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Abstract. We describe the use of the Boyer-Moore theorem prover in mechan-

ically generating a proof of the Law of Quadratic Reciprocity: for distinct odd

primes p and q, the congruences x
2
� q (mod p) and x

2
� p (mod q) are either

both solvable or both unsolvable, unless p � q � 3 (mod 4). The proof is a formal-

ization of an argument due to Eisenstein, based on a lemma of Gauss. The input

to the theorem prover consists of nine function de�nitions, thirty conjectures, and

various hints for proving them. The proofs are derived from a library of lemmas

that includes Fermat's Theorem and the Gauss Lemma.

Keywords. Automatic theorem proving, Boyer-Moore prover, number theory,

quadratic reciprocity.

1 Introduction

Questions of solvability of integer equations often lead to the study of con-
gruences, which is therefore central to the theory of numbers. If a, b, and
m are integers, then a and b are said to be congruent modulo m, and we
write a � b (mod m), if the di�erence a � b is a multiple of m. Problems
concerning congruences are often reducible to the case in which the modulus
m is prime. In particular, the formula x2 � a (mod p), where p is a prime
not dividing a, is of fundamental importance. If there exists a solution x
to this congruence, then a is said to be a quadratic residue modulo p. This
relation is represented by the Legendre symbol (a

p
), de�ned by

(
a

p
) =

(
1 if a is a quadratic residue modulo p
�1 if not

where a is assumed not to be divisible by p.
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As a re�nement of Fermat's Theorem, which states that ap�1 � 1 (mod p),
Euler's Criterion for quadratic residues gives a means of directly computing
the value of the Legendre symbol:

(
a

p
) � a(p�1)=2 (mod p):

For large primes p, however, this formula is impractical. Moreover, it is of
little use in solving more general problems, such as the characterization of
the set of primes p such that (a

p
) = 1 for a given a.

A deeper result, known as the Law of Quadratic Reciprocity, gives a re-
lationship between (p

q
) and ( q

p
) for distinct odd primes p and q:

(
p

q
)(
q

p
) = (�1)(p�1)(q�1)=4

In other words, (p
q
) = ( q

p
) i� either p or q is congruent to 1 modulo 4. Thus,

we may show that 19 is not a quadratic residue modulo the prime 283 by
observing that

(
19

283
) = �(

283

19
) = �(

17

19
) = �(

19

17
) = �(

2

17
) = �(

62

17
) = �1:

The signi�cance of the reciprocity law extends well beyond the explicit
evaluation of the Legendre symbol. As another illustration of its use, the
following argument establishes the existence of in�nitely many primes of the
form 10k � 1: Given any integer n > 1, let N = 5(n!)2 � 1. Since N 6� 1
(mod 5), N must have some prime divisor p 6� 1 (mod 5). Since p exceeds
n, which was arbitrarily chosen, we need only show that p � �1 (mod 10).
First note that from Fermat's Theorem and the congruence 5(n!)2 � 1 (mod
p), it follows that 5 � 5(n!)2(p�1) � 5(n!)2(n!)2(p�2) � (n!)2(p�2) (mod p), and
hence (5

p
) = 1. Since 5 � 1 (mod 4), we also have (p

5
) = 1 by quadratic

reciprocity. Thus, p � �1 (mod 5), as these are the only quadratic residues
modulo 5. But p � 1 (mod 5) is precluded by assumption, hence p � �1
(mod 5). Finally, since p is odd, p � �1 (mod 10).

The �rst proof of quadratic reciprocity was given by Gauss in 1796 in
his Disquisitiones Arithmeticae [Gau66], which included the �rst system-
atic treatment of congruences. Gauss considered this result, which he called
the Theorema Aureum (golden theorem), to be one of his most important
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achievements. Regarding its proof, he later wrote: \It tortured me for a
whole year and eluded the most strenuous e�orts ...." [Dun55] Although he
eventually produced eight di�erent proofs, he apparently found none of them
to be completely satisfactory.

Gauss' e�orts to explicate the principles underlying quadratic reciprocity
and its generalizations initiated a variety of research areas, including the
theories of complex and algebraic numbers. Mathematicians have continued
to be fascinated by this formula for two centuries, during which time at least
one hundred distinct proofs of the reciprocity law have been published. These
e�orts have produced unforeseen bene�ts even in the present century, most
signi�cantly in the area of class �eld theory [ArT68].

