
Remarks on the IEEE Standard
for Floating-Point Arithmetic

David M. Russinoff

November 29, 2015

Although the publication of the Institute of Electrical and Electronics Engineers labeled
IEEE-754-2008 is generally regarded as the ultimate standard of correctness for implemen-
tations of floating-point arithmetic, I shall argue that as a prescriptive specification, it is
conspicuously deficient. If a camel is a horse designed by a committee, then this document, a
collaboration of ninety-two leading experts in the field of computer arithmetic ratified by one
hundred knowledgable reviewers, is the ruminant of computing standards.

IEEE-754-2008 is the long-deliberated revision of IEEE-754-1985, which bore the title
“IEEE Standard for Binary Floating-Point Arithmetic”. With the benefit of twenty-three
years of post-mortem analysis, it extends the original in various directions, including a treat-
ment of decimal data formats, resulting in a fourfold increase in length (fifty-eight pages vs.
fourteen). But perhaps the most ambitious objective undertaken in the revision is its overall-
stated ”purpose”:

This standard provides a method for computation with floating-point numbers that
will yield the same result whether the processing is done in hardware, software,
or a combination of the two. The results of the computation will be identical,
independent of implementation, given the same input data. Errors, and error
conditions, in the mathematical processing will be reported in a consistent manner
regardless of implementation.

The first sentence is essentially inherited from the 1985 version, but the other two suggest a
radical detarture from the original, which allowed some freedom of interpretation. Are pre-
existing compliant implementations now expected to be redesigned to conform to a new order?
One need not read beyond page 2 to find that this is not at all the case:

This standard does not define all aspects of a conforming programming environ-
ment. Such behavior should be defined by a programming language definition
supporting this standard, if available, and otherwise by a particular implementa-
tion. Some programming language specifications might permit some behaviors to
be defined by the implementation.

Indeed, we find in the sequel that many critical aspects of behavior are unspecified, and that
compliant implementations may produce widely divergent computational results. But this sets

1



a precedent that is followed throughout: it is a mistake to assume that the author of one page
is in communication with that of the next.

Perhaps the first obligation of a proposed standard for this domain, which centers on the
representation of abstract numbers by binary sequences, is a characterization of the objects to
be represented and those that represent them, as distinct entities, as this would seem to be a
prerequisite for any meaningful discussion of such a representation. This was addressed in the
1985 version by the following definition:

binary floating-point number: a bit-string characterized by three components:
a sign, a signed exponent, and a significand. Its numerical value, if any, is the
signed product of its significand and two raised to the power of its exponent. In this
standard a bit-string is not always distinguished from a number it may represent.

Here is a creative solution to the problem of characterizing the correspondence between real
numbers and their encodings with respect to a floating-point format: we simply pretend that
there is no distinction between the two entities and ignore the problem altogether. Needless
to say, nothing useful came of this approach—it is often difficult to ascertain, in reading
the subsequent text, what sort of object is under discussion at any given point. To their
credit, the committee of 2008 seems to have taken its responsibility in this regard somewhat
more seriously, identifying four distinct classes of relevant entities, listed in Table 3.1 as the
“different specification levels for a particular format”: extended real numbers, floating-point
data, floating-point representations, and bit strings. The curious 1985 disclaimer regarding
their distinction, however, is preserved:

floating-point datum: A floating-point number or non-number (NaN) that is
representable in a floating-point format. In this standard, a floating-point datum
is not always distinguished from its representation or encoding.

This might be defensible if the mapping between numbers and representations were bijective,
but we find later (Table 3.1) that this is not the case. The definition provides no clue to the
nature of a “non-number” or how many of them exist, but it later transpires that there is
only one such datum, denoted simply as “NaN”. The remaining data are characterized by the
following definition (in which the indefinite article preceding “NaN” serves only to confuse):

floating-point number: A finite or infinite number that is representable in a
floating-point format. A floating-point datum that is not a NaN. All floating-point
numbers, including zeroes and infinities, are signed.

Thus, the set of floating-point numbers determined by any format contains the four distin-
guished elements +0, −0, +∞, and −∞; the rest are the finite non-zero numbers that are
representable with respect to the format, according to a scheme specified as follows:

floating-point representation: An unencoded member of a floating-point for-
mat, representing a finite number, a signed infinity, a quiet NaN, or a signaling
NaN. A representation of a finite number has three components: a sign, an expo-
nent, and a significand; its numerical value is the signed product of its significand
and its radix raised to the power of its exponent.

2



This provides a clue to the nature of formats, which is confirmed by the next definition:

format: A set of representations of numerical values and symbols, perhaps accom-
panied by an encoding.

Neither encoding nor bit string is listed in the glossary, but the following assertion is found in
Section 3.2:

An encoding maps a representation of a floating-point datum to a bit string.

