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AMD K5 Floating Point Square Root Microcode

David M. Russino�

September 29, 1997

Abstract

We present a rigorous mathematical proof of the correctness of the 
oating

point square root instruction of the AMD K5 microprocessor. The instruction

is represented as a program in a formal language that was designed for this

purpose, based on the K5 microcode and the architecture of its FPU. We

prove a statement of its correctness that corresponds directly with the IEEE

Standard. We also derive an equivalent formulation, expressed in terms of

rational arithmetic, which has been encoded as a formula in the ACL2 logic and

mechanically veri�ed with the ACL2 prover. Finally, we describe a microcode

modi�cation that was implemented as a result of this analysis in order to ensure

the correctness of the instruction.

1 Introduction

The limitations of traditional hardware validation methodology are widely recog-
nized. Experience has shown that 
oating point instructions, in particular, are so
complicated that it is practically impossible to ensure the correctness of even the ba-
sic arithmetic operations through simulation. Consequently, considerable industrial
interest has developed in the application of formal methods to this area.

One obstacle to formal hardware veri�cation is the di�culty of establishing a
precise speci�cation for a targeted operation. In many cases, the correctness of an
implementation is determined by its conformance with an industry standard \golden
model". In the absence of an accurate behavioral description of such a model, there
is no viable alternative to testing.

With regard to 
oating point instructions, this observation may apply to tran-
scendal functions, but not to the more primitive operations. The IEEE Standard
for Binary Floating Point Arithmetic [6] speci�es unambiguously for a variety of
functions, including the basic arithmetic operations as well as the square root, that
each operation
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... shall be performed as if it �rst produced an intermediate result correct
to in�nite precision and with unbounded range, and then rounded that
result according to one of the modes ....

In order to express this requirement in a mathematical notation, let rnd(�;mode; n)
denote the result of rounding a real number �, according to a given mode, to n bits
of precision, and let \�" denote binary addition, subtraction, multiplication, or
division (of the \correct to in�nite precision" variety). The prescribed value to be
returned by the corresponding 
oating point operation, for inputs x and y, is then

rnd(x � y;mode; n): (1)

Although the simplicity of this speci�cation strongly suggests its susceptibil-
ity to formal veri�cation, this possibility remains largely unexplored. Automatic
�nite-state techniques, which are commonly used to verify low-level properties of
arithmetic circuits [2, 3], are apparently inadequate for the comprehensive veri�-
cation of IEEE compliance. General-purpose theorem provers have been used to
check correctness proofs of various numerical algorithms, but in most instances, the
speci�cation of the algorithm either ignores rounding entirely [8, 12] or is otherwise
too abstract to o�er any assurance regarding its hardware implementation [4, 9].

One exception is the formal proof of correctness of a microcode-level speci�cation
of the 
oating point division algorithm of the AMD K5 microprocessor by Moore
et al. [10], using the ACL2 prover [1]. In this paper, we shall present a similar
analysis of the K5 square root algorithm, which was developed at AMD by Tom
Lynch, Mike Schulte, and Ashraf Ahmed. In particular, we shall show that for a
given nonnegative 
oating point number P , a rounding mode mode, and a degree
of precision n, the value sqrt computed by this algorithm satis�es

sqrt = rnd(
p
P;mode; n) (2)

in compliance with the IEEE speci�cation.
While the correctness of a hardware design can never be guaranteed by the prop-

erties of a mathematical model, a reasonable degree of reliability can be achieved
by minimizing the \semantic gap" between an abstract algorithm and its hardware
implementation. With this goal in mind, we have designed a simple formal language
based on the K5 microcode and the architecture of its 
oating point unit. The K5
square root instruction, which we shall represent as a program in this language, is
actually implementated as a sequence of microcode instructions that rely on exist-
ing hardware for multiplication, addition, and subtraction. Thus, the execution of
a program in our language consists mainly of evaluation of expressions of the above
form (1), in which \�" may represent any of these three operations. Furthermore,
our semantics require that the value of every such expression is representable in a
format that is accommodated by the K5 
oating point unit. Consequently, once the
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abstract program has been veri�ed, the correctness of the implementation depends
mainly on the correctness of the basic arithmetic operations, which may reasonably
be assumed for this purpose.

This paper is a self-contained mathematical exposition. We begin in Section 2 by
establishing a foundation for 
oating point rounding. We �rst construct the set of n-
bit 
oating point numbers as a subset of the rationals. Then we de�ne the rounding
function rnd(�;mode; n), for each of seven modes, and derive its relevant properties.
The results of this section should be reusable in a variety of applications, and are
currently being applied to the analysis of the 
oating point unit of the AMD K7
microprocessor [11]. Presumably, these results are generally known to the 
oating
point design community, but we have not found them collected elsewhere in any
rigorous development. Section 2 might be used merely as a reference by the reader
who is familiar with the general theory.

In Section 3, we de�ne our abstract language, present the square root program,
and formulate a statement of its correctness. The rest of the paper is a fairly
detailed proof of this statement. This proof is somewhat complicated, but not
deep, and could certainly be checked by any competent mathematician. However,
the traditional social process by which mathematical results are normally rati�ed is
inadequate in cases such as this, because of the urgent demand for the result and
the high cost of error. Therefore, following [10], we have employed the ACL2 system
to verify our results mechanically.

ACL2 is based on a logical language [7] that formalizes an applicative subset
of Common Lisp [13] and is supported by a mechanical theorem prover [1]. Since
Common Lisp, and consequently ACL2, include the rational numbers as a data type
but not the reals, we are somewhat limited in the formalization of our theorem. For
example, the Newton-Raphson formula, which is central to both the square root
and division algorithms, is based on calculus. In order to justify our application of
this formula, however, we are required to derive the relevant convergence theorem
without appealing to calculus, but rather as a theorem of rational arithmetic.