In this paper, we describe a proof of the quadratic reciprocity law that
di�ers from all previously published proofs inasmuch as it was constructed
within a formal logic by a mechanical theorem prover. This logic and theorem
prover compose the veri�cation system of Boyer and Moore [BoM79,BoM88].
The logic includes a formalization of constructive arithmetic in which a num-
ber of elementary number-theoretic results have been formulated and veri�ed
by the theorem prover. In Section 2, we discuss the Boyer-Moore system and
describe the process by which proofs are mechanically generated.

Our proof of quadratic reciprocity is a formalization of an elementary
proof attributed to Eisenstein [Nag64], which is based on a remarkable trans-
formation of Euler's Criterion known as the Gauss Lemma. The mechanical
derivation of this lemma and other results on which it depends is described
elsewhere [BoM79,BoM84,Rus85,Rus90]. The proof of the Gauss Lemma is
outlined here in Section 3.

The appeal of Eisensteins's proof, which is perhaps the most illuminat-
ing of the elementary proofs of quadratic reciprocity, lies in a geometric
interpretation of an arithmetic relation. The most interesting aspect of our
mechanical version of this proof is the formalization of this geometric argu-
ment. In Sections 4 and 5, we describe the construction of the formal proof
in detail, including a complete account of our input to the theorem prover.

2 The Boyer-Moore System

The Boyer-Moore system is founded on a quanti�er-free �rst-order logic with
equality and a syntax resembling that of LISP. Thus, terms are constructed
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from parentheses and symbols denoting variables and functions. By conven-
tion, we shall use lower-case alphabetic characters, which do not appear in
symbols of the logic, to denote metavariables representing terms.

The basic theory includes axioms characterizing four primitive functions:

� TRUE and FALSE are functions of zero arguments. By convention, the
constants (TRUE) and (FALSE), abbreviated as T and F, respectively,
are the values returned by predicate functions.

� EQUAL is a binary function. The value of (EQUAL l r) is either T or F,
according to whether l = r.

� IF is a ternary function. The value of (IF t l r) is r if t = F, and l

otherwise.

In terms of these primitives, functions are de�ned corresponding to each
of the logical connectives, e.g.,

(IMPLIES P Q) = (IF P (IF Q T F) T):

This allows formulas to be encoded as terms, i.e., given any formula � we
may construct a term t such that

�$ (t 6= F)

is a theorem. For example, the formula X 6= Y! (F X Y) = (G X) is encoded
as the term

(IMPLIES (NOT (EQUAL X Y)) (EQUAL (F X Y) (G X))).

When a term t appears in a context where a formula is expected, it is un-
derstood to be an abbreviation for the formula t 6= F.

Variables occurring in axioms and theorems are understood to be uni-
versally quanti�ed. Thus, if a term t is a theorem and s is substitution of
terms for variables, then the result t=s of applying s to t may be inferred as
a theorem by the rule of instantiation.

The logic also includes

� a principle that generates sets of axioms specifying new types of induc-
tively constructed objects,
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� a principle for admitting axioms that de�ne new recursive functions,
and

� a principle of induction by which theorems pertaining to these objects
and functions may be inferred.

Our proof will employ two types of inductively constructed objects, which
are included in the basic theory:

� The type number formalizes Peano arithmetic through axioms involving
the recognizer NUMBERP, the constant (ZERO), the successor function
ADD1, and its inverse SUB1. Standard abbreviations are recognized:
(ZERO) = 0, (ADD1 (ZERO)) = 1, etc. Other arithmetic functions are
de�ned in terms of the primitives, including LEQ (the standard partial
order), LESSP (strict partial order), ZEROP (a predicate that fails i� its
argument is a non-zero number), PLUS, DIFFERENCE, TIMES, QUOTIENT,
REMAINDER (the basic binary integer operations), EXP (exponentiation),
FACT (the factorial function), EVEN, DIVIDES, and PRIME (predicates
related to divisibility).

