort to prove it correct revealed a (sometimes
deep) bug.

Their objective in this exercise was to achieve cooperation between two
processes that operate concurrently on a shared data structure, an array con-
sisting of a �xed set of nodes. Associated with each node is an array of some
uniform length, each entry of which is a pointer either to a node, called a
son, or to the special symbol NIL. (In the case of a LISP system, this uniform
length is 2.) One process, called the mutator, performs the main computa-
tion, while another, the collector, is dedicated to storage reclamation. Also
associated with each node is a color �eld, which is used by the collector for
bookkeeping purposes.

An arbitrary number of nodes, comprising an initial segment of the array,
are distinguished as roots. (These may be thought of as program variables.)
A node is accessible if it can be reached by following some succession of
pointers from a root, and otherwise is garbage. The role of the collector is to
identify garbage nodes and append them to a linked list called the free list.
The mutator, which is continually redirecting pointers from accessible nodes
to other accessible nodes (thereby producing garbage), may remove nodes
from the free list as they are needed.

There are two criteria for program correctness:

2

1. Safety: No accessible node is ever appended to the free list.

2. Liveness: Every garbage node is eventually collected.

An important aspect of the model presented in [DLM78], which serves
to simplify the analysis, is that both NIL and the head of the free list are
considered to be root nodes. Thus, there are only three operations by which
the data structure may be altered:

1. Redirect a pointer from one accessible node to another accessible node.

2. Append a garbage node to the free list.

3. Change the color of a node.

In particular, the mutator's operation of removing a node from the free list
may be implemented as a sequence of operations of type 1. The other two
operations are viewed as overhead and intended to be performed by the
collector. However, in order to achieve cooperation, some of this overhead
must be assumed by the mutator. One of the design goals for the system is to
minimize this mutator overhead. Another is to minimize the amount of space
dedicated to garbage collection, i.e., the number of node colors available to
the collector. Finally, in order to make full use of concurrency, the exclusion
constraints between the two processes should be as weak as possible.

The solution to this problem and its proof of correctness that are pre-
sented in [DLM78] are quite complicated, involving three colors. A second
solution was found later by Ben-Ari [Ben84]. Ben-Ari's algorithm is similar
to the original one, but uses only two colors and admits a somewhat simpler
correctness proof. Alternate proofs of the same algorithm were subsequently
published by Van de Snepscheut [Van87] and Pixley [Pix88]. All of these
proofs follow an informal approach, which Ben-Ari defends as follows:

So as not to obscure the main ideas, the exposition is limited to
the critical facets of the proof. A mechanically veri�able proof
would need all sorts of trivial invariants . . . and elementary trans-
formations of our invariants (. . . with appropriate adjustments of
the indices).

3

After describing Ben-Ari's algorithm and correctness argument, we shall ex-
amine more closely the feasibility and relative merits of a more formal ap-
proach using a mechanical proof system.

Following [DLM78], Ben-Ari imposes no constraints on the number of
nodes, the number of roots, or the branching factor (i.e., the number of
pointers from each node), although it is understood that each of these pa-
rameters is a positive integer. He does assume that with respect to the initial
state of the array, \all nodes are linked on the free list and all links not so
used are pointing to the root NIL". All that is assumed about the free list
is that its head is a root which, one must suppose, may or may not be dis-
tinct from NIL. The details of the appending operation are ignored; there are
implicit assumptions pertaining to its properties, but these are unclear.

The color �eld of a node may assume either of the values black and white.
The collector executes the following simple mark-and-sweep algorithm:

1. Color each root black.

2. Examine each pointer in succession. If the source is black and the
target is white, color the target black.

3. Count the black nodes. If the result exceeds the previous count (or if
there was no previous count), return to Step 2.

4. Examine each node in succession. If a node is white, append it to the
free list; if it is black, color it white. Then return to Step 1.

Clearly, the objective of the marking phase of the algorithm, which con-
sists of Steps 1{3, is to blacken all accessible nodes. In order to avoid in-
terference with this process, the mutator is required to assume the overhead
of blackening the new target of a pointer immediately after redirecting it.
Thus, the mutator's cycle consists of two steps:

A. Select accessible nodes R and Q and an index S into the array of sons
of R. Assign Q as the Sth son of R.

B. Color node Q black. Return to Step A.

As usual, concurrency is modeled as arbitrary interleaving of instructions.
For this purpose, each step of the mutator is taken to be an atomic instruc-
tion, as is each iteration within each step of the collector. In particular,

4

arbitrarily many collector instructions may be executed between the muta-
tor's mutation (Step A) and coloring (Step B) operations. This is the main
source of di�culty in establishing the correctness of the program.

Ben-Ari's argument for the safety property is based on a predicate BW,
de�ned as follows on the set of all pointers between nodes: a pointer satis�es
BW if its source is an accessible black node and its target is a white node.
The crux of the proof lies in showing that this predicate is uniformly false
upon exiting the marking phase. This requires two lemmas:

Lemma 1 During Step 2, as long as the total number of black nodes does not

exceed the most recent count, if BW holds for some pointer that has already

been visited, then this pointer must have been directed by the most recently

executed mutator instruction.

Lemma 2 During Step 2, as long as the total number of black nodes does not

exceed the most recent count, if BW holds for some pointer that has already

been visited, then BW must also hold for some pointer that has not yet been

visited.

Each of these lemmas represents an invariant of the program, which is
proved by showing that the stated property holds in the initial state and
is preserved by every instruction. Consider Lemma 2, which is the more
interesting of the two. The following is a close approximation to Ben-Ari's
proof:

Clearly, the statement holds upon entering Step 2, since no pointer has
yet been visited. It cannot be negated by any iteration of this step, because
if the node being visited satis�es BW, then the blackening of the target
violates the bound on the number of black nodes. Similarly, the statement
cannot be negated by Step B of the mutator. Finally, assume that it holds
true immediately prior to execution of Step A, and consider the state that
exists after execution of this instruction. Suppose that in this new state there
exists a pointer satisfying BW that has already been visited by the collector.
According to Lemma 1, it must be the pointer from R to Q that was just
redirected by the mutator, and no such pointer existed in the preceding
state. Since Q was accessible and white in this preceding state, there must
have been a pointer satisfying BW somewhere on a path from a root to Q. But
this pointer, which remains unchanged in the current state, must not have
been visited by the collector, and hence satis�es the conclusion of Lemma 2.2

5

At the termination of Step 2, if no node has been blackened since the last
count, then according to Lemma 2, BW is false for all pointers, and thus all
accessible nodes are black. This must be the case, therefore, at the end of
the marking phase. The safety property follows easily.

A \proof" of liveness is also included in [Ben84], but this turns out to
be fallacious, as observed in [Van87]. Ben-Ari further argues for the cor-
rectness of a variation of his algorithm, in which the order of the mutator
instructions is reversed. The authors of [DLM78] recount, as an example
of a \logical trap" into which they fell, an analogous claim that they made
in connection with their original algorithm, which was shown to be untrue
before the proof reached publication. Ben-Ari's claim also turns out to be
false|counterexamples are given in [Pix88] and [Van87].

As the astute reader has already observed, Ben-Ari's proof of safety is
also fallacious|Lemma 2 is false. In Figure 1, we show a counterexample for
the case of 5 nodes, 2 roots, and a branching factor of 1. In this example, the
coloring of the roots (nodes 1 and 2) is propagated to nodes 4 and 5 during
Step 2, and four black nodes are counted in Step 3. This number is unchanged
after an iteration of Step 2, when a mutator instruction is executed. At this
point, the pointer from node 1, which has already been visited, is the only
pointer that satis�es BW.

Note the error in the above proof that is exposed by this example: the
pointer that satis�ed BW before Step A was executed no longer satis�es it
afterwards; it has not been altered, but its source is no longer accessible.
Surprisingly, this error was essentially repeated in [Pix88] and once again
survived the review process. Apparently, it has gone undetected from 1984
to the present.

Our summary of the history of this problem is not intended as a negative
commentary on the capability of those who have contributed to its solution,
all of whom are distinguished scientists. Rather, we present this example as
an illustration of the inevitability of human error in the analysis of detailed
arguments and as an opportunity to demonstrate the viability of mechanical
program veri�cation as an alternative to informal proof.

In [Rus90] and [Rus92], we described an early version of a system de-
signed for the veri�cation of concurrent programs, based on theManna-Pnueli
model of concurrency [MaP81,MaP84] and implemented as an extension of
the Boyer-Moore prover [BoM79,BoM88]. Here we shall illustrate the util-
ity of this system in formalizing Ben-Ari's garbage collection algorithm and

6

1 2

5 4 3

1 2

5 4 3

1 2

5 4 3

1 2

5 4 3

3) After 1 interation of Step 2:

1) In the initial state:

4) After Step A:

2) At termination of Step 3:

Figure 1: Counterexample to Lemma 2

generating a mechanical proof of its correctness.
After presenting a brief description of the current version of our system

in Section 2, we shall develop in Section 3 a formal representation of Ben-
Ari's data structure and implement the garbage collector in our concurrent
programming language. Its correctness properties are then encoded as formal
expressions. In Sections 4 and 5, we describe mechanical proofs of these
formulas, adapted from Ben-Ari's informal exposition. Finally, in Section 6,
we compare the results of the formal and informal approaches.

2 A Mechanical Concurrent Program Veri�-

cation System

2.1 The Boyer-Moore Logic

Our veri�cation tool is an extension of the Nqthm version of the Boyer-
Moore system, which is documented in [BoM88] and includes the exten-
sions described in [BGK89]. This system is founded on a quanti�er-free
�rst-order logic with equality and a syntax resembling that of LISP [Ste84].
Thus, terms are constructed from parentheses and symbols denoting vari-

7

ables and functions. These symbols are in turn constructed from a character
set that includes numeric and upper-case alphabetic characters. By con-
vention, lower-case alphabetic characters are used to denote metavariables
representing functions and terms.