A more critical problem, which we do not share with the authors of [10], is
that because of its reference to the square root, our main theorem itself is not a
statement about the rationals, and consequently is not expressible in the ACL2
logic. The theorem of rational arithmetic that seems best to approximate (2) is the
following: For any nonnegative rational numbers ` and h, if `2 � P � h2, then

rnd(`;mode; n) � sqrt � rnd(h;mode; n): (3)

More precise versions of (2) and (3) appear as Theorems 1 and 2, respectively, of
Section 3. As we shall see, the equivalence of these theorems can be proved easily
enough, although without the support of ACL2. Thus, our formalization e�ort is
directed at Theorem 2, while the consequent derivation of Theorem 1 depends on an
informal argument. Along with Theorem 2, every de�nition and lemma presented
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in this paper (with the exception noted in Section 3) has been formally encoded
in the ACL2 logic, and every proof has been mechanically checked with the ACL2
prover.

Of course, there is a cost for the increased con�dence provided by mechanical
veri�cation. In this case, the restriction to rational arithmetic imposed by the ACL2
logic resulted in extra details in a proof that was already quite complicated. Two
months of the author's time was spent developing the handwritten proof, including
extracting the algorithm from microcode and establishing the necessary general
theory. At least one week of this was devoted to eliminating all references to the
square root function from a preliminary version of the proof.

After the complete proof was written, a full additional month was spent checking
it mechanically. This is an empirical process, by no means automatic. In this
project, some 1400 lemmas, along with abundant hints, were ultimately used to
guide the prover successfully to the �nal result. Thus, each lemma that appears in
this paper corresponds (on average) to approximately �fty ACL2 lemmas.

The use of ACL2 did not expose any serious errors in the proof, which had
perhaps been written especially carefully in anticipation of the mechanical checking
process. Indeed, the most signi�cant di�erence between the handwritten proof that
was subjected to ACL2 and the �nal version presented here is in Lemma 2.15: in
its original statement, x was (correctly) assumed only to be rational; the hypothesis
that x is k-exact was added only to facilitate the formal proof.

Arguing for the practical value of formal methods in computer design is some-
times di�cult. Advocates of formal veri�cation are often required to defend the
awkward position that although a design was correct from the beginning, any con-
�dence in its correctness prior to its veri�cation was unfounded. In the present
case, however, we have been more fortunate: our formal analysis of the square root
algorithm revealed an apparent 
aw, at least in the informal design rationale that
had been provided by the implementors, which was ultimately corrected through a
minor modi�cation of the K5 microcode. After presenting the �nal algorithm and
our proof of its correctness, we shall describe the nature of this modi�cation.

2 Floating Point Arithmetic

In this section, we discuss the set of n-bit normal 
oating point numbers, and the
function rnd, which rounds an arbitrary real number to an element of this set
according to a speci�ed mode. For each mode, the rounded result rnd(x;mode; n)
will alternatively be denoted as mode(x; n). Thus, a rounding mode is a mapping
from the reals to the 
oating point numbers. We shall de�ne seven modes, all of
which are implemented in the K5, including the four that are addressed by the IEEE
standard.
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2.1 Preliminaries

The symbols R, Q, Z, and Z+ will denote the sets of all real numbers, rational
numbers, integers, and positive integers, respectively.

Our de�nitions of the rounding modes will be based on the following:

De�nition 2.1 Let x 2 R.

(a) The 
oor of x, denoted bxc, is the unique n 2 Z satisfying n � x < n + 1.
(b) The ceiling of x, denoted dxe, is the unique n 2 Z satisfying n � x > n� 1.

De�nition 2.2 If n 2 Z and d 2 Z+, then quot(n; d) = bn=dc and rem(n; d) =
n� dbn=dc.

We shall require the following properties of the 
oor and ceiling:

Lemma 2.1 Let x; y 2 R and n 2 Z.
(a) If x � y, then bxc � byc and dxe � dye.
(b) dne = bnc = n.
(c) If x =2 Z, then dxe = bxc + 1.
(d) bx + nc = bxc + n and dx+ ne = dxe+ n.
(e) If n > 0, then bbxc=nc = bx=nc and ddxe=ne = dx=ne.

Proof: We shall derive the results stated for the 
oor; the proofs of the corre-
sponding ceiling properties are similar:

(a) x � y ) bxc � y ) bxc < byc+ 1) bxc � byc:
(b) n � n < n+ 1) bnc = n.
(c) bxc < x < bxc+ 1) bxc + 1 > x > (bxc+ 1)� 1) dxe = bxc + 1.
(d) bxc � x < bxc+ 1) bxc + n � x+ n < bxc+ n + 1.
(e) bxc � x ) bxc=n � x=n ) bbxc=nc � bx=nc, and x=n � bx=nc ) x �

nbx=nc ) bxc � nbx=nc ) bxc=n � bx=nc ) bbxc=nc � bx=nc. 2
The following estimates will be required in later sections:

Lemma 2.2 Let x; y; � 2 R, x � 2y � 0, and � � 0.

(a) x� y(1 + �) � (x� y)(1� �); (b) x� y(1� �) � (x� y)(1 + �).

Proof: Since y � x� y,

(a) x� y(1 + �) = x� y � y� � x� y � (x� y)� = (x� y)(1� �);
(b) x� y(1� �) = x� y + y� � x� y + (x� y)� = (x� y)(1 + �). 2

Lemma 2.3 Let x; y; � 2 R. If x� � 0, then x+ y(1� �) � (x+ y)(1� �).

Proof: x+ y(1� �) � x+ y(1� �)� x� = x + y � x� � y� = (x+ y)(1� �).2
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Lemma 2.4 Let m;n 2 Z. If m � n, then (1� 2m)(1� 2n) > 1� 2m+1.

Proof: (1 � 2m)(1 � 2n) = 1 � 2m(1 + 2n�m) + 2m+n > 1 � 2m(1 + 2n�m) �
1� 2m+1.2

Lemma 2.5 Let m;n 2 Z. If n � m � 0, then (1 + 2m)(1 + 2n) < 1 + 2m+2.

Proof: (1+2m)(1+2n) = 1+2m(1+2n�m+2n) � 1+2m(1+1+1) < 1+2m+2.2

Lemma 2.6 Let n 2 Z. If n � �1, then 1
1�2n � 1 + 2n+1.