� The type cons formalizes ordered pairs by means of the recognizer
LISTP, the constructor CONS, and the accessors CAR and CDR. According
to the LISP convention, lists are represented by means of these func-
tions and the special symbol NIL. Functions corresponding to other
familiar LISP functions, such as LENGTH, MEMBER, INTERSECTION, and
DELETE, are de�ned in terms of these primitives.

When a term is presented as a conjecture to the theorem prover, various
heuristics are applied in an attempt to derive the conjecture as a consequence
of previously established theorems. A conjecture may or may not be labelled
by the user as a rewrite rule, which determines whether, once proved, it
becomes available to the prover for use in proving subsequent conjectures. If
a rewrite rule of the form

(IMPLIES h (EQUAL l r))

is encountered during an attempt to rewrite some instance l0 of the term l

in a context in which the hypothesis h can be established, then l0 is replaced
by the corresponding instance r0 of r. The precise syntactic form of a rewrite
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rule is therefore important in determining its use. Since rewrite rules are
applied to a conjecture in the reverse of the order in which they were proved,
some control over the behavior of the prover is possible through the ordering
of lemmas. A failed proof attempt may often be salvaged by reordering or
expanding a sequence of lemmas.

There is also a mechanism that allows the user to o�er explicit advice
pertaining to the proof of an individual lemma. This feature provides for
three types of advice:

� Use a speci�ed lemma (which might otherwise be overlooked and which
may or may not have been designated as a rewrite rule), instantiated
according to a given variable substitution;

� Disable the use of a speci�ed lemma or function de�nition, in order to
avoid leading the prover in an undesirable direction;

� Induct according to a scheme (which the prover might otherwise fail to
select) suggested by the structure of a speci�ed function de�nition.

In Section 3, we present several theorems that were established during the
mechanical proof of the Gauss Lemma, omitting many intermediate lemmas
that were also required. Sections 4 and 5, however, contain the complete
ordered list of lemmas that were proved in the process of deriving the reci-
procity law from the Gauss Lemma, including all advice that was o�ered to
the prover. Note that the formulas labelled as conjectures are merely part of
the commentary.

3 Quadratic Residues and the Gauss Lemma

Two numbers a and b are congruent modulo p i� they leave the same re-
mainder upon division by p. Thus, we may represent congruences formally
by means of the built-in function REMAINDER. For example, Fermat's Theo-
rem [BoM84] is formulated as

Theorem 1 (Fermat's Theorem)

(IMPLIES (AND (PRIME P) (NOT (EQUAL (REMAINDER M P) 0)))

(EQUAL (REMAINDER (EXP M (SUB1 P)) P) 1))
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Wilson's Theorem [Rus85], which states that for prime p, (p�1)! � �1 (mod
p), is encoded as

Theorem 2 (Wilson's Theorem)
(IMPLIES (PRIME P)

(EQUAL (REMAINDER (FACT (SUB1 P)) P) (SUB1 P)))

Since a number a that is indivisible by an odd prime p is a quadratic
residue modulo p i� it is congruent to a square of some number between 0
and p, we de�ne the predicate RESIDUE as follows:

De�nition 1

(SQUARES N P)

=

(IF (ZEROP N)

(CONS 0 NIL)

(CONS (REMAINDER (TIMES N N) P) (SQUARES (SUB1 N) P)))

De�nition 2

(RESIDUE A P) = (MEMBER (REMAINDER A P) (SQUARES P P)))

Our ultimate goal may be stated as

Conjecture 1 (Law of Quadratic Reciprocity)
(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2))

(PRIME Q) (NOT (EQUAL Q 2))

(NOT (EQUAL P Q)))

(EQUAL (EQUAL (RESIDUE Q P) (RESIDUE P Q))

(EVEN (TIMES (QUOTIENT P 2) (QUOTIENT Q 2)))))

Euler's Criterion, as stated in Section 1, is an important ingredient in the
proof of this result. It may be proved informally as follows: If (a

p
) = 1, say

a � n2 (mod p), then

a(p�1)=2 � (n2)(p�1)=2 � np�1 � 1 (mod p)

by Fermat's Theorem. On the other hand, if (a
p
) = �1, then it also follows

from Fermat's Theorem that the set f1; 2; : : : ; p�1g may be partitioned into
pairs j; j 0 of distinct integers such that jj 0 � a (mod p). (Take j 0 � jp�2a
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(mod p).) Since there are (p�1)=2 such pairs, it follows that (p�1)! � a(p�1)=2