The basic theory contains axioms characterizing four primitive functions:

� TRUE and FALSE are functions of zero arguments. The constants (TRUE)
and (FALSE), abbreviated as T and F, respectively, serve as distinct
truth values, as ensured by the axiom T 6= F.

� EQUAL is a binary function. The value of (EQUAL l r) is either T or F,
according to whether l = r.

� IF is a ternary function. The value of (IF t l r) is the value of r if
t = F, and the value of l otherwise.

In terms of these primitives, functions are de�ned corresponding to each
of the logical connectives, e.g.,

(IMPLIES P Q) = (IF P (IF Q T F) T):

This allows formulas to be encoded as terms, i.e., given any formula � we
may construct a term t such that

�$ (t 6= F)

is a theorem. For example, the formula X 6= Y! (F X Y) = (G X) is encoded
as the term

(IMPLIES (NOT (EQUAL X Y)) (EQUAL (F X Y) (G X))).

When a term t appears in a context where a formula is expected, it is un-
derstood to be an abbreviation for the formula t 6= F.

Variables occurring in axioms and theorems are understood to be uni-
versally quanti�ed. Thus, if a term t is a theorem and s is substitution of
terms for variables, then the result t=s of applying s to t may be inferred as
a theorem by the rule of instantiation.

The logic also includes a principle for admitting axioms that de�ne new
recursive functions on inductively constructed objects, and a principle of
induction by which theorems pertaining to these functions may be inferred.
Three built-in inductive data types are provided:

8

� The type number formalizes Peano arithmetic through axioms involving
the recognizer NUMBERP, the constant (ZERO) (abbreviated as 0), and
the successor function ADD1. Other arithmetic functions are de�ned in
terms of these, including SUB1 (the inverse of ADD1), LEQ (the standard
partial order), LESSP (strict partial order), ZEROP (a predicate that
fails i� its argument is a non-zero number), PLUS, DIFFERENCE, TIMES,
and QUOTIENT (the basic binary operations), DIVIDES (the standard
divisibility relation), and FIX (which �xes numbers and coerces non-
numbers to 0).

� The type cons formalizes ordered pairs by means of the recognizer
LISTP, the constructor CONS, and the accessors CAR and CDR. Functions
corresponding to other familiar list-processing functions of LISP, such
as MEMBER, CADR, and LIST, are de�ned in terms of these primitives.

� The type litatom consists of an object corresponding to each symbol of
the logic. The litatom corresponding to the symbol x is abbreviated as
'x.

Variable-free terms that are constructed by means of CONS from numbers
and litatoms are called explicit values. Syntactic conventions similar to those
of LISP allow explicit values to be expressed succinctly. For example,

(CONS 4 (CONS (CONS 'Z 5) 'NIL))

is abbreviated as '(4 (Z . 5)). Under these conventions, there is a natural
extension of the correspondence between symbols and litatoms that assigns
to an arbitrary term t an explicit value, denoted 't, called its quotation, e.g.,
the quotation of (PLUS X 3) is the explicit value denoted by '(PLUS X 3).

Along with this encoding of terms, there is an obvious scheme for encoding
variable substitutions as alists (i.e., lists of conses). Thus, the substitution
fX 2; Y 3g is represented by the alist '((X . 2) (Y . 3)). This
correspondence motivates the de�nitions of the function EVAL, which behaves
as a built-in interpreter for the logic, and its companion function APPLY.
(These are variants of the functions EVAL$ and APPLY$, which are described
in [BoM88].) Each of these functions takes two arguments. For a wide class
of functions f, including most built-in functions and those de�ned recursively
in terms of them,

9

(EQUAL (APPLY 'f (LIST X1 ... Xn)) (f X1 ... Xn))

is a theorem, where n is the arity of f and X1; : : : :Xn are distinct variable
symbols. We shall call these functions total, and any term constructed from
them tame. (These de�nitions are somewhat more general than those used
in [BoM88] and elsewhere.) If s is an alist representing a substitution s that
assigns an explicit value to each variable occurring in a tame term t, then

(EVAL 't s) = t=s

is a theorem. For example, in the case t = (PLUS X Y), s = fX 2; Y 3g,
we have the theorem

(EQUAL (EVAL '(PLUS X Y) '((X . 2) (Y . 3))) (PLUS 2 3)).

If the substitution s is not de�ned on all variables occurring in the term t,
then 'tmust be replaced in the above theorem by a slightly more complicated
expression, which is conveniently represented by means of the LISP backquote

macro (see [Ste84]). Thus, in the case t = (PLUS X Y), s = fX 2g, the
theorem is

(EQUAL (EVAL `(PLUS X ',Y) ((X . 2))) (PLUS 2 Y)),

where `(PLUS X ',Y) is an abbreviation for

(LIST 'PLUS 'X (LIST 'QUOTE Y)).

Another special feature of the logic that is useful for our purpose is the
ordinal data type, which includes the numbers as a subtype. The ordinals
are recognized by the predicate ORDINALP and are ordered by the relation
ORD-LESSP, which extends LESSP. Their purpose is to represent well-founded
orders that are more complex than the order of the natural numbers, such
as lexicographic orders. We shall make use of an ordinal-valued function
LEX, which behaves as follows: if l1 and l2 are lists of numbers of the same
length, then

(ORD-LESSP (LEX l1) (LEX l2))

is true i� l1 lexicographically precedes l2. For convenience in dealing specif-
ically with the lexicographic ordering of pairs, we also de�ne

(LEX2-LESSP I1 J1 I2 J2)

=

(ORD-LESSP (LEX (LIST I1 J1)) (LEX (LIST I2 J2))).

10

2.2 Modeling Concurrent Programs

Our concurrent programming language is based on both the Boyer-Moore
logic and the Manna-Pnueli model of concurrency, as presented in [MaP81].
According to this model, a program is composed of a �nite set of processes
and is associated with a �nite set of state variables, consisting of

a) input variables, which remain constant throughout execution and are
required to satisfy some input condition,

b) global variables, which are assigned initial values expressed in terms of
the input variables and may be manipulated by any of the processes,
and

c) program counters, each of which is associated with some process.

Each process is represented as a graph, consisting of a set of labels, which
are the admissible values of the corresponding program counter, and one of
which is distinguished as the initial value of the program counter. These
labels are connected by directed arcs, each of which is associated with a
precondition for traversal and a transition value corresponding to each global
variable of the program.

In our rei�cation of this model, all state variables are symbols of the
Boyer-Moore logic and process labels are litatoms. The input condition and
all initial values and transition values of global variables are terms, which, for
the sake of interpretive semantics, we assume to be tame. We also assume
that all variable symbols occurring in these terms are state variables, and
moreover, that only input variables occur in the initial values.

As a simple example, we consider a one-process program that computes
the factorial function, which is de�ned by

(FACT N)

=

(IF (ZEROP N) 1 (TIMES N (FACT (SUB1 N)))).

This program has one input variable, N, with input condition (NUMBERP N),
and two global variables, I and R, with initial values 0 and 1, respectively.
We may think of I as a loop variable, which assumes values from 0 to N, and
R as an accumulator, which is initialized to 1 and multiplied by I at each

11

(NOT (EQUAL I N)) ⇒ {I ← (ADD1 I)}

(EQUAL I N) ⇒ { }

T ⇒ {R ← (TIMES I R)}

Q0

Q2

Q1

Figure 2: Process MULT

iteration. The program's single process has program counter Q and three
labels, Q0 (the initial value of Q), Q1, and Q2. These labels are connected by
three arcs, as shown in Figure 2. Thus, for example, the arc from Q1 to Q0

has the trivial precondition T and transition values I and (TIMES I R) for
the globals I and R.

Formally, processes and programs are encoded as explicit values of the
logic. A process is represented as a list of length 2, consisting of the literal
atom corresponding to its program counter and a list of objects corresponding
to its labels. Each of these objects is itself a list with two members: the label
and a list whose members represent the arcs emanating from the label. An
arc is encoded as a list of three objects: the terminal label of the arc, the
quotation of the arc's precondition, and an alist associating global variables
with (the quotations of) their transition values. (A global variable that is its
own transition value is omitted from this alist.) According to this scheme,
the process of our factorial program is the value of the function MULT, de�ned
by

(MULT) = '(Q (Q0 ((Q2 (EQUAL I N) ())

(Q1 (NOT (EQUAL I N)) ((I . (ADD1 I))))))

(Q1 ((Q0 T ((R . (TIMES I R))))))

(Q2 ()))

12

A program is encoded as a list of length 5 whose members correspond
to its input variables, global variables, program counters, input condition,
and processes. The �rst member of this list is an alist, associating the input
variables with some set of values that satisfy the input condition. (The sole
purpose of these values is to allow the system to verify the satis�ability of the
input condition.) The next two members of the list are also alists, associating
global variables and program counters with their initial values. Thus, our
factorial program is represented by

`(((N . 5))

((I . 0) (R . 1))

((Q . Q0))

(NUMBERP N)

(,(MULT))).

A state of a program is a variable substitution that assigns explicit values
to its state variables. The value of a term t with respect to a state s is t=s;
t is satis�ed by s if t=s is true.

An initial state of a program is one that satis�es its input condition as
well as the term (EQUAL v i) for each global variable or program counter v
with initial value i. For example,

'((N . 5) (I . 0) (R . 1) (Q . Q0))

is an encoding of an initial state of the factorial program. (Here 5 could be
replaced by any number.)

An arc associated with some label of a process is enabled with respect
to a state s if s assigns that label to the process's program counter and s
satis�es the precondition of the arc. A successor of s is a state derived from
s by traversing an enabled arc, i.e., by replacing the program counter's value
with the arc's terminal label and replacing the value of each global variable
with the value with respect to s of its transition value.