Proof: (1� 2n)(1+2n+1) = 1+2n+1� 2n� 22n+1 = 1+2n� 22n+1 = 1+2n(1�
2n+1) � 1 + 2n(1� 1) = 1.2

Lemma 2.7 Let a; b; P 2 R and n 2 Z. If (1� 2n)P � a2 � P and b2 � 22n�2P ,
then (a� b)2 � (1� 2n+1)P .

Proof: Since a2b2 � 22n�2P 2, ab � 2n�1P , and hence

(a� b)2 = a2 � 2ab+ b2 � a2 � 2ab � (1� 2n)P � 2nP = (1� 2n+1)P:2

2.2 Floating Point Numbers

For the purpose of 
oating point representation, a real number is factored into three
components: sign, exponent, and signi�cand.

De�nition 2.3 Let x 2 R. If x 6= 0, then

(a) sgn(x) = x=jxj;
(b) expo(x) is the unique integer that satis�es 2expo(x) � jxj < 2expo(x)+1;
(c) sig(x) = jxj2�expo(x).

If x = 0, then sgn(x) = expo(x) = sig(x) = 0.

The next three lemmas are immediate consequences of De�nition 2.3:

Lemma 2.8 Let x 2 R, x 6= 0.

(a) x = sgn(x)sig(x)2expo(x).
(b) sgn(x) 2 f1;�1g, 1 � sig(x) < 2, and expo(x) 2 Z.
(c) If x = sm2e, where s 2 f1;�1g, 1 � m < 2, and e 2 Z, then s = sgn(x),

m = sig(x), and e = expo(x).

Lemma 2.9 If x; y 2 R and jxj � jyj, then expo(x) � expo(y).

Lemma 2.10 If x 2 R, x 6= 0, n 2 Z, and y = 2nx, then

(a) sgn(y) = sgn(x); (b) sig(y) = sig(x); (c) expo(y) = n+ expo(x).
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We have the following estimate for the exponent of a product:

Lemma 2.11 Let x; y 2 R. If xy 6= 0, then

expo(x) + expo(y) � expo(xy) � expo(x) + expo(y) + 1:

Proof: Let m = expo(x), n = expo(y), a = sig(x), and b = sig(y). Then
xy = sgn(xy)ab2m+n and 1 � ab < 4. If 1 � ab < 2, then sig(xy) = ab and
expo(xy) = m+n; if 2 � ab < 4, then sig(xy) = ab=2 and expo(xy) = m+n+1. 2

The following predicate characterizes numbers with signi�cands that are repre-
sentable with n bits, commonly known as n-bit normal 
oating point numbers:

De�nition 2.4 Let x 2 R and n 2 Z+. Then x is n-exact i� sig(x)2n�1 2 Z.

The de�nition may be restated as follows:

Lemma 2.12 Let x 2 R and n 2 Z+. Then x is n-exact , x2n�1�expo(x) 2 Z.

Lemma 2.13 Let x 2 R, m 2 Z+, and n 2 Z. If x is m-exact, then so is 2nx.

Proof: This follows from Lemma 2.10. 2

Lemma 2.14 Let x; y 2 R and m;n 2 Z+. If x is m-exact and y is n-exact, then
xy is (m+ n)-exact.

Proof: If x2m�1�expo(x) and y2n�1�expo(y) are integers, then by Lemma 2.11, so
is

x2m�1�expo(x)y2n�1�expo(y)2expo(x)+expo(y)+1�expo(xy) = xy2m+n�1�expo(xy):2

Lemma 2.15 Let k; n 2 Z+ and x 2 R. If x is k-exact and x2 is 2n-exact, then x
is n-exact.

Proof: Let m be the least element of Z+ such that x is m-exact, and let a =
x2m�1�expo(x). Then a is an odd integer and x = a2expo(x)+1�m. Since

x222n�1�expo(x
2) = a222expo(x)+2�2m22n�1�expo(x

2)

= a222(n�m)+1�(expo(x2)�2expo(x)) 2 Z

and a2 is odd, we have 2(n�m)+ 1 � expo(x2)� 2expo(x) � 0, implying m � n.2

Lemma 2.16 Let x; y 2 R, n 2 Z+, k 2 Z, and k < n. If x and y are both n-exact
and expo(x� y) + k � min(expo(x); expo(y)), then x� y is (n� k)-exact.
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Proof: Since x is n-exact and expo(x�y)+k � expo(x), x2n�1�(expo(x�y)+k) 2 Z.
Similarly, y2n�1�(expo(x�y)+k) 2 Z. Thus,

(x� y)2(n�k)�1�expo(x�y) = x2n�1�(expo(x�y)+k) � y2n�1�(expo(x�y)+k) 2 Z:2
Lemma 2.16 is often applied with k = 0, in the following weaker form:

Corollary 2.17 Let x; y 2 R and n 2 Z+. If x and y are both n-exact and jx�yj �
min(jxj; jyj), then x� y is n-exact.

The next lemma characterizes the successor of a 
oating point number:

Lemma 2.18 Let x+ = x + 2expo(x)+1�n, where x 2 R, x > 0, n 2 Z+, and x is
n-exact.

(a) If y 2 R, y > x, and y is n-exact, then y � x+; (b) x+ is n-exact.

Proof:
(a) We have x2n�1�expo(x) 2 Z, and since expo(y) � expo(x), y2n�1�expo(x) 2 Z

as well. Thus, (y � x)2n�1�expo(x) � 1, hence y � x � 2expo(x)+1�n.
(b) Since 2expo(x)+1 > x and 2expo(x)+1 is n-exact, 2expo(x)+1 � x+ by (a). We

may assume x+ < 2expo(x)+1, hence expo(x+) = expo(x). But then

x+2n�1�expo(x
+) = x2n�1�expo(x) + 1 2 Z:2

Corollary 2.19 Let x; y 2 R and n 2 Z+. If x and y are n-exact and and x 6= y,
then

expo(x� y) � min(expo(x); expo(y))+ 1� n

Proof: Since the case xy < 0 is trivial, we shall assume that xy > 0 and, without
loss of generality, that y > x > 0. But then by Lemma 2.18,

expo(y � x) � expo(2expo(x)+1�n) = expo(x) + 1� n:2

A normal 
oating point number with an n-bit signi�cand and anm-bit exponent
is recognized by the following predicate:

De�nition 2.5 Let x 2 R, n 2 Z+, and m 2 Z+. Then x is an (n;m)-
oating
point number i�

(a) x is n-exact, and (b) �2m�1 + 1 � expo(x) � 2m�1.