(mod p). By Wilson's Theorem, we have a(p�1)=2 � �1 (mod p).
The most challenging aspect of the mechanization of this proof is the

formalization of the process of partitioning a set into pairs, each of which
contributes the same factor to the set's product. This problem was handled
previously in our proof of Wilson's Theorem, and the solution is described
in [Rus85]. The rest of the proof of Euler's Criterion is fairly straightforward,
although over forty intermediate lemmas were required. We state the result
as

Theorem 3 (Euler's Criterion)
(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2)) (NOT (DIVIDES P A)))

(EQUAL (REMAINDER (EXP A (QUOTIENT P 2)) P)

(IF (RESIDUE A P) 1 (SUB1 P))))

The Gauss Lemma, which is derived from Euler's Criterion, states the
following: For k = 1; : : : ; p�1

2
, let rk be the remainder of ka upon division by

p, and let � be the number of such k for which rk >
p�1
2
. Then (a

p
) = (�1)�,

i.e., a is a quadratic residue modulo p i� � is even.
Our formulation of this lemma involves two de�nitions:

De�nition 3
(MU N A P)

=

(IF (ZEROP N)

0

(IF (LESSP (QUOTIENT P 2) (REMAINDER (TIMES A N) P))

(ADD1 (MU (SUB1 N) A P))

(MU (SUB1 N) A P)))

De�nition 4
(GAUSS A P) = (EVEN (MU (QUOTIENT P 2) A P))

In these terms, the lemma may be stated as the equivalence of the predicates
GAUSS and RESIDUE under suitable restrictions on their arguments. The
proof, which involves some �fty additional lemmas, is outlined below.

Consider the integers

sk =

(
rk if rk �

p�1
2

p� rk if rk >
p�1
2
;
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k = 1; : : : ; p�1
2
. For n � p�1

2
, the set fs1; : : : ; sng may be represented as a

list returned by the following function:

De�nition 5

(REFLECTIONS N A P)

=

(IF (ZEROP N)

NIL

(IF (LESSP (QUOTIENT P 2) (REMAINDER (TIMES A N) P))

(CONS (DIFFERENCE P (REMAINDER (TIMES A N) P))

(REFLECTIONS (SUB1 N) A P))

(CONS (REMAINDER (TIMES A N) P)

(REFLECTIONS (SUB1 N) A P))))

The congruence class of the product of the sk may be computed to be

p�1

2Y
k=1

sk � (�1)�a
p�1

2 (
p� 1

2
)! (mod p):

This congruence is represented by the instantiation of the following for-
mula given by the substitution fN (QUOTIENT P 2)g (where the function
TIMES-LIST is de�ned to return the product of the members of a list):

Theorem 4

(IMPLIES (NOT (ZEROP P))

(EQUAL (REMAINDER (TIMES-LIST (REFLECTIONS N A P)) P)

(IF (EVEN (MU N A P))

(REMAINDER (TIMES (EXP A N) (FACT N)) P)

(DIFFERENCE

P (REMAINDER

(TIMES (EXP A N) (FACT N)) P)))))

If 1 � i < j � p�1
2
, then ri, rj, p � ri, and p � rj are pairwise distinct,

hence si 6= sj. Since each sk belongs to the set f1; 2; : : : ; p�1
2
g, this set

must coincide with fs1; : : : ; s p�1

2

g. Our formalization of this result involves a

predicate PERM, which determines whether two lists have the same members,
and a function POSITIVES, which returns an initial segment of the sequence
of positive integers:
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Theorem 5

(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2)) (NOT (DIVIDES P A)))

(PERM (POSITIVES (QUOTIENT P 2))

(REFLECTIONS (QUOTIENT P 2) A P)))

It follows that
Q p�1

2

k=1 sk = (p�1
2
)!:

Theorem 6

(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2)) (NOT (DIVIDES P A)))

(EQUAL (TIMES-LIST (REFLECTIONS (QUOTIENT P 2) A P))

(FACT (QUOTIENT P 2))))

The Gauss Lemma now follows from Theorems 4 and 6:

Theorem 7 (Gauss Lemma)
(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2))

(NOT (DIVIDES P A)))

(EQUAL (GAUSS A P) (RESIDUE A P)))

4 A Reformulation of the Reciprocity Law

In this section, we shall use the Gauss Lemma to reduce the reciprocity law
to a simpler conjecture, which we then prove in the following section by
means of a formalization of Eisenstein's argument. In these two sections, we
present the input to the prover that produced these results in its entirety. The
initial state of the prover included the library of lemmas developed during
the derivation of the results listed in Section 3.