An execution of a program is an in�nite sequence of states, beginning
with an initial state, such that each state is followed either by itself or by
a successor. The following sequence represents an execution of the factorial
program:

'((N . 3) (I . 0) (R . 1) (Q . Q0))

'((N . 3) (I . 1) (R . 1) (Q . Q1))

13

'((N . 3) (I . 1) (R . 1) (Q . Q0))

'((N . 3) (I . 2) (R . 1) (Q . Q1))

'((N . 3) (I . 2) (R . 2) (Q . Q0))

'((N . 3) (I . 3) (R . 2) (Q . Q1))

'((N . 3) (I . 3) (R . 6) (Q . Q0))

'((N . 3) (I . 3) (R . 6) (Q . Q0))

'((N . 3) (I . 3) (R . 6) (Q . Q2))

'((N . 3) (I . 3) (R . 6) (Q . Q2))

'((N . 3) (I . 3) (R . 6) (Q . Q2))

.

.

.

In general, several arcs (either of one process or of di�erent processes) may
be enabled with respect to a given state (although this is not illustrated by
the example at hand). Moreover, according to our de�nition of successor,
an execution may repeat the same state arbitrarily many times. Thus, any
number of substantially distinct executions may be possible for the same
program and input values. In order to avoid in�nite stuttering (repetition
of a single state), and to produce a useful model of concurrency, we only
consider executions that are fair in the following sense: if some process has
an enabled arc with respect to all states beyond some point in an execution,
then an arc of that process must eventually be traversed at some state beyond
that point.

Properties of programs are expressed as formulas constructed by com-
bining terms with the temporal operators \2" and \3", the semantics of
which are de�ned in [MaP81]. We are only interested in two special classes
of properties, which correspond to two types of temporal formulas. A safety

property (or invariant) is represented by an expression of the form

r! 2s (1)

where r and s are tame terms. Assuming that these terms involve no variables
other than the state variables of a program, this formula is satis�ed by the
program if for every fair execution in which r is satis�ed by some state, s
is satis�ed by that and every later state. The properties described by these
formulas include mutual exclusion, deadlock freedom, and partial correctness.
For example, the following represents the partial correctness of our factorial
program:

14

2(IMPLIES (EQUAL Q 'Q2)

(EQUAL K (FACT N))

In this example, as in all safety properties that we shall encounter, the an-
tecedent r of Formula 1 is the trivial antecedent T.

A Liveness property (or eventuality) IS represented by an instance of the
formula

r! 3s: (2)

A program satis�es this formula if in every fair execution, any state that sat-
is�es the term r is eventually followed by a state satisfying the term s. The
corresponding properties include termination, accessibility, and responsive-
ness. For example, the termination property of our example is represented
as

3(EQUAL Q 'Q2).

We also allow instances of Formulas 1 and 2 that contain variables other
than program state variables. Such variables are called free and are taken to
be universally quanti�ed. More precisely, an expression � that contains free
variables is satis�ed by a program if for every substitution s that replaces
the free variables of � with explicit values, the program satis�es �=s. For
example, the following formula, which contains the free variable X, states that
in every state of every fair execution of the factorial program, R is divisible
by every positive number less than I:

2(IMPLIES (AND (NOT (ZEROP X)) (LESSP X I))

(DIVIDES X R))

The procedures by which safety and liveness properties are mechanically
veri�ed are described in [Rus90] and [Rus92]. In general, the invariance of a
term is proved either a) by showing that it is satis�ed in every initial state
and is preserved across every arc of every process of the program, or b) as
a direct consequence of previously proved invariants. For proving liveness
properties, a more complicated method of well-founded measures is used.
This involves two terms, which must be supplied by the user: a measure, the
value of which with respect to each state is an ordinal, and a helper, which
has a process as its value. To prove an instance of Formula 2, it su�ces to
show that during any execution,

15

a) if r is satis�ed in some state in which s is not, then it must continue
to be satis�ed as long as s is unsatis�ed, and

b) as long as r is satis�ed and s is not, the value of the measure must
never increase, and must decrease whenever an arc of the process that
is the value of the helper is traversed.

For the proof of termination of the factorial program, for example, the
helper must be (MULT). To determine an appropriate measure, we observe
�rst that at each iteration, the value of I increases until it reaches N. The
primary component of the measure, therefore, is (DIFFERENCE N I). Since
the value of this term does not decrease at each step of (MULT), a secondary
component is required, which re
ects the location of the program counter Q.
For this purpose, we de�ne a function that computes the location of a value
in a list of values:

(LOC X L)

=

(IF (LISTP L)

(IF (EQUAL X (CAR L)) 0 (ADD1 (LOC X (CDR L))))

0)

The secondary component is (LOC Q '(Q0 Q1)), the value of which decreases
at each step for which (DIFFERENCE N I) remains constant. To combine
these two components to form a lexicographic measure, we use the function
LEX, described in Subsection 2.1:

(LEX (LIST (DIFFERENCE N I) (LOC Q '(Q0 Q1)))).

2.3 The User Interface

The interface to our system consists of the LISP macros that comprise the
interface to the Boyer-Moore prover, along with several others that allow total
functions to be constrained, programs to be de�ned, and program properties
to be proved. We shall describe these macros using the format established in
[Ste84]. Of the Boyer-Moore macros, we mention only the two that we use
most frequently:

16

� DEFN function args body &optional hints

This command de�nes a new function symbol according to the principle
of recursive de�nition. Before the de�nition may be admitted, the
prover must establish (using the optional argument hints, if provided)
the existence of a well-founded measure of the arguments that decreases
with respect to each recursive call that occurs in the body.

� PROVE-LEMMA name types term &optional hints

Various heuristics are applied by the prover in an attempt to establish
term as a theorem. Note that hints may be provided (mainly sugges-
tions of previously proved lemmas to be used in the proof), but no
assistance from the user is possible during the course of the proof. If
the proof succeeds, then the theorem is entered into the database as a
rule of any of several types, of which REWRITE is the most common.

While there is also a macro that allows the logic to be extended by ar-
bitrary axioms, DEFN is preferred, since it is guaranteed not to introduce
inconsistency. Another macro with the same guarantee, CONSTRAIN, is pro-
vided to admit axioms that constrain the behavior of unde�ned functions.
For our purpose, we found it necessary to implement our own variant of
CONSTRAIN:

� CONSTRAIN-TOTAL name types term pairs &optional hints

A term involving one or more new function symbols is presented as an
axiom. Before this axiom may be admitted, it must be proved (using
hints) that some previously existing total functions actually satisfy this
constraint. The correspondence between new and old function symbols
is given as a list of pairs. If the term resulting from term under this
substitution is proved (using hints) and the old functions are shown to
be total, then the axiom is admitted, along with axioms representing
the totality of the new functions. These axioms are entered as rewrite
rules if REWRITE is a member of the list of types (no other rule type has
been implemented).

Processes and programs are coded by means of the following:

� DEFPROCESS name pc &rest labels

17

The symbol name is de�ned as a constant function, the value of which
is an encoded process with the program counter pc and label encodings
labels.

� DEFPROGRAM name inputs globals pcs input-cond processes

The symbol name is de�ned as a constant function, the value of which
is an encoded program with the given components. A syntax checker
is invoked to ensure that the de�nition of program is satis�ed.

In order to use the theorem prover to verify properties of programs, the
temporal formulas representing these properties are encoded as static terms.
This involves a set of axioms that characterize fair executions, and the use
of EVAL to determine whether terms are satis�ed by execution states. For
example, the two safety properties of the factorial program discussed in Sub-
section 2.2 are established by proving that the terms

(EVAL '(IMPLIES (EQUAL Q 'Q2)

(EQUAL R (FACT N)))

s)

and

(EVAL `(IMPLIES (AND (NOT (ZEROP ',X)) (LESSP ',X I))

(DIVIDES ',X R))

s)

are true for every state s of every fair execution of the program. The pro-
cedures for encoding and proving both safety and liveness properties are
presented in detail in [Rus90] and [Rus92]; here, we shall describe only the
interface to these procedures.

Two macros are provided for proving safety properties, and two others
for proving liveness properties. The �rst three arguments of each of these
are the name of an existing program, a proposed name for a property, and a
list of rule types, which may include REWRITE.

� PROVE-INVARIANT program name types term &optional hints

An attempt is initiated to prove that term is an invariant of program,
by showing that it is satis�ed in every initial state and is preserved

18

across every arc. Previously proved invariants may be used in the
proof, including those that were speci�ed as rewrite rules and those
that are supplied as the optional argument hints.

� PROVE-COROLLARY program name types term &optional hints

This is an alternative means of verifying program invariants, which may
be used in cases where a term may be proved as a direct consequence
of other invariants without examining arcs of the program.

� PROVE-EVENTUALITY program name types

antecedent consequent measure helper &optional hints

An attempt is initiated to prove a term representing the liveness prop-
erty

antecedent! 3consequent;

using the method of well-founded measures outlined in Subsection 2.2.
Along with the optional hints, which must be proved invariants, two
other terms are required: an ordinal-valued measure of states, i.e., a
term satisfying

(ORDINALP (EVAL 'measure X)),

and a helper, such that

(EVAL 'helper X)

is a process of program (for any value of the variable X).

� PROVE-CHAIN program name types antecedent consequent chain

This macro implements the chain rule for liveness properties: if a pro-
gram satis�es a set of n formulas, ti�1 ! 3ti, for i = 1; : : : ; n, then
it must also satisfy t0 ! 3tn. In this context, antecedent is t0, con-
sequent is tn, and chain is a list of the names of the n intermediate
results.

Our formalization of Ben-Ari's algorithm and its properties involves some
twenty de�ned functions, which we introduce by means of DEFN, and nine

19

unde�ned functions, which are speci�ed by three calls to CONSTRAIN-TOTAL.
Establishing the required properties of these functions involves over one hun-
dred calls to PROVE-LEMMA. This formalization is described in Section 3.