The internal operations of the AMD5K86 
oating point unit are limited to
operands with 64-bit signi�cands and 17-bit exponents i.e., (64; 17)-
oating point
numbers. (This will be re
ected in the semantics of the programming language de-
scribed in the next section.) However, in accordance with the IEEE standard, the
characterization of the input to our square root program is somewhat more compli-
cated, in order to allow for denormal numbers, as de�ned in [6]. Following [10], we
provide for denormal inputs with the following de�nition:
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De�nition 2.6 Let x 2 R, n 2 Z+, and m 2 Z+. Then x is a generalized

(n;m)-
oating point number i�

(a) x is n-exact, and (b) �2m�1 + 2� n � expo(x) � 2m�1.

As observed in [10], the generalized (n;m)-
oating point numbers for given n
and m include all of the IEEE normal and denormal numbers in the corresponding
format. The square root program must accommodate inputs in the double extended
format[5], which corresponds to n = 64 and m = 15. Thus, the hypothesis of our
correctness theorem, Theorem 1, speci�es that the program input is a generalized
(64; 15)-
oating point number.

2.3 Truncation

The most basic form of rounding is truncation, which rounds any real number toward
0.

De�nition 2.7 If x 2 R and n 2 Z+, then

rnd(x; trunc; n) = trunc(x; n) = sgn(x)b2n�1sig(x)c2expo(x)�n+1:

Lemma 2.20 If x 2 R and n 2 Z+, then sgn(trunc(x; n)) = sgn(x).

Proof: This follows from Lemma 2.8. 2

Lemma 2.21 If x 2 R, x 6= 0, and n 2 Z+, then

jxj � jtrunc(x; n)j > jxj � 2expo(x)�n+1 � jxj(1� 2�n+1):

Proof: jtrunc(x; n)j � 2n�1sig(x)2expo(x)�n+1 = sig(x)2expo(x) = jxj
and

jtrunc(x; n)j > (2n�1sig(x)� 1)2expo(x)�n+1 = jxj � 2expo(x)�n+1:

The last inequality follows from De�nition 2.3. 2

Corollary 2.22 If x 2 R and n 2 Z+, then expo(trunc(x; n)) = expo(x).

Proof: Since jtrunc(x; n)j � jxj, expo(trunc(x; n)) � expo(x). But since

jtrunc(x; n)j � b2n�1c2expo(x)�n+1 = 2expo(x);

expo(trunc(x; n)) � expo(x). 2

Lemma 2.23 Let x 2 R and n 2 Z+.

(a) x is n-exact , x = trunc(x; n);
(b) trunc(x; n) is n-exact;
(c) If a 2 R, a is n-exact, and a � jxj, then a � jtrunc(x; n)j.
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Proof:
(a) Both conditions are clearly equivalent to b2n�1sig(x)c = 2n�1sig(x).
(b) Since expo(trunc(x; n)) = expo(x), it su�ces to observe that

trunc(x; n)2n�1�expo(x) = sgn(x)b2n�1sig(x)c 2 Z:

(c) Suppose a > jtrunc(x; nj. Then by Lemma 2.18,

jtrunc(x; n)j � a� 2expo(trunc(x;n))�n+1 = a� 2expo(x)�n+1 � jxj � 2expo(x)�n+1:

But

jtrunc(x; n)j > (2n�1sig(x)� 1)2expo(x)�n+1 = jxj � 2expo(x)�n+1:2

Lemma 2.24 If x; y 2 R, 0 < x � y, n 2 Z+, then trunc(x; n) � trunc(y; n).

Proof: By Lemma 2.21, trunc(x; n) � x � y. Since trunc(x; n) is n-exact,
Lemma 2.23 implies trunc(x; n) � trunc(y; n). 2

Lemma 2.25 Let x 2 R and n 2 Z+. If x is not n-exact, then

expo(x� trunc(x; n)) � expo(x)� n:

Proof: By Lemma 2.23, x � trunc(x; n) 6= 0, so that 2expo(x�trunc(x;n)) � jx �
trunc(x; n)j. But by Lemma 2.21, jx� trunc(x; n)j < 2expo(x)�n+1. 2

Lemma 2.26 If x 2 R, m;n 2 Z+, and m � n, then

trunc(trunc(x; n); m) = trunc(x;m):

Proof: We assume x � 0; the case x < 0 follows easily.

trunc(trunc(x; n); m) = b2m�1�expo(x)(b2n�1�expo(x)xc2expo(x)+1�n)c2expo(x)+1�m
= bb2n�1�expo(x)xc=2n�mc2expo(x)+1�m
= b2n�1�expo(x)x=2n�mc2expo(x)+1�m
= b2m�1�expo(x)xc2expo(x)+1�m
= trunc(x;m):2

Lemma 2.27 Let x; y 2 R, x > 0, y > 0, k 2 Z+, and n = k+ expo(x)� expo(y).
If n > 0 and x is n-exact, then

x+ trunc(y; k) = trunc(x+ y; k+ expo(x+ y)� expo(y)):

10



Proof: Since x is n-exact, x2k�1�expo(y) = x2n�1�expo(x) 2 Z. Let k0 = k +
expo(x+ y)� expo(y). Then

x+ trunc(y; k) = x+ b2k�1�expo(y)yc2expo(y)+1�k
= (x2k�1�expo(y) + b2k�1�expo(y)yc)2expo(y)+1�k
= b2k�1�expo(y)(x+ y)c2expo(y)+1�k
= b2k0