Along with the Gauss Lemma, we shall need an equation that is based
on the following simple observation: For any x and any p > 0, x = pbx

p
c+ x,

where bx
p
c and x denote the (integer) quotient and remainder, respectively,

of x divided by p. Replacing x with the product ka, where k = 1; : : : ; p�1
2
,

we have

a

p�1

2X
k=1

k = p

p�1

2X
k=1

b
ka

p
c+

p�1

2X
k=1

ka: (1)

Our encoding of Equation (1) depends on a function that computes the
sum of the members of a list, as well as two functions that construct the lists
that are summed on the right side of the equation:
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De�nition 6

(SUM L) = (IF (LISTP L) (PLUS (CAR L) (SUM (CDR L))) 0))

De�nition 7

(QUOTIENTS N A P)

=

(IF (ZEROP N)

NIL

(CONS (QUOTIENT (TIMES A N) P)

(QUOTIENTS (SUB1 N) A P)))

De�nition 8

(REMAINDERS N A P)

=

(IF (ZEROP N)

NIL

(CONS (REMAINDER (TIMES A N) P)

(REMAINDERS (SUB1 N) A P)))

Equation (1) is a special case of the following, which was directly veri�ed by
the prover by induction:

Theorem 8

(EQUAL (TIMES A (SUM (POSITIVES N)))

(PLUS (TIMES P (SUM (QUOTIENTS N A P)))

(SUM (REMAINDERS N A P))))

As a trivial consequence, we observe that the two sides of the equation have
the same parity:

Theorem 9

(EQUAL (EVEN (TIMES A (SUM (POSITIVES N))))

(EVEN (PLUS (TIMES P (SUM (QUOTIENTS N A P)))

(SUM (REMAINDERS N A P)))))

Advice: Use Theorem 8

Under the assumption that p is odd, � is even i�
P p�1

2

k=1 ka and
P p�1

2

k=1 sk have
the same parity. This observation corresponds to the following theorem:
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Theorem 10 (rewrite)

(IMPLIES (NOT (EVEN P))

(EQUAL (EVEN (MU N A P))

(IFF (EVEN (SUM (REMAINDERS N A P)))

(EVEN (SUM (REFLECTIONS N A P))))))

Advice: Disable EVEN

Note that in order for the proof of this theorem to succeed, the prover had
to be advised to disable the de�nition of EVEN. The reason for this is that
several rewrite rules pertaining to this function, which were required for the
proof, would no longer be applicable if the de�nition of this function were
expanded.

It follows from fs1; : : : ; s p�1

2

g = f1; : : : ; p�1
2
g that

Pp�1

2

k=1 sk =
P p�1

2

k=1 k. The

formal proof of this fact depends on Theorem 5 and two preliminary lemmas:

Theorem 11 (rewrite)

(IMPLIES (MEMBER X M)

(EQUAL (PLUS X (SUM (DELETE X M))) (SUM M)))

Theorem 12

(IMPLIES (PERM L M) (EQUAL (SUM L) (SUM M)))

Theorem 13 (rewrite)

(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2)) (NOT (DIVIDES P A)))

(EQUAL (SUM (REFLECTIONS (QUOTIENT P 2) A P))

(SUM (POSITIVES (QUOTIENT P 2)))))

Advice: Use Theorem 12 with
fM (REFLECTIONS (QUOTIENT P 2) A P),
L (POSITIVES (QUOTIENT P 2))g

Use Theorem 5
Disable PRIME

Next, we prove (as a consequence of Theorems 9 and 10) that a is a

quadratic residue modulo p i�
Pp�1

2

k=1b
ka
p
c is even:

Theorem 14
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(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2))

(NOT (EVEN A)) (NOT (DIVIDES P A)))

(EQUAL (GAUSS A P)