Once this library of functions and lemmas is in place, the entire proof
of program correctness is generated by a total of twenty-seven macro calls,
establishing twenty-two program invariants (calls to PROVE-INVARIANT and
PROVE-COROLLARY) and �ve liveness properties (calls to PROVE-EVENTUALITY
and PROVE-CHAIN). A complete list of these results is presented in Sections 4
and 5, along with sketches of their mechanical proofs.

3 Formalization of Ben-Ari's Algorithm

3.1 The Data Structure

The array of nodes on which the algorithm operates will be represented as
a global variable M of our program. The dimension of the array, the number
of roots, and the branching factor will correspond to input variables NODES,
ROOTS, and SONS, respectively. Thus, a node is an number that is less than
NODES, a root is a node less than ROOTS, and a pointer from a node i is a pair
(i j), where j < SONS.

Our implementation of this data structure consists of the formal speci-
�cation of four functions that access and set the color and son �elds of a
node. The color of a node is represented by the predicate COLOR: for 0 � i

< NODES, (COLOR i M) is T or F according to whether node i of M is black
or white. The color of a node may be altered by the function SET-COLOR:
the value of (SET-COLOR i c M) is the array produced by setting the color
of node i of M to c, where c is either T or F.

Similarly, the sons of a node may be accessed and set via the functions
SON and SET-SON, respectively. For 0 � j < SONS, (SON i j M) returns the
jth son of node i, and the result of setting that son to k is the array (SET-SON
i j k M).

The functions COLOR, SET-COLOR, SON, and SET-SON are speci�ed by an
axiom that has been admitted by means of the CONSTRAIN-TOTAL macro.
This axiom is easily shown to be satis�able by appropriately de�ned total
functions:

Constraint 1

20

(AND (EQUAL (COLOR I M) (COLOR (FIX I) M))

(EQUAL (SON I J M) (SON (FIX I) (FIX J) M))

(EQUAL (SON I J (NULL-ARRAY)) 0)

(EQUAL (COLOR I1 (SET-COLOR I2 C M))

(IF (EQUAL (FIX I1) (FIX I2))

C

(COLOR I1 M)))

(EQUAL (COLOR I1 (SET-SON I2 J K M))

(COLOR I1 M))

(EQUAL (SON I1 J1 (SET-SON I2 J2 K M))

(IF (AND (EQUAL (FIX I1) (FIX I2))

(EQUAL (FIX J1) (FIX J2)))

K

(SON I1 J1 M)))

(EQUAL (SON I1 J (SET-COLOR I2 C M))

(SON I1 J M)))

Thus, all non-numeric indices are coerced to 0. Note that the constraining
axiom also guarantees the existence of an array (NULL-ARRAY), in which
all pointers are directed to the root 0. We shall make use of this array in
Subsection 3.6 in connection with the program's input condition.

Several other total functions are de�ned in the logic in terms of the con-
strained functions SON and COLOR. Rather than list their formal de�nitions
here, we describe their behavior informally below. Note that all but the �rst
in this list are predicates, always returning either T or F:

� (BLACKS M K N) returns the number of black nodes i of M in the range
K � i < N. In particular, the total number of black nodes of M is
(BLACKS M 0 NODES).

� (CLOSED M NODES SONS) , every son of every node of M is a valid
node, i.e., for every pointer (i j), where 0 � i < NODES and 0 � j <
SONS, we have 0 � (SON i j M < NODES, This property of M will be a
useful invariant of our program.

� (ACCESSIBLE i M NODES ROOTS SONS) , there is a path from some
root to node i, i.e., a list of nodes (n0 n1 ... nk), k � 0, such that
n0 < ROOTS, nk = i, and nj is a son of nj�1 for each j > 0.

21

� (BLACK-ROOTS M r) , (COLOR i M) is true for each node i, 0 � i �
r. In particular, (BLACK-ROOTS M ROOTS), all roots of M are black.

� (BW i j M) , (i j) is a pointer from a black node to a white node,
i.e., (COLOR i M) and (NOT (COLOR (SON i j M) M)). Note the dif-
ference between this and the stronger predicate BW used in Ben-Ari's
proof.

� (EXISTS-BW i1 j1 i2 j2 M SONS) , there exists a pointer (i j)

from a black node to a white node that lies between (i1 j1) and
(i2 j2) with respect to the lexicographic ordering, i.e., satisfying (BW

i j M), (NOT (LEX2-LESSP i j i1 j1)), and (LEX2-LESSP i j i2

j2).

� (PROPAGATED M NODES SONS), no pointer satis�es BW, i.e., (NOT (EXISTS-BW

0 0 NODES 0)).

� (BLACKENED M NODES ROOTS SONS k) , all accessible nodes among
the set fk; : : : ; NODES�1g are black. An important lemma, used in the
proof of safety (Section 4), states that (BLACK-ROOTS M ROOTS) and
(PROPAGATED M NODES SONS) together imply (BLACKENED M NODES ROOTS

SONS 0), which says that all accessible nodes are black.

� (PURE i M NODES SONS k), there is no path leading from any black
node in the set f0; : : : ; k� 1g to node i. This function plays an impor-
tant role in the proof of liveness (Section 5).

3.2 The Mutator

Recall that at each cycle of the mutator process, three arbitrary selections
are made: a source node R, a son index S, and a target node Q, which is to
become the Sth son of R. In our formalization, these selections are performed
by three unde�ned functions, COMPUTE-R, COMPUTE-S, and COMPUTE-Q.

Consider �rst the function COMPUTE-R. Since it is to be constrained to
return a number representing a node, one of its arguments should re
ect
the value of NODES. Since the node that it selects might well depend on the
current con�guration of the data structure, there should be another argument
representing M. But if these were its only two arguments, then COMPUTE-R

22

would be required to return the same value whenever called with the same
value of M. That is, the selected node would be completely determined by the
current state of M, regardless of the state of any other part of the system.
In order to allow other in
uences on the selection of node R, as well as on
the selections of Q and S, we introduce a global variable, P, representing any
components of the system that are extraneous to garbage collection (such as
the program being executed by the mutator and any data other than M on
which it operates). The state of P is passed to COMPUTE-R, along with that
of M and the value of NODES.

Similarly, the function COMPUTE-S, which is supposed to return a valid
son index, must take, along with M and P, an argument representing the
parameter SONS. COMPUTE-Q, which is required to return an accessible node,
must be passed all of the arguments of the function ACCESSIBLE:

Constraint 2

(IMPLIES (AND (NOT (ZEROP N)) (NOT (ZEROP S)) (NOT (ZEROP R)))

(AND (NUMBERP (COMPUTE-R M P N))

(LESSP (COMPUTE-R M P N) N)

(NUMBERP (COMPUTE-S M P S))

(LESSP (COMPUTE-S M P S) S)

(NUMBERP (COMPUTE-Q M P N R S)

(LESSP (COMPUTE-Q M P N R S) N)

(ACCESSIBLE (COMPUTE-Q M P N R S) M N R S)))

Recall that Ben-Ari's original assumptions also included the accessibility of
the source node returned by COMPUTE-R. This assumption turns out to be
unnecessary for our proof and is therefore not re
ected in Constraint 2.

The mutator's program counter, MU, assumes two values, MU0 and MU1.
An arc connects these two nodes in each direction. Along the arc from MU0

to MU1, the three selections are made, the mutation is performed, and the
index of the target node is recorded as the value of the global variable Q. In
traversing the arc from MU1 to MU0, node Q is colored black.

At any point during execution, the mutator is free to alter the state of P in
an unspeci�ed manner, deriving a new value of P based on the current values
of M and P. This is formally represented by a loop at each node, replacing the
value of P with that of (ALTER-P M P), where ALTER-P is an unconstrained
(total) function. Thus, the mutator is encoded as

23

(MUTATOR)

=

'(MU ((MU0 ((MU0 T ((P . (ALTER-P M P))))

;set Sth son of R to Q:

(MU1 T ((M . (SET-SON (COMPUTE-R M P NODES)

(COMPUTE-S M P SONS)

(COMPUTE-Q M P NODES ROOTS SONS)

M))

(Q . (COMPUTE-Q M P NODES ROOTS SONS))))))

(MU1 ((MU1 T ((P . (ALTER-P M P))))

;color node Q:

(MU0 T ((M . (SET-COLOR Q T M))))))))

3.3 The Appending Operation

Before de�ning the collector process, we must introduce a function that alters
the data structure by appending a node to the free list. It would be a simple
matter to de�ne a function that performs this operation in some reasonable
manner. For example, we could arbitrarily decide to take the head of the
free list to be the node (SON 0 0 M), and then de�ne, in terms of SET-SON,
a function that inserts a node i at the front of the free list by �rst directing
all of the pointers from node i to the current value of (SON 0 0 M) and then
making i the new value of (SON 0 0 M).

For the sake of generality, however, following [DLM78] and [Ben84], we
shall avoid de�ning this operation. That is, our results should be independent
of the arbitrary details of the operation, e.g., whether garbage nodes are
appended to the front or the end of the free list. On the other hand, it would
be useful to specify the essential properties of this operation on which the
correctness of the program depends, although this has not previously been
done (cf. [Ben84,DLM78,Pix88,Van87]). Indeed, such a speci�cation is a
prerequisite for a formal proof.

We shall introduce a function APPEND-TO-FREE by means of a constrain-
ing axiom that embodies four essential properties. Two of these are trivial
(although their necessity only became obvious to the author during the course
of the mechanical proof):

1. The appending operation never changes the color of a node.

24

2. The appending operation never transforms a closed array into an un-
closed array.

The third property pertains to accessibility. Clearly, a garbage node must
become accessible upon being appended to the free list. Furthermore, no
node that is already accessible should be rendered garbage by this operation.
(While the latter condition has intuitive appeal, its necessity will not become
clear until we see the proof of Invariant 21 in Section 5.) It is also desirable,
although perhaps less obviously, that no garbage node other than the one
being appended may become accessible as a side e�ect. It is the safety
property of the program that depends on this last assumption. To see this,
suppose that in the act of appending a garbage node i, another garbage node
j were to become accessible. If j were examined at some later point during
the same appending phase and found to be white, then it would be appended,
even though already accessible (assuming the mutator had not altered the
state in the meantime).