�1�expo(x+y)(x+ y)c2expo(x+y)+1�k0

= trunc(x+ y; k0):2

Corollary 2.28 Let y 2 R, e 2 Z, and m; k 2 Z+. If m � k + 1 and 0 < y < 2e,
then

trunc(2e + trunc(y; k); m) = trunc(2e + y;m):

Proof: Since y < 2e, expo(y) < e; since 2e < 2e + y < 2e+1, expo(2e + y) = e.
Thus,

2e + trunc(y; k) = trunc(2e + y; k + e� expo(y))

by Lemma 2.27. Now by Lemma 2.26, since m � k + 1 � k + e� expo(y),

trunc(2e + trunc(y; k); m) = trunc(trunc(2e + y; k+ e� expo(y)); m)

= trunc(2e + y;m):2

In our algorithmic language, which re
ects implementation constraints, evalu-
ation of trunc(x; n) will be limited to n � 64. Since we shall require estimates
with accuracy exceeding 64 bits, it will be useful to have a means for evaluating
expressions of the form

trunc(x; n+ k)� trunc(x; n)

that does not involve explicit evaluation of trunc(x; n+k). This motivates the next
lemma:

Lemma 2.29 Let x 2 R, x > 0, and k; n 2 Z+, k � n. Let e = expo(x) + 1 � n
and z = trunc(x� trunc(x; n); n). Then

trunc(x; n+ k)� trunc(x; n) = [sig(trunc(2e + z; k + 1))� 1]2e:

Proof: First note that

trunc(x; n) = b2n�1+expo(x)xc2expo(x)+1�n = b2�exc2e

and

trunc(x; n+ k) = b2n+k�1�expo(x)xc2expo(x)+1�(n+k) = b2k�exc2e�k :

11



Now let y = x� trunc(x; n): Then y < 2e, k+ 1 � n+ 1, and Corollary 2.28 yields

trunc(2e + y; k+ 1) = trunc(2e + trunc(y; n); k+ 1) = trunc(2e + z; k+ 1):

Therefore, since 2e + y < 2e+1, expo(2e + y) = e and

[sig(trunc(2e + z; k + 1))� 1]2e

= sig(trunc(2e + y; k+ 1))2e � 2e = trunc(2e + y; k+ 1)� 2e

= b2k�e(2e + y)c2e�k � 2e = b2k + 2k�eyc2e�k � 2e

= (2k + b2k�eyc)2e�k � 2e = b2k�eyc2e�k
= b2k�e(x� trunc(x; n))c2e�k = b2k�e(x� b2�exc2e)c2e�k
= b2k�ex� b2�exc2kc2e�k = (b2k�exc � b2�exc2k)2e�k
= b2k�exc2e�k � b2�exc2e = trunc(x; n+ k)� trunc(x; n):2

2.4 Away Rounding

Rounding away from 0 is de�ned as follows:

De�nition 2.8 If x 2 R and n 2 Z+, then

rnd(x; away; n) = away(x; n) = sgn(x)d2n�1sig(x)e2expo(x)�n+1:

Lemma 2.30 For any x 2 R, sgn(x) = sgn(away(x)).

Proof: This follows from Lemma 2.8. 2

Lemma 2.31 If x 2 R, x 6= 0, and n 2 Z+, then

jxj � jaway(x; n)j< jxj+ 2expo(x)�n+1 � jxj(1 + 2�n+1):

Proof: jaway(x; n)j � 2n�1sig(x)2expo(x)�n+1 = sig(x)2expo(x) = jxj
and

jaway(x; n)j< (2n�1sig(x) + 1)2expo(x)�n+1 = jxj+ 2expo(x)�n+1:2

Lemma 2.32 Let x 2 R and n 2 Z+.

(a) x is n-exact , x = away(x; n);
(b) away(x; n) is n-exact;
(c) If a 2 R, a is n-exact, and a � jxj, then a � jaway(x; n)j;

Proof:
(a) Both conditions are clearly equivalent to 2n�1sig(x) 2 Z.
(b) Since sig(x) < 2, d2n�1sig(x)e � 2n. If equality holds, then

away(x; n) = sgn(x)2expo(x)+1;
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hence expo(away(x; n)) = expo(x) + 1, and

away(x; n)2n�1�expo(away(x;n)) = sgn(x)2n�1 2 Z:

Otherwise, jaway(x; n)j < 2expo(x)+1, hence expo(away(x; n)) � expo(x), and we
need only note that

away(x; n)2n�1�expo(x) = sgn(x)d2n�1sig(x)e 2 Z:

(c) Suppose a < jaway(x; nj. Then by Lemma 2.18,

jaway(x; n)j � a+ 2expo(a)�n+1 � jxj+ 2expo(x)�n+1:

But

jaway(x; n)j< (2n�1sig(x) + 1)2expo(x)�n+1 = jxj+ 2expo(x)�n+1:2

Corollary 2.33 jaway(x; n)j � 2expo(x)+1.

Proof: This follows from Lemma 2.32(c). 2

Lemma 2.34 If x; y 2 R, 0 < x � y, n 2 Z+, then away(x; n) � away(y; n).

Proof: By Lemma 2.21, away(y; n) � y � x. Since away(y; n) is n-exact,
Lemma 2.32 implies away(y; n) � away(x; n). 2

Lemma 2.35 If x 2 R, m;n 2 Z+, and m � n, then

away(away(x; n); m) = away(x;m):

Proof: We may assume x > 0. Consider �rst the case away(x; n) = 2expo(x)+1.
In this case, away(x; n) is m-exact, so that away(away(x; n); m) = away(x; n) =
2expo(x)+1. By Corollary 2.33, we need only show that away(x;m) � 2expo(x)+1.
But since m � n, away(x;m) is n-exact, and since away(x;m) � x, away(x;m) �
away(x; n).