(EVEN (SUM (QUOTIENTS (QUOTIENT P 2) A P)))))

Advice: Use Theorem 9 with fN (QUOTIENT P 2)g
Disable PRIME, EVEN

It follows from Theorems 7 and 14 that (p
q
) = ( q

p
) i�
P p�1

2

k=1b
kq
p
c and

P q�1

2

k=1b
kp
q
c

have the same parity:

Theorem 15 (rewrite)
(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2))

(PRIME Q) (NOT (EQUAL Q 2))

(NOT (EQUAL P Q)))

(EQUAL (EQUAL (RESIDUE Q P) (RESIDUE P Q))

(EVEN (PLUS (SUM (QUOTIENTS (QUOTIENT P 2) Q P))

(SUM (QUOTIENTS (QUOTIENT Q 2)

P Q))))))

Advice: Use Theorem 7 with fA Qg
Use Theorem 7 with fA P; P Qg
Use Theorem 14 with fA Qg
Use Theorem 14 with fA P; P Qg
Disable PRIME1, EVEN, GAUSS, RESIDUE

In view of Theorem 15, our goal now is to prove the equation

p�1

2X
k=1

b
kq

p
c+

q�1

2X
k=1

b
kp

q
c =

p� 1

2

q � 1

2
(2)

where p and q are distinct odd primes. Thus,

Conjecture 2
(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2))

(PRIME Q) (NOT (EQUAL Q 2))

(NOT (EQUAL P Q)))

(EQUAL (PLUS (SUM (QUOTIENTS (QUOTIENT P 2) Q P))

(SUM (QUOTIENTS (QUOTIENT Q 2) P Q)))

(TIMES (QUOTIENT P 2) (QUOTIENT Q 2))))
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Figure 1: Eisenstein's Proof

5 A Formalization of Eisenstein's Proof

Eisenstein's proof of Equation (2) refers to Figure 1, which depicts the case
p = 17, q = 11. The lattice in the �gure consists of the points (iq; jp) with
1 � i � p�1

2
and 1 � j � q�1

2
. Clearly, the number of lattice points is given

by the right side of Equation (2). Since iq = jp requires that i and j be
divisible by p and q, respectively, none of these points can lie on the line
y = x.

The equation follows from the observation that the sums on the left side
represent the numbers of lattice points that lie below and above the line
y = x, respectively. In order to see this, consider, for example, a typical
term bkq

p
c of the �rst sum. This is the number of positive multiples of p

that do not exceed kq, which is also the number of lattice points in the
boxed column of Figure 1. The proof is completed by summing over all p�1

2

columns and repeating the argument for the q�1
2

rows of points that lie above
the line y = x.
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The essence of the geometric component of this argument may be for-
mulated as follows: Given a number x and a sequence L = (a1; : : : ; a`) of
numbers, let w(x; L) denote the number of i � ` such that ai < x. If
K = (b1; : : : ; bk) is another sequence of numbers with no entries in common
with L, then

kX
i=1

w(bi; L) +
X̀
j=1

w(aj; K) = k`: (3)

Our formalization of Equation (3) is based on two de�nitions:

De�nition 9

(W X L)

=

(IF (LISTP L)

(IF (LESSP (CAR L) X)

(ADD1 (W X (CDR L)))

(W X (CDR L)))

0)

De�nition 10

(WINS K L)

=

(IF (LISTP K)

(PLUS (W (CAR K) L) (WINS (CDR K) L))

0)

Thus, the value of (WINS K L) is the total number of pairs of which the �rst
and second components are members of K and L, respectively, and the �rst
exceeds the second. K and L are assumed to be lists of numbers, i.e., they
satisfy

De�nition 11

(ALL-NUMBERP L)

=

(IF (LISTP L)

(AND (NUMBERP (CAR L)) (ALL-NUMBERP (CDR L)))

T)
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The proof of Equation (3) will also involve two companion functions to W

and WINS:

De�nition 12

(L X L)

=

(IF (LISTP L)

(IF (LESSP X (CAR L))

(ADD1 (L X (CDR L)))

(L X (CDR L)))

0)

De�nition 13

(LOSSES K L)

=

(IF (LISTP K)

(PLUS (L (CAR K) L) (LOSSES (CDR K) L))