As we shall see, these assumptions concerning accessibility will only be re-
quired in contexts in which the node being appended is known to be garbage.
This is fortunate, since no reasonably e�cient implementation could be ex-
pected to conform to them if applied to a node that is already accessible.
(Consider, for example, the candidate operation of inserting a node at the
head of the free list, as described above.) Thus, they may be summarized as
follows:

3. In appending a garbage node, only that node becomes accessible, and
no accessible node becomes garbage.

The �nal property of the appending operation pertains to garbage nodes
that remain garbage:

4. In appending a garbage node, no pointer from any other garbage node
is altered.

It is somewhat surprising that we need any such restriction concerning point-
ers between garbage nodes, but the proof of liveness depends on it. It will be
necessary to prove that any node i that is garbage at the beginning of an ap-
pending phase and that is not collected (but rather is whitened) during that

25

appending phase will be collected during the next appending phase. But sup-
pose that as a result of an appending operation that occurs during the �rst
appending phase, i were to become a son (or more generally, a descendant) of
some black garbage node j that remains black upon entering the subsequent
marking phase. This might occur in the absence of our fourth assumption
if, for example, j were initially accessible and black, but then a) whitened
by the collector, b) blackened by the mutator, c) rendered garbage by the
mutator, and �nally d) made a parent of i by the collector. In this case,
as long as the pointer from j to i were not altered by the mutator in the
meantime, i would be blackened during the marking phase and consequently
not collected during the next appending phase.

These four properties are formally expressed by the following axiom:

Constraint 3

(IMPLIES

(AND (NOT (ZEROP N)) (NOT (ZEROP S))

(NOT (ZEROP R)) (LEQ R N)

(NUMBERP I) (LESSP I N))

(AND (EQUAL (COLOR J (APPEND-TO-FREE I M N R S))

(COLOR J M))

(IMPLIES (CLOSED M N S)

(CLOSED (APPEND-TO-FREE I M N R S) N S))

(IMPLIES

(NOT (ACCESSIBLE I M N R S))

(IFF (ACCESSIBLE J (APPEND-TO-FREE I M N R S) N R S)

(OR (EQUAL I J) (ACCESSIBLE J M N R S))))

(IMPLIES

(AND (NOT (ACCESSIBLE I M N R S))

(NUMBERP J) (NOT (EQUAL J I))

(NOT (ACCESSIBLE J M N R S)))

(EQUAL (SON J K (APPEND-TO-FREE I M N R S))

(SON J K M)))))

3.4 The Collector

In addition to the global variable M and the input variables NODES, ROOTS,
and SONS, the collector process accesses seven other global variables: BC and

26

OBC, used for counting black nodes, and the loop variables I, J, K, L, and H.
Its formal de�nition is

(COLLECTOR)

=

'(CHI (;blacken roots:

(CHI0 ((CHI1 (EQUAL K ROOTS) ((I . 0)))

(CHI0 (NOT (EQUAL K ROOTS))

((M . (SET-COLOR K T M)) (K . (ADD1 K))))))

;propagate coloring:

(CHI1 ((CHI4 (EQUAL I NODES) ((BC . 0) (H . 0)))

(CHI2 (NOT (EQUAL I NODES)) NIL)))

(CHI2 ((CHI1 (NOT (COLOR I M)) ((I . (ADD1 I))))

(CHI3 (COLOR I M) ((J . 0)))))

(CHI3 ((CHI1 (EQUAL J SONS) ((I . (ADD1 I))))

(CHI3 (NOT (EQUAL J SONS))

((M . (SET-COLOR (SON I J M) T M))

(J . (ADD1 J))))))

;count black nodes and compare with previous count:

(CHI4 ((CHI6 (EQUAL H NODES) NIL)

(CHI5 (NOT (EQUAL H NODES)) NIL)))

(CHI5 ((CHI4 (NOT (COLOR H M)) ((H . (ADD1 H))))

(CHI4 (COLOR H M) ((BC . (ADD1 BC)) (H . (ADD1 H))))))

(CHI6 ((CHI1 (NOT (EQUAL OBC BC)) ((OBC . BC) (I . 0)))

(CHI7 (EQUAL OBC BC) ((L . 0)))))

;append white nodes to free list:

(CHI7 ((CHI0 (EQUAL L NODES) ((BC . 0) (OBC . 0) (K . 0)))

(CHI8 (NOT (EQUAL L NODES)) ())))

(CHI8 ((CHI7 (COLOR L M)

((M . (SET-COLOR L F M)) (L . (ADD1 L))))

(CHI7 (NOT (COLOR L M))

((M . (APPEND-TO-FREE L M NODES ROOTS SONS))

(L . (ADD1 L))))))))

27

Thus, the program counter CHI assumes nine values. The �rst seven
of these comprise the marking phase, which is further partitioned into the
root-blackening, propagation, and counting phases as indicated by embedded
comments. The remaining two labels comprise the appending phase.

At CHI0, node K is blackened, where K ranges from its initial value 0

through ROOTS�1. When the test (EQUAL K ROOTS) succeeds, the arc from
CHI0 to CHI1 is traversed and the loop variable I is initialized to 0 for the
propagation phase.

For each value of I, 0 � I < NODES, the color of node I is examined at
CHI2. If it is black, i.e., if (COLOR I M) is true, then each of its sons, (SON I

J M), J = 1; : : : ; SONS, is colored at CHI3. When the test (EQUAL I NODES)

succeeds at CHI1, the variables BC and H are set to 0 and control is passed to
CHI4.

The purpose of CHI4, CHI5, and CHI6 is to count the black nodes. At
CHI5, as H is incremented, the value of BC is incremented for each value of
H for which (COLOR H M) is true. When the test (EQUAL H NODES) succeeds
(i.e., all nodes have been examined), the count stored in BC is compared
with the previous count, which is stored in OBC (old black count). The
test (EQUAL OBC BC) at CHI6 determines whether to repeat the propagation
phase (after storing the new count in OBC and reinitializing I) or to proceed to
the appending phase (by initializing the loop variable L and passing control
to CHI7).

Upon traversing the arc from CHI6 to CHI7, all accessible nodes are as-
sumed to be black. For L = 0; : : : ; NODES�1, the color of node L is examined
at CHI8. If it is white ((COLOR L M) = F), then it is taken to be garbage
and appended to the free list; otherwise, it is simply colored white. When
all nodes have been examined, control is returned to CHI0.

3.5 The Program

The formal de�nition of the garbage collector program is

(GC)

=

`(;input variables:

((NODES . 5) (ROOTS . 3) (SONS . 2)

(M0 . (NULL-ARRAY)) (P0 . 0))

28

;global variables:

((M . M0) (P . P0) (Q . 0) (BC . 0) (OBC . 0)

(I . 0) (J . 0) (K . 0) (L . 0) (H . 0))

;program counters:

((MU . MU0) (CHI . CHI0))

;input condition:

(AND (NOT (ZEROP SONS)) (NOT (ZEROP ROOTS))

(NOT (ZEROP NODES)) (LEQ ROOTS NODES)

(CLOSED M0 NODES SONS))

;processes:

(,(MUTATOR) ,(COLLECTOR)))

Each of the state variables of Program GC has already been discussed,
except for the input variables M0 and P0. Their purpose is to provide initial
values for the global variables M and P. Note that M0, the initial state of M,
is constrained by the input condition to be a closed array, while the initial
value P0 of P is completely arbitrary.

Since the program counter CHI is initialized to CHI0, it is important that
the loop variable K has the proper initial value, 0. The initial value 0 of the
counting variable OBC is also signi�cant. All remaining global variables are
initialized arbitrarily to 0.

Recall that the admissibility of a program de�nition requires that the
sample values supplied for the input variables satisfy the input condition.
This was the motivation for the introduction of the function NULL-ARRAY

in Constraint 1|it is a consequence of this axiom that (NULL-ARRAY) is a
closed array.

4 Proof of Safety

In this section, we derive the main safety property of program GC: no ac-

cessible node is ever appended to the free list. According to the de�nition of
(COLLECTOR), the appending operation is performed only when the program
counter CHI has the value CHI8. It is applied to node L, but only in the event
that (COLOR L M) = F. Thus, the desired result may be stated formally as
the invariant

2(IMPLIES (AND (EQUAL CHI 'CHI8)

29

(ACCESSIBLE L M NODES ROOTS SONS))

(COLOR L M).

As seen below, the proof involves a total of 20 program invariants.

4.1 Variable Bounds and Closure

The following �ve invariants give obvious bounds on the loop variables I, J,
K, H, and L of the collector process:

Invariant 1

2(AND (NUMBERP I)

(NOT (LESSP NODES I))

(IMPLIES (MEMBER CHI '(CHI2 CHI3)) (LESSP I NODES)))

Invariant 2

2(AND (NUMBERP J)

(NOT (LESSP SONS J))

(IMPLIES (NOT (EQUAL J SONS)) (LESSP J SONS)))

Invariant 3

2(AND (NUMBERP K)

(NOT (LESSP ROOTS K))

(IMPLIES (NOT (EQUAL K ROOTS)) (LESSP K ROOTS)))

Invariant 4

2(AND (NUMBERP H)

(NOT (LESSP NODES H))

(IMPLIES (EQUAL CHI 'CHI5) (LESSP H NODES))

(IMPLIES (EQUAL CHI 'CHI6) (EQUAL H NODES)))

Invariant 5

2(AND (NUMBERP L)

(NOT (LESSP NODES L))

(IMPLIES (EQUAL CHI 'CHI8) (LESSP L NODES)))

A similar bound on the index Q is easily derived from Constraint 1:

Invariant 6

30

2(AND (NUMBERP Q) (LESSP Q NODES))

The invariance of the closure property of the array M, (CLOSED M NODES

SONS), may be derived as a consequence of Invariants 5 and 6. To see this,
�rst recall that the input condition of GC guarantees the initial value M0 of M
is closed. It may be shown, using Constraint 1 and Invariant 6, that closure is
preserved by the SET-SON operation performed by the mutator, as well as by
any transition that merely colors a node. The only remaining arc that alters
M is the one involving APPEND-TO-FREE. But by Constraint 3 and Invariant 5,
this arc preserves closure as well. Thus, we have

Invariant 7

2(CLOSED M NODES SONS)

4.2 Counting Black Nodes

The variable OBC is initially set to 0 and later represents the most recent
count of black nodes. We would like to show that at any point during the
propagation phase, the value of OBC does not exceed the total number of
black nodes, (BLACKS M 0 NODES).