Thus, we may assume away(x; n) < 2expo(x)+1 and expo(away(x; n)) = expo(x),
hence

away(away(x; n); m) = d2m�1�expo(x)(d2n�1�expo(x)xe2expo(x)+1�n)e2expo(x)+1�m
= dd2n�1�expo(x)xe=2n�me2expo(x)+1�m
= d2n�1�expo(x)x=2n�me2expo(x)+1�m
= d2m�1�expo(x)xe2expo(x)+1�m
= away(x;m):2
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2.5 Near Rounding

Our next mode rounds to the nearest representable number. Ambiguities are re-
solved by forcing the least signi�cant bit to 0:

De�nition 2.9 Let x 2 R, n 2 Z+, z = b2n�1sig(x)c, and f = 2n�1sig(x) � z.
Then

rnd(x; near; n) = near(x; n) =

8>>><
>>>:

trunc(x; n) if f < 1=2
away(x; n) if f > 1=2
trunc(x; n) if f = 1=2 and z is even
away(x; n) if f = 1=2 and z is odd:

Lemma 2.36 Let x 2 R and n 2 Z+.

(a) If jx� trunc(x; n)j < jx� away(x; n)j, then near(x; n) = trunc(x; n).
(b) If jx� trunc(x; n)j > jx� away(x; n)j, then near(x; n) = away(x; n).

Proof: We may assume that 2n�1sig(x) =2 Z, for otherwise
trunc(x; n) = away(x; n) = near(x; n) = x:

Let f = 2n�1sig(x)� b2n�1sig(x)c. Then
jx� trunc(x; n)j = jxj � jtrunc(x; n)j

= 2expo(x)+1�n(2n�1sig(x)� b2n�1sig(x)c)
= 2expo(x)+1�nf

and

jx� away(x; n)j = jaway(x; n)j � jxj
= 2expo(x)+1�n(d2n�1sig(x)e � 2n�1sig(x))

= 2expo(x)+1�n(1� f):

Thus, (a) and (b) correspond to f < 1=2 and f > 1=2, respectively. 2

Lemma 2.37 Let x; y 2 R and n 2 Z+. If y is n-exact, then jx � yj � jx �
near(x; n)j.

Proof: Assume jx�yj < jx�near(x; n)j. We shall only consider the case x > 0,
as the case x < 0 is handled similarly.

First suppose near(x; n) = trunc(x; n). Since near(x; n) � x, we must have
y > near(x; n) and hence y > x by Lemma 2.23. But since away(x; n) � x �
x � near(x; n) by Lemma 2.36, we also have y < away(x; n), and hence y < x by
Lemma 2.32.

In the remaining case, near(x; n) = away(x; n) > x. Now y < near(x; n) and
by Lemma 2.32, y < x. But in this case, Lemma 2.36 implies y > trunc(x; n), and
hence y > x by Lemma 2.23. 2
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Lemma 2.38 Let x; y 2 R and n 2 Z+. If 0 � x � y, then near(x; n) �
near(y; n).

Proof: Suppose x < y and near(x; n) > near(y; n). Then Lemma 2.37 implies
x > near(y; n), otherwise x � near(y; n) < near(x; n) and jx� near(y; n)j < jx�
near(x; n)j. Similarly, y < near(x; n), and thus near(y; n) < x � y < near(x; n).
Applying Lemma 2.37 again, we have x � near(y; n) � near(x; n) � x, and hence
2x � near(x; n) + near(y; n). Similarly, near(x; n)� y � y� near(y; n), and hence
near(x; n) + near(y; n) � 2y. Consequently, 2x � 2y, contradicting x < y. 2

Lemma 2.39 Let x; y 2 R, 0 < x < y, and n 2 Z+. If near(x; n) 6= near(y; n),
then for some a 2 R, x � a � y and a is (n+ 1)-exact.

Proof: We may assume expo(x) = expo(y), for otherwise the conclusion of
the lemma is satis�ed by a = 2expo(x)+1. Suppose near(x; n) 6= near(y; n). Then
near(x; n) < near(y; n) by Lemma 2.38. Let a = (near(x; n)+near(y; n))=2. Then
x � a, for otherwise jx� near(y; n)j < jx� near(x; n)j, contradicting Lemma 2.37.
Similarly, y � a.

It remains to show that a is (n + 1)-exact. Let e = expo(x) = expo(y). By
Lemma 2.32, a < near(y; n) � away(y; n) � 2e+1, and hence expo(a) � e. There-
fore, it will su�ce to show that a2(n+1)�1�e = a2n�e 2 Z. Since near(x; n) and
near(y; n) are n-exact and

e = expo(trunc(x; n)) � expo(near(x; n)) � expo(near(y; n));

we have near(x; n)2n�1�e 2 Z and near(y; n)2n�1�e 2 Z. It follows that
a2n�e = (near(x; n) + near(y; n))2n�1�e 2 Z:2

We shall apply Lemma 2.39 in the following form:

Corollary 2.40 Let a; x; y 2 R, n; k 2 Z+, and n � k. If a is (n + 1)-exact, and
0 < a < x, and 0 < y < a+ 2expo(a)�n, then near(x; k) � near(y; k).

Proof: By Lemma 2.38, we may assume x < y, so that a < x < y < a+2expo(a)�n.
By Lemma 2.18, a and a + 2expo(a)�n are successive (n + 1)-exact numbers, hence
near(x; k) = near(y; k) by Lemma 2.39. 2

2.6 Odd Rounding

Odd rounding is de�ned as truncation followed by setting the least signi�cant bit:

De�nition 2.10 Let x 2 R, n 2 Z+, and z = b2n�1sig(x)c. Then

rnd(x; odd; n) = odd(x; n) =

(
sgn(x)z2expo(x)+1�n if z is odd

sgn(x)(z + 1)2expo(x)+1�n if z is even:
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The following is an obvious consequence of the de�nition:

Lemma 2.41 If x 2 R and n 2 Z+, then jodd(x; n)j � jtrunc(x; n)j.