0)

The relationship between W and L is given by

Theorem 16 (rewrite)
(IMPLIES (AND (NUMBERP X) (ALL-NUMBERP L) (NOT (MEMBER X L)))

(EQUAL (PLUS (L X L) (W X L))

(LENGTH L)))

Similarly, the next two theorems establish the relationship between WINS and
LOSSES:

Theorem 17 (rewrite)

(IMPLIES (AND (NOT (LISTP (INTERSECT K L)))

(ALL-NUMBERP K) (ALL-NUMBERP L))

(EQUAL (PLUS (WINS K L) (LOSSES K L))

(TIMES (LENGTH K) (LENGTH L))))

Theorem 18

(EQUAL (LOSSES K L) (WINS L K))
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Equation (3) is represented by the following, which is derived from Theo-
rems 17 and 18. Note that one of these theorems was supplied as a hint and
the other was discovered automatically as a rewrite rule:

Theorem 19 (rewrite)
(IMPLIES (AND (NOT (LISTP (INTERSECT K L)))

(ALL-NUMBERP K) (ALL-NUMBERP L))

(EQUAL (PLUS (WINS K L) (WINS L K))

(TIMES (LENGTH K) (LENGTH L))))

Advice: Use Theorem 18

The lists to which Theorem 19 will be applied are lists of multiples of the
primes p and q, which are constructed by the following function:

De�nition 14

(MULTS N P)

=

(IF (ZEROP N) NIL (CONS (TIMES N P) (MULTS (SUB1 N) P)))

The next three theorems will ensure that the hypotheses of Theorem 19 are
satis�ed:

Theorem 20 (rewrite)
(IMPLIES (NOT (ZEROP P)) (ALL-NUMBERP (MULTS N P)))

Theorem 21 (rewrite)
(IMPLIES (AND (PRIME P) (PRIME Q) (NOT (EQUAL P Q))

(LESSP I Q) (LESSP J P))

(NOT (MEMBER (TIMES I P) (MULTS J Q))))

Advice: Induct according to (MULTS J Q)

Theorem 22 (rewrite)
(IMPLIES (AND (PRIME P) (PRIME Q)

(NOT (EQUAL P Q)) (LESSP I Q))

(NOT (LISTP (INTERSECT (MULTS I P)

(MULTS (QUOTIENT P 2) Q)))))

Advice: Disable PRIME1, QUOTIENT
Induct according to (MULTS I P)
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The length of a list returned by MULTS is easily seen to be its �rst argu-
ment:

Theorem 23 (rewrite)
(IMPLIES (NUMBERP N) (EQUAL (LENGTH (MULTS N P)) N))

In light of Theorems 19, 20, 22, and 23, Conjecture 2 is reduced to

Conjecture 3

(IMPLIES (AND (PRIME P) (PRIME Q) (NOT (EQUAL P Q)))

(EQUAL (SUM (QUOTIENTS (QUOTIENT P 2) Q P))

(WINS (MULTS (QUOTIENT P 2) Q)

(MULTS (QUOTIENT Q 2) P))))

In order to prove Conjecture 3, we must show that for j = 1; : : : ; p�1
2
,

b
jq

p
c = w(jq;M); (4)

where M is the sequence (p; 2p; : : : ; q�1
2
p) of multiples of p. We shall derive

Equation (4) as a conjunction of two inequalities. First, in order to prove

w(jq;M) � b
jq

p
c; (5)

�ve theorems are required:

Theorem 24

(IMPLIES (NOT (ZEROP P))

(LESSP A (TIMES (ADD1 (QUOTIENT A P)) P)))

Theorem 25 (rewrite)
(NOT (LESSP N (W A (MULTS N P))))

Theorem 26 (rewrite)
(IMPLIES (AND (LESSP A (TIMES M P)) (LEQ M N))

(LESSP A (TIMES N P)))

Theorem 27

(IMPLIES (LESSP A (TIMES M P))

(LESSP (W A (MULTS N P)) M))
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Theorem 28

(IMPLIES (NOT (ZEROP P))

(LEQ (W A (MULTS N P)) (QUOTIENT A P)))