To this end, we prove �rst that during the counting phase, the value
of BC, the current count, does not exceed (BLACKS M 0 H), the number of
black nodes that have already been examined. This inequality trivially holds
upon entering the counting phase (when BC is set to 0), and clearly cannot be
negated by the mutator, which never alters BC and can only increase (BLACKS
M 0 H). It must also be shown that the equality is preserved by the collector
across each of the two arcs from CHI5 to CHI4. These arcs correspond to the
two cases (NOT (COLOR H M)) and (COLOR H M). In the �rst case, neither
BC nor (BLACKS M 0 H) is altered; in the second case, since (BLACKS M 0

(ADD1 H)) = (ADD1 (BLACKS M 0 H)), the two values are simultaneously
incremented. Thus, we have

Invariant 8

2(IMPLIES (MEMBER CHI '(CHI4 CHI5))

(NOT (LESSP (BLACKS M 0 H) BC)))

It follows that when the counting is completed, BC does not exceed the
total number of blacks:

31

Invariant 9

2(IMPLIES (EQUAL CHI 'CHI6)

(NOT (LESSP (BLACKS M 0 NODES) BC)))

OBC is always 0 at CHI0 and is set to the value of BC in traversing the arc
from CHI6 to CHI1. Thus, the desired bound on OBC holds upon entering the
propagation phase. Since it is easily shown to be preserved by the collector
within the propagation phase as well as by the mutator, we have

Invariant 10

2(IMPLIES (MEMBER CHI '(CHI0 CHI1 CHI2 CHI3))

(NOT (LESSP (BLACKS M 0 NODES) OBC))

During the counting phase, another upper bound on OBC is in e�ect:
the sum of BC (the number of black nodes that have already been counted)
and (BLACKS M H NODES) (the number of black nodes that have yet to be
counted). Since BC and H are initialized to 0 in traversing the arc from CHI1

to CHI4, it follows from Invariant 10 that this inequality holds upon entering
the counting phase. Its invariance is then easily established:

Invariant 11

2(IMPLIES (MEMBER CHI '(CHI4 CHI5 CHI6))

(LEQ OBC (PLUS BC (BLACKS M H NODES))))

Two other inequalities concerning BC and OBC will be needed in Section 5.
The �rst of these follows from Invariants 8 and 9, and the second is an
immediate consequence of Invariant 11:

Invariant 12

2(NOT (LESSP NODES BC))

Invariant 13

2(IMPLIES (EQUAL CHI 'CHI6) (NOT (LESSP BC OBC))).

32

4.3 Coloring Accessible Nodes

The objective of the collector's marking phase is to blacken all accessible
nodes. As observed in Subsection 3.1, the formal statement of this goal is
(BLACKENED M NODES ROOTS SONS 0). Once we have shown that this term
is satis�ed upon entering the appending phase, the safety result will follow
easily.

The �rst step of the marking process, the root-blackening phase, is de-
scribed in terms of the function BLACK-ROOTS. The following result is easily
proved:

Invariant 14
2(IMPLIES (MEMBER CHI '(CHI0 CHI1 CHI2 CHI3 CHI4 CHI5 CHI6))

(BLACK-ROOTS M (IF (EQUAL CHI 'CHI0) K ROOTS)))

In particular, (BLACK-ROOTS M ROOTS) holds, i.e., all roots are black, upon
traversing the arc from CHI0 to CHI1, and this remains true throughout the
marking phase.

In order to establish the success of the marking phase, it would now
su�ce to show that upon termination of this phase, no accessible black node
has a white son. To attempt to prove this directly is the approach taken in
[Ben84], where we have seen it fail. The point of our departure from this
approach is our weakening of the predicate BW. Thus, following [Van87], we
prove a stronger result: upon termination of the marking phase, no black
node, accessible or not, has a pointer to a white son.

Our goal, then, is to show that (PROPAGATED M NODES SONS) is true at
the end of the marking phase. To this end, we shall derive variants of Ben-
Ari's Lemmas 1 and 2 involving our predicate BW.

Note that the order in which the son pointers are examined by our collec-
tor process during the propagation phase is the lexicographic order de�ned
by the predicate LEX2-LESSP. At node CHI3, the pointer (I J) is visited. At
CHI1 or CHI2, the pointer that will next be visited is (I 0). Hence, at any
point during the propagation phase, a given pointer (y z) has already been
visited i�

(LEX2-LESSP y z I (IF (EQUAL CHI 'CHI3) J 0))

is satis�ed.
With this in mind, we may restate Ben-Ari's Lemma 1 as follows:

33

Invariant 15
2(IMPLIES (AND (MEMBER CHI '(CHI1 CHI2 CHI3))

(EQUAL (BLACKS M 0 NODES) OBC)

(LESSP Z SONS)

(LEX2-LESSP Y Z I (IF (EQUAL CHI 'CHI3) J 0))

(BW Y Z M))

(AND (EQUAL MU 'MU1) (EQUAL (SON Y Z M) Q)))

Note that the variables Y and Z occurring in this term are free, and therefore,
in e�ect, universally quanti�ed. Thus, according to Invariant 15, as long as
the collector is in the propagation phase and the number of black nodes is
the value of OBC, if there exists a pointer (Y Z) satisfying BW that has already
been visited, then the mutator must be at MU1 and the white node must be
node Q.

The proof of this invariant depends on Invariant 10, which guarantees
that the stated property cannot be negated by any coloring operation. It is
thus easily shown to be preserved across all arcs of the collector as well as
the mutator.

The following more useful invariant, which involves no free variables, is a
direct corollary of Invariant 15:

Invariant 16
2(IMPLIES (AND (MEMBER CHI '(CHI1 CHI2 CHI3))

(EQUAL (BLACKS M 0 NODES) OBC)

(EXISTS-BW 0 0 I (IF (EQUAL CHI 'CHI3) J 0) M SONS))

(EQUAL MU 'MU1))

Our version of Ben-Ari's Lemma 2 states that during the propagation
phase, as long as the number of black nodes is the value of OBC, if there is
a pointer from a black node to a white node that has already been visited,
then there must also be a pointer from a black node to a white node that
has not yet been visited:

Invariant 17
2(IMPLIES

(AND (MEMBER CHI '(CHI1 CHI2 CHI3))

(EQUAL (BLACKS M 0 NODES) OBC)

(EXISTS-BW 0 0 I (IF (EQUAL CHI 'CHI3) J 0) M SONS))

(EXISTS-BW I (IF (EQUAL CHI 'CHI3) J 0) NODES 0 M SONS))

34

The proof of Invariant 17 follows the outline of Ben-Ari's proof, as presented
in Section 1. The most interesting case is the arc of the mutator from MU0

to MU1. Suppose that Invariant 17 is satis�ed by a state s0 in which MU =
MU0 and let s1 be a state produced by traversing the arc to MU1. Assume the
the hypotheses of Invariant 17 are satis�ed by s1. It must be shown that the
conclusion is also satis�ed.

First note that the only pointer for which the value of our BW predi-
cate changes in traversing this arc is the one that is altered by the SET-SON
operation. (This is not true for Ben-Ari's version of this predicate.) By
Invariant 16, the third hypothesis of Invariant 17 must not be satis�ed by
s0. Thus, there is some pointer that has been examined by the collector
and satis�es BW with respect to s1 but not s0. This pointer must be the one
that is being redirected, and its new target must be white. But according
to Constraint 2, this target node is accessible in state s0. It follows from
Invariant 14 that some pointer satis�es BW in state s0. This pointer must
already have been examined by the collector. Since it is not the one being
redirected, it must also satisfy BW with respect to s1. Hence, the conclusion
of Invariant 17 is true in s1, and the proof is complete.

Suppose now that (EQUAL (BLACKS M 0 NODES) OBC) is true at the end
of the propagation phase, i.e., as the arc from CHI1 to CHI4 is traversed.
Since I = NODES, it follows that the conclusion of Invariant 17 is false in
this state. But then the third hypothesis must also be unsatis�ed, hence
(PROPAGATED M NODES SONS) holds, and we may conclude (BLACKENED M

NODES ROOTS SONS 0). We would like to establish the following invariant:

Invariant 18

2(IMPLIES (AND (MEMBER CHI '(CHI4 CHI5 CHI6))

(EQUAL OBC (PLUS BC (BLACKS M H NODES))))

(BLACKENED M NODES ROOTS SONS 0))

We have already shown by the above remarks that Invariant 18 holds upon
entering the counting phase, since BC = H = 0. Since it is trivially preserved
across both arcs emanating from CHI4, the only arcs of the collector that we
need consider are those from CHI5 to CHI4. There are two cases, according
to the value of (COLOR H M): if node H is black, then (BLACKS M H NODES)

is decremented, while BC is incremented; if H is white, then (BLACKS M H

NODES) is unchanged, as is BC.

35

It remains to be shown that Invariant 18 is preserved by the mutator.
First note that since the mutator does not alter the value of OBC and can only
increase that of (PLUS BC (BLACKS M H NODES)), it follows from Invari-
ant 11 that the hypothesis (EQUAL OBC (PLUS BC (BLACKS M H NODES)))

cannot become true as a result of a mutator operation. Next, observe that
since the accessibility of the node returned by COMPUTE-Q is guaranteed by
Constraint 2, no inaccessible node may become accessible by the mutator's
SET-SON operation. Finally, since the mutator never whitens a node, it al-
ways preserves the conclusion of Invariant 18.