The de�nition may be reformulated as follows:

Lemma 2.42 If x 2 R, n 2 Z, and n > 1, then

odd(x; n) = trunc(x; n� 1) + sgn(x)2expo(x)+1�n:

Proof: Let z = b2n�1sig(x)c. Then

trunc(x; n� 1) = sgn(x)b2n�2�expo(x)xc2expo(x)+2�n
= sgn(x)b2n�1�expo(x)x=2c2expo(x)+2�n
= sgn(x)bb2n�1�expo(x)xc=2c2expo(x)+2�n

= sgn(x)

�
z

2

�
2expo(x)+2�n:

If z is odd, then b z2c = z�1
2 and

trunc(x; n� 1) = sgn(x)
z � 1

2
2expo(x)+2�n

= sgn(x)(z � 1)2expo(x)+1�n

= odd(x; n)� sgn(x)2expo(x)+1�n:

If z is even, then b z2c = z
2 and

trunc(x; n� 1) = sgn(x)
z

2
2expo(x)+2�n

= sgn(x)(z + 1� 1)2expo(x)+1�n

= odd(x; n)� sgn(x)2expo(x)+1�n:2

Lemma 2.43 If x 2 R, n 2 Z, x 6= 0, and n > 1, then

(a) sgn(odd(x; n)) = sgn(x);
(b) expo(odd(x; n)) = expo(x).

Proof:
(a) This is an immediate consequence of De�nition 2.10.
(b) Since trunc(x; n� 1) and 2expo(x)+1 are both (n� 1)-exact and

trunc(x; n� 1) < 2expo(trunc(x;n�1))+1 = 2expo(x)+1;
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Lemma 2.18 implies

2expo(x)+1 � trunc(x; n� 1) + 2expo(x)+1�(n�1) > odd(x; n);

and hence expo(odd(x; n))� expo(x). But since odd(x; n)> trunc(x; n� 1),

expo(odd(x; n))� expo(trunc(x; n� 1)) = expo(x):2

Lemma 2.44 If x 2 R, n 2 Z, x > 0, and n > 1, then odd(x; n) is n-exact but not
(n� 1)-exact.

Proof: Since trunc(x; n� 1) is (n� 1)-exact,

2n�1�expo(x)odd(x; n) = 2n�1�expo(x)[trunc(x; n� 1) + 2expo(x)+1�n]

= 2[2n�2�expo(x)trunc(x; n� 1)] + 1

is an odd integer. 2

Lemma 2.45 If x 2 R, n;m 2 Z+, x > 0, and n > m, then

trunc(odd(x; n); m) = trunc(x;m):

Proof: Let e = expo(x) = expo(odd(x; n)). Then

trunc(odd(x; n); n� 1) = b2n�2�eodd(x; n)c2e+2�n
= b2n�2�e(b2n�2�exc2e+2�n + 2e+1�n)c2e+2�n

=

�
b2n�2�exc+ 1

2

�
2e+2�n

= b2n�2�exc2e+2�n
= trunc(x; n� 1);

and by Lemma 2.26,

trunc(odd(x; n); m) = trunc(trunc(odd(x; n); n� 1); m)

= trunc(trunc(x; n� 1); m)

= trunc(x;m):2

Lemma 2.46 Let x; y 2 R, x > 0, y > 0, k 2 Z, and n = k�1+expo(x)�expo(y).
If k > 1, n > 0, and x is n-exact, then

x + odd(y; k) = odd(x+ y; k+ expo(x+ y)� expo(y)):
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Proof: Let k0 = k + expo(x+ y)� expo(y). Then by Lemma 2.27,

x+ odd(y; k) = x+ trunc(y; k� 1) + 2expo(y)+1�k

= trunc(x+ y; k � 1 + expo(x+ y)� expo(y)) + 2expo(y)+1�k

= trunc(x+ y; k0 � 1) + 2expo(x+y)+1�k
0

= odd(x+ y; k0):2

Lemma 2.47 Let x; y 2 R with x > y > 0 and m; k 2 Z with m�2 � k > 0. Then

(a) trunc(x; k) � trunc(odd(y;m); k);
(b) away(x; k) � away(odd(y;m); k);
(c) near(x; k) � near(odd(y;m); k).

Proof:
(a) By Lemmas 2.24 and 2.45, since x � y and m > k,

trunc(x; k) � trunc(y; k) = trunc(odd(y;m); k):

(b) Note that away(x; k) and trunc(y;m� 1) are both (m� 1)-exact. Since

away(x; k) � x > y � trunc(y;m� 1);

away(x; k) � trunc(y;m� 1) + 2expo(y)+1�(m�1) > odd(y;m)

by Lemma 2.18. Thus, by Lemma 2.32,

away(x; k) � away(odd(y;m); k):

(c) We shall apply Corollary 2.40, substituting m� 2 for n, trunc(y;m� 1) for
a, and odd(y;m) for y. To establish the hypotheses of the corollary, we note that

m� 2 � k > 0;

trunc(y;m� 1) is (m� 1)-exact;

0 < trunc(y;m� 1) � y < x;

and

0 < odd(y;m) = trunc(y;m� 1) + 2expo(trunc(y;m�1))�m+1

< trunc(y;m� 1) + 2expo(trunc(y;m�1))�(m�2):

Consequently, near(x; k) � near(odd(y;m); k). 2
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2.7 Other Rounding Modes

The IEEE speci�cation supports the rounding modes trunc, near, and two others:

De�nition 2.11 If x 2 R and n 2 Z+, then

rnd(x; inf; n) = inf(x; n) =

(
away(x; n) x � 0
trunc(x; n) x < 0:

De�nition 2.12 If x 2 R and n 2 Z+, then

rnd(x;minf; n) = minf(x; n) =

(
trunc(x; n) x � 0
away(x; n) x < 0:

De�nition 2.13 An element of the set ftrunc; inf;minf; nearg is called an IEEE
rounding mode.

In our application, the modes inf and minf will be be applied only to positive
arguments and are therefore subsumed by away and trunc, respectively.

Although it is not used in any critical way, one other rounding mode occurs in
the square root algorithm and therefore must be mentioned here:

De�nition 2.14 Given x 2 R and n 2 Z+, let z = b2n�1sig(x)c. Then

rnd(x; sticky; n) = sticky(x; n) =

(
trunc(x; n) if z is odd
away(x; n) if z is even:

Every application of sticky rounding that occurs in FSQRT is trivial, i.e., the
�rst argument is exact with respect to the second. Therefore, the only property of
this rounding mode that we shall require is the following, which is an immediate
consequence of Lemmas 2.23 and 2.32:

Lemma 2.48 Let x 2 R and n 2 Z+. If x is n-exact, then sticky(x; n) = x.