Nor is there an entry for extended real number, but this is explained in the same section:

The mathematical structure underpinning the arithmetic in this standard is the
extended reals, that is, the set of real numbers together with positive and negative
infinity.

A definition is included for one of the three components of a floating-point representation:

significand: A component of a finite floating-point number containing its signif-
icant digits. The significand can be thought of as an integer, a fraction, or some
other fixed-point form, by choosing an appropriate exponent offset. A decimal or
binary subnormal significand can also contain leading zeroes.

The following related definition is also of interest:

trailing significand field: A component of an encoded binary or decimal floating-
point format containing all the significand digits except the leading digit. In these
formats, the biased exponent or combination field encodes or implies the leading
significand digit.

It is unfortunate that these definitions, which are critical to an overall understanding of
the standard, are presented as an alphabetized glossary rather than in a more logical sequence
befitting a mathematical exposition. Various difficulties encountered in relating the definitions
to the ensuing discussion raise a number of questions that suggest considerable confusion within
the standard committee:

• What is the radix of a floating-point number?

The glossary defines a binary (resp., decimal) floating-point number to be a “floating-point
number with radix two” (resp., “ten”). But as we have seen, a floating-point number
is either a signed zero, a signed infinity, or an ordinary non-zero real number, none of
which possesses an intrinsic radix. It might make more sense to associate a radix with a
format than with a number.

3



• What is a significand?

In the definition of floating-point representation, and again in Section 3.2, we are told
that a significand is a component of a floating-point representation, and that it occurs
as a factor in the computation of the represented number, implying that it is itself a
number. On the other hand, according to the definition of significand itself, it is instead
a component of a floating-point number, and that it “contain[s] its significant digits” and
“can also contain leading zeroes”, suggesting that it is something other than a simple
number. (What digits does a number “contain”?)

It is true that we have been warned that the distinction between numbers and rep-
resentations will not always be respected, but since a given number admits a variety
of representations, how can we know which of them determines the significand of the
number?

Furthermore, according to the definition, a significand “can be thought of” as an integer,
a fraction, or something else. Is it not the purpose of a definition to specify the nature of
the thing being defined? Is this an issue on which there was no meeting of the ninety-two
minds?

• A trailing significand field is a component of what sort of object?

According to the definition, it is a component of an “encoded binary or decimal floating-
point format”, but what could that possibly mean? We have been told that floating-
point representations, rather than formats, are the things that are encoded. Whatever
an encoded format may be, it apparently includes a “combination field”, but since this
term appears nowhere else in the document, there is no way to know what it means.

• Does a format include a specific encoding?

According to the definition, a format is “perhaps accompanied by an encoding.” Well,
is it or not?

• What value is represented by the exponent field of a denormal encoding?

In Section 3.4, we find that the exponent field of the encoding of any floating-point
number with respect to a binary interchange format is E = e + bias , and that in the
case of a subnormal number, e = emin and E has the reserved value 0. But we see in
Section 3.3 that emin = 1− emax , and according to Table 3.5, bias = emax . Thus, for
a subnormal number,

E = e + bias = emin + emax = 1 6= 0.

• How many non-numerical floating-point data are there?

In Section 3.3, qNaN and sNaN are identified as distinct floating-point data, but accord-
ing to Table 3.1, as confirmed by item (a) in the middle of page 9, there is only one NaN
datum, which admits qNaN and sNaN as representations.

4



• What is the result of rounding 0?

In Table 3.1, rounding is characterized as a “many-to-one” mapping from the extended
real numbers to the set of floating-point data, implying that every extended real is
rounded to a unique datum. It seems likely that the datum to which the number 0 is
rounded is either +0 or −0, perhaps depending on the rounding mode. Which is it?

• What information is provided by the sign bit of a zero?

According to Section 3.3, “For a floating-point number that has the value zero, the sign
bit s provides an extra bit of information.” What is the nature of that information?

In Section 6.1, the significance of infinite operands is explained as follows:

The behavior of infinity in floating-point arithmetic is derived from the limiting
cases of real arithmetic with operands of arbitrarily large magnitude, when such
a limit exists.

For example, if x is a positive number, then since multiplication of x by a large negative
number yields a large negative number, x · (−∞) = −∞. It might make sense for the
standard to include an analogous statement about zeroes, such as this:

The behavior of signed zeroes in floating-point arithmetic is derived from the
limiting cases of real arithmetic with non-zero operands of arbitrarily small
magnitude with the same sign, when such a limit exists.