Advice: Use Theorem 24
Use Theorem 27 with fM (ADD1 (QUOTIENT A P))g

Inequality (5) now follows from Theorem 28 by means of the substitution

fA (TIMES J Q); N (QUOTIENT Q 2)g: (6)

Next, we prove the remaining inequality,

b
jq

p
c � w(jq;M): (7)

Theorem 29

(IMPLIES (LEQ M N)

(LEQ (W A (MULTS M P)) (W A (MULTS N P))))

Advice: Induct according to (MULTS N P)

Theorem 30

(IMPLIES (LESSP (TIMES N P) A)

(LEQ N (W A (MULTS N P))))

Advice: Induct according to (MULTS N P)

Theorem 31

(IMPLIES (AND (NOT (ZEROP P))

(NOT (DIVIDES P A))

(LEQ (QUOTIENT A P) N))

(LEQ (QUOTIENT A P) (W A (MULTS N P))))

Advice: Use Theorem 29 with fM (QUOTIENT A P)g
Use Theorem 30 with fN (QUOTIENT A P)g
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Note that Inequality (7) is the instantiation of the conclusion of Theorem 31
under the substitution (6). In order to establish the corresponding instan-
tiation of the third hypothesis of this theorem, three additional lemmas are
required. The proof of the �rst of these lemmas involves an induction scheme
that must be explicitly supplied to the prover. A new function is de�ned
solely for this purpose:

De�nition 15

(LQQ-INDUCT A B C D)

=

(IF (ZEROP B) T

(IF (ZEROP D) T

(IF (LESSP A D) T

(IF (LESSP C B) T

(LQQ-INDUCT (DIFFERENCE A D) B (DIFFERENCE C B) D)))))

Theorem 32

(IMPLIES (AND (NOT (ZEROP B)) (LEQ (TIMES A B) (TIMES C D)))

(LEQ (QUOTIENT A D) (QUOTIENT C B)))

Advice: Induct according to (LQQ-INDUCT A B C D)

Theorem 33

(IMPLIES (LEQ J A) (LEQ (TIMES J Q) (TIMES A Q)))

Theorem 34

(IMPLIES (LEQ J (QUOTIENT P 2))

(LEQ (QUOTIENT (TIMES J Q) P) (QUOTIENT Q 2)))

Advice: Use Theorem 32
with fA (TIMES J Q); B 2; C Q; D Pg

Use Theorem 33 with fA (QUOTIENT P 2)g

Inequality (7) now follows from Theorems 31 and 34. Thus, Equation (4) is
derived from Theorems 28, 31, and 34:

Theorem 35 (rewrite)
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(IMPLIES (AND (PRIME P)

(NOT (DIVIDES P Q))

(NOT (ZEROP J))

(LEQ J (QUOTIENT P 2)))

(EQUAL (W (TIMES J Q) (MULTS (QUOTIENT Q 2) P))

(QUOTIENT (TIMES J Q) P)))

Advice: Use Theorem 31 with fA (TIMES J Q); N (QUOTIENT Q 2)g
Use Theorem 28 with fA (TIMES J Q); N (QUOTIENT Q 2)g
Use Theorem 34

Using Theorem 35 as a rewrite rule, the following is easily proved by induc-
tion:

Theorem 36 (rewrite)

(IMPLIES (AND (PRIME P) (NOT (DIVIDES P Q))

(LEQ J (QUOTIENT P 2)))

(EQUAL (SUM (QUOTIENTS J Q P))

(WINS (MULTS J Q) (MULTS (QUOTIENT Q 2) P))))

Advice: Induct according to (MULTS J Q)

Substituting (QUOTIENT P 2) for J in Theorem 36 yields Conjecture 3, and
the reciprocity law is essentially proved. Applying Theorems 15, 19, 20, 21,
22, and 36 as rewrite rules, we have

Theorem 37 (Law of Quadratic Reciprocity)

(IMPLIES (AND (PRIME P) (NOT (EQUAL P 2))

(PRIME Q) (NOT (EQUAL Q 2))

(NOT (EQUAL P Q)))

(EQUAL (EQUAL (RESIDUE Q P) (RESIDUE P Q))

(EVEN (TIMES (QUOTIENT P 2) (QUOTIENT Q 2)))))

Advice: Disable RESIDUE, INTERSECT
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