4.4 The Appending Phase

Upon entering the appending phase (via the arc from CHI6 to CHI7), we have
OBC = BC and (by Invariant 4) H = NODES. Thus, (BLACKS M H NODES) = 0

and the hypothesis of Invariant 18 is satis�ed. Since L = 0, the conclusion
may be expressed as (BLACKENED M NODES ROOTS SONS L). We would like
to show that this remains true throughout the appending phase:

Invariant 19

2(IMPLIES (MEMBER CHI '(CHI7 CHI8))

(BLACKENED M NODES ROOTS SONS L))

As in the proof of Invariant 18, we need only consider the action of the col-
lector, and hence we may restrict our attention to the two arcs from CHI8

to CHI7. By Constraint 3, neither of these arcs may a�ect either the acces-
sibility or the color of any node other than node L. Since both arcs replace
L with (ADD1 L), neither of them can negate (BLACKENED M NODES ROOTS

SONS L), and Invariant 19 follows.
Finally, the safety property of GC is a direct consequence of Invariant 19

and the de�nition of BLACKENED:

Invariant 20

2(IMPLIES (AND (EQUAL CHI 'CHI8)

(ACCESSIBLE L M NODES ROOTS SONS))

(COLOR L M))

36

5 Proof of Liveness

In this section, we describe the proof of the liveness property of GC: every
node of M eventually becomes accessible. This goal is expressed formally by

(AND (NUMBERP Z) (LESSP Z NODES))

! 3(ACCESSIBLE Z M NODES ROOTS SONS)

(in which Z occurs as a free variable). The proof, which rests on the re-
sults of Section 4, requires two additional invariants and four intermediate
eventualities.

The macro PROVE-EVENTUALITY, as described in Section 2, is used to
derive these four eventualities. In each call to this macro, the helper argument
is simply the COLLECTOR process, while the values of the measure argument
are expressions based on lexicigraphic orderings of natural numbers, de�ned
in terms of the function LEX, which is described in Section 2.

Finally, our ultimate goal, as stated above, will be derived by applying
the macro PROVE-CHAIN to these other eventualities. Thus, these other four
formulas will have the form ti�1 ! 3ti, for i = 1; : : : ; 4, where t0 is the
antecedent (AND (NUMBERP Z) (LESSP Z NODES)) and t4 is the conclusion
(ACCESSIBLE Z M NODES ROOTS SONS).

5.1 Accessibility of Q

We shall require the following invariant, which appears at �rst glance to be
trivial, but is seen upon closer examination to depend on nearly all that we
have done up to this point:

Invariant 21

2(ACCESSIBLE Q M NODES ROOTS SONS)

Since the input condition of GC implies that 0 is a root and therefore ac-
cessible, this term is clearly satis�ed in the initial state, in which Q = 0.
It is preserved by the mutator arc from MU0 to MU1, which is the only arc
that alters the value of Q. This follows from Constraint 2, which ensures that
the node returned by COMPUTE-Q is accessible, and the observation that an
accessible node cannot be rendered inaccessible by redirecting a pointer to
it.

37

The accessibility of node Q is also preserved by the other mutator arc, as
well as by all coloring operations performed by the collector. The only re-
maining operation of the collector that a�ects any of the variables occurring
in Invariant 21 is the appending operation at CHI8. To complete the proof,
we must invoke Constraint 3, which guarantees, since L is accessible, that
no garbage is created by this operation. Note that this argument reveals an
interesting dependency: the invariance of the accessibility of Q depends on
the safety property of the program. It also �nally demonstrates the neces-
sity of the full form of Property 3 of the appending operation, as stated in
Subsection 3.4.

5.2 Collection of Pure Nodes

If a garbage node is white at the beginning of an appending phase, then it will
be collected during that phase. If it is black at the beginning of an appending
phase, then it will be whitened during that phase and will remain white until
the subsequent appending phase, during which it will be collected.

It is not the case, however, that whiteness of a node that is white at the
end of an appending phase is su�cient to guarantee that it is collected dur-
ing the next appending phase. Recall that (PURE i M NODES SONS NODES)

means that there is no path leading from a black node to node i. In this case,
we shall say that node i is pure. As we shall prove in the next subsection, a
node that is black at the beginning of an appending phase is not only white,
but pure, at the end of that phase. It is this property that ensures that it
will remain white until the next appending phase.

In the present subsection, we shall show that a garbage node that is pure
at any point during a marking phase will eventually be collected. This claim
is decomposed into two eventualities. The �rst of these states that if, during
an appending phase, Z is a white node that has not yet been examined (i.e.,
L � Z), then either Z is already accessible or Z will eventually be collected
(in fact, this will occur during the current appending phase):

Eventuality 1

(OR (ACCESSIBLE Z M NODES ROOTS SONS)

(AND (MEMBER CHI '(CHI7 CHI8))

(NOT (COLOR Z M))

(NUMBERP Z) (LEQ L Z) (LESSP Z NODES)))

38

! 3(ACCESSIBLE Z M NODES ROOTS SONS)

As outlined in Subsection 2.2, the proof of this formula involves a) showing
that if the antecedent is satis�ed in some execution state, then it continues
to be satis�ed until a state is reached in which the conclusion is satis�ed,
and b) constructing an ordinal-valued measure m such that as long as the
antecedent is satis�ed and the conclusion is not, the value of m never increases
and strictly decreases with every action of the collector.

To prove a), suppose that in some state, Z is inaccessible and

(AND (MEMBER CHI '(CHI7 CHI8))

(NOT (COLOR Z M))

(NUMBERP Z) (LEQ L Z) (LESSP Z NODES)))

is true. By Invariant 21, Z 6= Q and hence the above term cannot be rendered
false by the mutator. The only way that the collector may negate this term
is by crossing an arc that increments L, starting from a state in which L = Z.
But this must then be the arc with precondition (NOT (COLOR L M)), which
has the e�ect of appending Z to the free list, thus (by Constraint 3) causing
Z to become accessible.

Next, we construct the measure m. The primary component of m is the
di�erence between NODES and L, which decreases with each execution of the
loop of the appending phase. Within each loop, for constant L, the program
counter proceeds from CHI7 to CHI8. Hence, m is the term

(LEX (LIST (DIFFERENCE NODES L) (LOC CHI '(CHI8 CHI7)))).

It is trivial to complete the proof of Eventuality 1 by verifying that this
measure sati�es the general requirement stated above.

The second formula that must be proved to establish our claim concern-
ing the collection of pure nodes states that a garbage node that is pure at
any point during a marking phase must eventually satisfy the hypothesis of
Eventuality 1:

Eventuality 2

(OR (ACCESSIBLE Z M NODES ROOTS SONS)

(AND (NUMBERP Z) (LESSP Z NODES)

(MEMBER CHI '(CHI0 CHI1 CHI2 CHI3 CHI4 CHI5 CHI6))

39

(PURE Z M NODES SONS NODES)))

! 3(OR (ACCESSIBLE Z M NODES ROOTS SONS)

(AND (MEMBER CHI '(CHI7 CHI8))

(NOT (COLOR Z M))

(NUMBERP Z) (LEQ L Z) (LESSP Z NODES)))

To prove this formula, suppose that with respect to some execution state,

(AND (NUMBERP Z) (LESSP Z NODES)

(MEMBER CHI '(CHI0 CHI1 CHI2 CHI3 CHI4 CHI5 CHI6))

(PURE Z M NODES SONS NODES))

is satis�ed, where Z is some garbage node. One arc that fails to preserve the
truth of this term is the arc from CHI6 to CHI7. But since every pure node
is white, traversing this arc to CHI7 renders the conclusion of Eventuality 2
true.

All other arcs of the program preserve the truth of the above term. To see
this, we need only consider arcs that may negate the term (PURE Z M NODES

SONS NODES) by altering the value of M. The only such arc in the marking
phase of the collector is the loop at CHI3, which colors the node (SON I

J). To show that Z cannot become impure as a result of this operation, we
observe that a pure node cannot become impure by the blackening of a son
of a black node, and invoke the following invariant, which follows easily from
Constraint 1:

Invariant 22

2(IMPLIES (EQUAL CHI 'CHI3) (COLOR I M))

We must also consider the two arcs of the mutator that a�ect M. Since Q
is accessible (by Invariant 21) and Z is not, Z cannot be rendered impure by
the coloring operation of the arc from MU1 to MU0. Similarly, we may dispose
of the arc from MU0 to MU1 by observing that no path can be created from
a black node to the inaccessible Z be redirecting a pointer to the accessible
node Q.

A rather complicated measure is needed to establish Eventuality 2:

(LEX (LIST (DIFFERENCE NODES OBC)

(PHASE CHI '((CHI6 CHI5 CHI4)

40

(CHI3 CHI2 CHI1)

(CHI0)))

(DIFFERENCE NODES H)

(LOC CHI '(CHI6 CHI5 CHI4))

(DIFFERENCE NODES I)

(LOC CHI '(CHI3 CHI2 CHI1))

(DIFFERENCE SONS J)

(DIFFERENCE ROOTS K)))

The primary component of this measure, (DIFFERENCE NODES OBC), is based
on the observation that the value of OBC, which is bounded by NODES, de-
creases on successive loops through the marking phase. The secondary com-
ponent involves a new function PHASE, de�ned by

(PHASE X L)

=

(IF (LISTP L)

(IF (MEMBER X (CAR L)) 0 (ADD1 (PHASE X (CDR L))))

0)

Thus, the value of

(PHASE CHI '((CHI6 CHI5 CHI4) (CHI3 CHI2 CHI1) (CHI0)))

decreases as the program counter CHI moves �rst from the root-blackening
phase into the propagation phase, and then into the counting phase. Each
of the remaining components of our measure represents a quantity that de-
creases during one of these three phases: the third and fourth correspond
to the counting phase, the next three to the propagation phase, and the
last to the root-blackening phase. It is easily veri�ed that throughout the
marking phase, the value of this measure is una�ected by the mutator and
is decreased by every transition of the collector. This completes the proof of
Eventuality 2.