In fact, this is consistent with most floating-point operations. For example, if x is a
positive number, then since division of x by a small negative number yields a large
negative number, x/(−0) = −∞. The glaring exception is the square root operation. As
prescribed in 1985 and repeated in 2008, the square root of −0 is −0, a counter-intuitive
result that violates the usual defining identity (

√
x)2 = x as well as the principle proposed

above, since the square root of a small negative number is undefined.

Another subject that warrants attention is the handling of exceptions. The reader who takes
the droll definition of non-computational operation, “an operation that is not computational”,
as a sign that no term will go undefined will be sorely disappointed by the following entry:

exception: An event that occurs when an operation on some particular operands
has no outcome suitable for every reasonable application. That operation might
signal one or more exceptions by invoking the default or, if explicitly requested,
a language-defined alternate handling. Note that event, exception, and signal are
defined in diverse ways in different programming environments.

Is this a definition or an apology? It certainly represents a retreat from the more definitive
position taken in 1985:

5



There are five types of exceptions that shall be signaled when detected. The signal
entails setting a status flag, taking a trap, or possibly doing both. With each
exception should be a trap under user control, as specified in Section 8. The
default response to an exception shall be to proceed without a trap. This standard
specifies results to be delivered in both trapping and nontrapping situations.

The specified results were designed to reflect the architecture of the pre-existing Intel 80x87
coprocessor, the first “IEEE-compliant” floating-point system. The only ambiguities in the
specification are in the handling of underflow, with respect to both (a) its detection, which may
be based on either the unrounded or rounded result at the discretion of the implementation, and
(b) the value returned in the absence of an enabled trap, “which might be zero, denormalized,
or ±2Emin. No explanation is offered, either for this latitude or for its not being similarly
extended to the handling of overflow.

The main problem faced by the committee of 2008 is that a variety of architectures and
instruction sets appeared during the intervening period that do not conform to the original
standard, especially in the “trapping” case. In a convoluted attempt to account for these devel-
opments, the new standard distinguishes between “default exception handling” and “alternate
exception handling”. The former roughly corresponds to the behavior previously associated
with the “trapping situation”, although a number of variations with respect to the raising
of flags and the values returned are allowed. The latter is further decomposed according to
various “attributes”, which may or may not be provided by a language or an implementation.
An exception handling attribute may be “immediate”, which means that control is to be trans-
ferred to a handler block “as soon as possible”, or “delayed”, meaning that the exception is
handled by default until the associated block terminates normally, at which time control is
transferred. After execution of the handler, control may or may not be returned to the point
at which the exception was signaled. In contrast to the 1985 standard, nothing is stated about
the value returned in the case of alternate exception handling, which is apparently assigned at
the full discretion of the implementation.

In short, the new standard is not a specification of behavior at all, but rather a futile attempt
to provide a framework to accommodate all conceivable behaviors. What is most puzzling is
that it nevertheless fails to address a number of exception handling issues that are relevant
to contemporary architectures. One of the six industry-standard floating-point exceptional
conditions, the denormal operand, is not mentioned at all. Nor is there any discussion of the
interaction between exceptions that arise during the execution of instructions that perform
several operations in parallel, such as the Streaming SIMD (single instruction, multiple data)
Extensions to the x86 architecture, which have been in existence since 1999.

While the drawbacks of “design by committee” are apparent, one might hope for a silver
lining: when a document benefits from the contributions and services of so many participants
and reviewers, shouldn’t it be expected that any glaring deficiencies be exposed prior to its
final publication? Apparently not—although at least two members of the intersection of those
two groups are known to be capable of a careful reading of such a document, there is no
evidence that this occurred. We might also expect at least one reviewer to hold a sufficient
command of English to recognize simple distinctions in the accepted usage of common words,
as between assure and ensure, or that and which. However, at the top of page 1, we find the

6



“IMPORTANT NOTICE” that “This standard is not intended to assure [sic] safety, security,
health, or environmental protection in all circumstances” (as if we might be tempted to believe
otherwise), and on page 5, precision is defined as “The maximum number p of significant digits
that can be represented in a format, or the number of digits to that [sic] a result is rounded.”

There is no doubt that IEEE-754-2008 could be improved by removing the inconsistencies,
anbiguities, and errors that we have brought to light, but there are deeper issues that are more
difficult to address. The stated objective of establishing consistent behavior, independent of
implementation, is in conflict with the tacit requirement of accommodating a spectrum of
established architectures and industry standards. The latter consideration has resulted in a
“standard” that is less a prescriptive specification than a descriptive account of prevailing
behavior, and therefore offers little in the way of guidance to architects or implementors.
Moreover, since the divergent features of existing architectures are not specifically identified,
its utility to application programmers is also limited. For this purpose, a comprehensive
specification of a particular instruction set would be far more useful. It is remarkable that
all existing architectural programming manuals fail so miserably in this regard, but that is a
subject for another rant.

7