5.3 Puri�cation of Garbage

To complete the proof of the liveness property, we show that any garbage
node eventually either is pure during a marking phase (in which case we

41

have shown that it is collected) or is collected. This claim is also established
by proving two eventualities. The �rst states that the claim is true for a
garbage node Z if the term (PURE Z M NODES SONS L) is satis�ed at some
point during an appending phase:

Eventuality 3

(OR (ACCESSIBLE Z M NODES ROOTS SONS)

(AND (NUMBERP Z) (LESSP Z NODES)

(MEMBER CHI '(CHI7 CHI8))

(PURE Z M NODES SONS L)))

! 3(OR (ACCESSIBLE Z M NODES ROOTS SONS)

(AND (NUMBERP Z) (LESSP Z NODES)

(MEMBER CHI '(CHI0 CHI1 CHI2 CHI3 CHI4 CHI5 CHI6))

(PURE Z M NODES SONS NODES)))

It must be shown that if, with respect to some state, if Z is a garbage node
and

(AND (NUMBERP Z) (LESSP Z NODES)

(MEMBER CHI '(CHI7 CHI8))

(PURE Z M NODES SONS L))

is satis�ed, then this term continues to be satis�ed until the conclusion of
Eventuality 3 becomes true. As in the proof of Eventuality 2, it is clear that
the value of the term is una�ected by the mutator, and we may restrict our
attention to the arcs of the collector.

The arc from CHI7 to CHI0 clearly renders the conclusion true, and there
is no transformation associated with the arc from CHI7 to CHI8. Hence,
we need only consider the two arcs from CHI8 to CHI7. If (COLOR L M) is
initially true, then only a whitening operation is performed, which cannot
cause Z to become impure. The remaining case, in which the garbage node
L is appended to the free list, is covered by Constraint 3. The proof of
Eventuality 3 is completed with the same measure and argument that were
used to prove Eventuality 1.

The last link in our chain of eventualities states that every node eventually
satis�es the hypothesis of Eventuality 3:

Eventuality 4

42

(AND (NUMBERP Z) (LESSP Z NODES))

! 3(OR (ACCESSIBLE Z M NODES ROOTS SONS)

(AND (NUMBERP Z) (LESSP Z NODES)

(MEMBER CHI '(CHI7 CHI8))

(PURE Z M NODES SONS L)))

Since the value of (AND (NUMBERP Z) (LESSP Z NODES) is not a�ected by
any transition, we need only produce an appropriate measure. We obtain this
measure as a modi�cation of the measure that was used for Eventualities 1
and 3:

(LEX (LIST (PHASE CHI '((CHI6 CHI5 CHI4 CHI3 CHI2 CHI1 CHI0)

(CHI8 CHI7)))

(DIFFERENCE NODES L)

(LOC CHI '(CHI8 CHI7))

(DIFFERENCE NODES OBC)

(PHASE CHI '((CHI6 CHI5 CHI4)

(CHI3 CHI2 CHI1)

(CHI0)))

(DIFFERENCE NODES H)

(LOC CHI '(CHI6 CHI5 CHI4))

(DIFFERENCE NODES I)

(LOC CHI '(CHI3 CHI2 CHI1))

(DIFFERENCE SONS J)

(DIFFERENCE ROOTS K)))

Suppose that the hypothesis of Eventuality 4 is satis�ed and the conclusion is
not. As long as CHI is in the appending phase, it is clear from consideration
of the �rst three components of the above measure that its value decreases
until the marking phase is entered. Once we are in the marking phase, the
value of the measure continues to decrease, as in the proof of Eventuality 2,
until the next appending phase is entered. But upon entering the appending
phase, L = 0 and the conclusion of Eventuality 4 is trivially satis�ed.

Finally, having proved these four eventualities, the PROVE-CHAIN macro
may be applied to yield the desired result:

Eventuality 5
(AND (NUMBERP Z) (LESSP Z NODES))

! 3(ACCESSIBLE Z M NODES ROOTS SONS)

43

6 Conclusion

Undeniably, mechanical program veri�cation requires careful attention to
detail. But while this may be quite tedious, it need not be prohibitive, since
at the lowest level, the details are managed automatically by the prover. On
the other hand, the consequences of carelessness, which is often unavoidable
in less formal approaches, may be devastating.

Thus, our proof of correctness of Ben-Ari's algorithm required proving
twenty-two program invariants, each of which involves checking various pro-
gram transitions. Over one hundred lemmas characterizing the behavior of
relevant functions were required for these invariance proofs. (Many of these
lemmas were established prior to the development of the correctness proof,
while some were added later as needed.) However, once the required lemmas
and invariants were identi�ed, all of their proofs were constructed mechan-
ically, without assistance from the user. Our certainty of the �nal result
now depends only on our trust in the theorem prover, without our having to
examine any of the proofs.

But increased con�dence in results is not the only bene�t of mechanical
proof systems. As illustrated by the example at hand, an important aspect
of the process of generating a mechanical proof is the explication of all im-
plicit assumptions that are relevant to the proof. In this case, we found it
necessary to identify the essential properties of the collector's appending op-
eration. These properties would be required of any implementation, but were
ignored in all previously published informal proofs. We found the results of
this exercise to be somewhat counterintuitive, with surprising implications
concerning the structure of our proof.

The mechanical proof process also automatically produces a complete
and precise record of the dependencies among assumptions, intermediate
lemmas, and �nal results. Tracing these dependencies provides insight into
the structure of a proof that may be relevant to proposed variations of the
algorithm or modi�cation of the assumptions. In our example, we found
that our original proof, which was based faithfully on Ben-Ari's model, made
no use of two of his basic assumptions: one concerning the initial state of
the data structure, according to which all nodes are linked together on the
free list, and another guaranteeing the accessibility of the source node of the
mutation instruction. We were then able to discard both of these assumptions
without a�ecting the proof.

44

A more startling conclusion drawn from our proof is the observation that
Invariant 21, which states the persistent accessibility of the target node Q of
the mutation instruction, actually depends on Invariant 20, the msin safety
property of the program. While this property of Q was taken as obvious and
either used implicitly or stated without proof in [Ben84], [DLM78], [Pix88],
and [Van87], the complexity of its proof could only be revealed after the as-
sumptions concerning the appending operation were made explicit. A corol-
lary of this observation is the dependence of the liveness result, Eventuality 5,
on the safety result, another relationship that previously went unnoticed.

Another point revealed by our proof is that the correctness of this program
does not depend on the full assumption of fairness, which guarantees that no
process ever permanently ceases to make progress. In this case, the helper
process used in the proof of each liveness property is always the collector and
never the mutator. It follows (although this observation cannot be expressed
in our formal notation) that all of our results remain valid even if the mutator
is allowed to halt at any point during an execution. In particular, the mutator
need not color the new target of a pointer after redirecting it, as long as it
does perform any further mutation.

In spite of the complexity of this problem, the algorithm is simple enough
to be coded easily in a very primitive language for which mechanical veri�ca-
tion is feasible. It remains true, however, that in contrast, real programming
languages are generally semantically vague. The need for expressiveness or
e�cient implementation often motivates the design of language constructs
and data types that are di�cult to formalize. Some progress has been made
in this area [Ram89,Sut90], but it remains a challenge to future research.

References

[Ben84] Ben-Ari, M., Algorithms for On-the-Fly Garbage Collection, ACM
Toplas 6, July 1984.

[BGK89] Boyer, R. S., Goldschlag, D. M., Kaufmann, M., and Moore, J,
Functional Instantiation in First Order Logic, Tech. Report 44, Com-
putational Logic, Inc., Austin, TX, 1989.

[BoM79] Boyer, R. S. and Moore, J S., A Computational Logic, Academic
Press, New York, 1979.

45

[BoM88] Boyer, R. S. and Moore, J, A Computational Logic Handbook,
Academic Press, Boston, 1988.

[DLM78] Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., and
Ste�ens, E. F. M., On-the-Fly Garbage Collection: An Exercise in

Cooperation, ACM 21 (11), November 1978.

[MaP81] Manna, Z. and Pnueli, A., Veri�cation of Concurrent Programs:

the Temporal Framework, in The Correctness Problem in Computer
Science, edited by Boyer, R. S. and Moore, J, Academic Press, Lon-
don, 1981.

[MaP84] Manna, Z. and Pnueli, A., Adequate Proof Principles for Invariance
and Liveness Properties of Concurrent Programs, Science of Com-
puter Programming 4 (1984), North-Holland.

[Pix88] Pixley, C., An Incremental Garbage Collection Algorithm for Multi-

mutator Systems, Distributed Computing (3), 1988.

[Ram89] Ramsey, N., Developing Formally Veri�ed Ada Programs, Proceed-
ing of the Fifth International Conference on Software Speci�cation
and Design, May 1989.

[Rus90] Russino�, D. M., Verifying Concurrent Programs with the Boyer-

Moore Prover, Tech. Report STP/ACT-218-90, MCC, Austin, TX,
1990.

[Rus92] Russino�, D. M., A Veri�cation System for Concurrent Programs

Based on the Boyer-Moore Prover, to appear in Formal Aspects of
Computing.

[Ste84] Steele, G. L., Common LISP: The Language, Digital Press, Burling-
ton, MA, 1984.

[Sut90] Sutherland, I., Formal Veri�cation of Mathematical Software, Tech.
Report RADC-TR-90-53, Odyssey Research Assoc., Inc., May 1990.

[Van87] Van de Snepscheut, J. L. A., \Algorithms for On-the-Fly Garbage

Collection" Revisited, Information Processing Letters (24), March
1987.

46