3 Speci�cation of the Algorithm

3.1 Informal Description

The square root algorithm computes an approximation to the square root of a
given nonnegative number. The inputs to the algorithm are the radicand P , a
rounding mode mode, and a degree of precision prec. At termination, the value of
the variable sqrt is rnd(

p
P ;mode; prec). In most cases, the computation involves

21 multiplications and 15 additions; the worst case requires 23 multiplications and
16 additions.

The algorithm consists of the following steps:
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(1) If P = 0, then the algorithm simply terminates with sqrt = 0. Otherwise,
proceed to (2).

(2) An initial approximation r0 to 1=
p
P , accurate to 5 bits, is derived from a

table.

(3) Using r0 as a seed, three successive Newton-Raphson iterations yield increas-
ingly accurate estimates of 1=

p
P : r1, r2, and r3.

(4) (Test for exactness) The product r3P is truncated to 64 bits and rounded
away to 32 bits, to produce two approximations to

p
P , denoted by q and q0,

respectively. If P has a 
oating point square root, then it must coincide with
the 32-bit approximation q0. In this case, execution terminates with the value
rnd(q0; mode; prec). Otherwise, proceed to (5).

(5) (Re�nement) The 64-bit approximation q is accurate to 39 bits. A correction
term res is computed as an approximation to

p
P � q. The resulting estimate

q + res is accurate to 74 bits.

(6) (Final Computation) A test is applied to determine whether q+res is close to
a 64-bit rounding boundary. If not, then execution terminates with the value
rnd(q+res;mode; prec). Otherwise, further analysis is required to handle the
boundary cases.

3.2 Formalization

The algorithm is represented in Figure 1 as a program in a simple programming
language. The ACL2 formulation of the correctness of the algorithm requires a
rigorous de�nition of the syntax and semantics of this language, which we shall
only sketch here.

The language is based on two types of expressions:

(1) A Boolean expression is either of the following:

(a) x = y, x < y, or x � y, where x and y are variables or constants;

(b) � ^ �, � _ �, or :�, where � and � are Boolean expressions.

(2) A numerical expression is one of the following:

(a) rnd(x;mode; n), rnd(x+y;mode; n), or rnd(xy;mode; n), where x and y
are variables or constants, mode is a rounding mode, and n is an integer
satisfying 0 < n � 64;

(b) sig(x), where x is a variable;
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if P = 0 then sqrt 0 else (* re�nement *)
else diff  near(q � q0; 64)

(* table access *) q2  near(2q0; 64)
r0  lookup(P ) prod away(q2diff; 64)

sq  away(diff2; 64)
(* 1st NR iteration *) t3  near(12r3; 64)
Ph  trunc(P; 32) rem1  sticky(rem0 � prod; 64)
s0  away(r0Ph; 32) rem2  trunc(rem1 � sq; 64)
t0  away(12r0; 32) res odd(rem2t3; 64)
u0  away(s0r0; 32)
v0  trunc(3� u0; 32) (* �nal computation *)
r1  trunc(v0t0; 32) root0  trunc(q + res; 64)

root1  near(q + res; 64)
(* 2nd NR iteration *) root2  away(q + res; 64)
s1  away(r1Ph; 32) used trunc(root0 � q; 64)
t1  away(12r1; 32) end trunc(res� used; 64)
u1  away(s1r1; 32) ulp trunc(root2 � root0; 64)
v1  trunc(3� u1; 32) aeb trunc(ulp+ end; 9)
r2  trunc(v1t1; 32) bits sig(aeb)

if bits =2 f2� 2�8; 1 + 2�1 � 2�8g then
(* 3rd NR iteration *) sqrt rnd(q + res;mode; prec)
s2  away(r2P; 64) else if mode 6= near then
t2  away(12r2; 64) det away(root2root2; 64)
u2  away(s2r2; 64) if P � det
v2  trunc(3� u2; 64) then sqrt rnd(root1 + end;mode; prec)
r3  trunc(v2t2; 64) else sqrt rnd(root0 + end;mode; prec)

else (* mode = near *)
(* test for exactness *) det trunc(root1root2; 64)
q  trunc(r3P; 64) if P � det then
q0  away(r3P; 32) sqrt near(root0 + end; prec)
P0  sticky(q20; 64) else if bits = 2� 2�8 then
rem0  sticky(P � P0; 64) ends trunc( 1

16end; 64)
if rem0 = 0 then sqrt near(root2 + ends; prec)
sqrt rnd(q0; mode; prec) else sqrt  near(root2 � end; prec)

Figure 1: The Square Root Algorithm: Inputs are P , mode, and prec; Output is
sqrt.
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(c) lookup(x), where x is a variable.

We de�ne a statement list to be a list hs1; s2; : : : ; sni, n � 1, where for i =
1; : : : ; n� 1, si is an assignment statement of the form

!  E;

where ! is a variable and E is a numerical expression, and sn is either an assignment
statement or a conditional statement of the form

if B then Q else R;

where B is a Boolean expression and Q and R are statement lists.
A program in our language is a pair P = (I; S), where I is a list of input variables

and S is a statement list.
Pending the de�nition of the function lookup (Section 4), the de�nition of the

value of a (Boolean or numerical) expression for a given set of variable bindings is
obvious. In support of our previous claim that this formal language resembles the
K5 microcode, we note (looking ahead to De�nition 4.2) that all operations involved
in expression evaluation are easily implementable at the microcode level, including
the prede�ned arithmetic primitives (which are presumed to be IEEE-compliant),
the extraction of various 
oating point �elds, and a simple table reference.

It is also a straightforward exercise to de�ne the function execute, which returns
the �nal set of bindings for all of the variables of P , execute(P ; V ), produced by
executing P under a given list of input bindings V . Recall, however, that the
architecture of the AMD5K86 
oating point unit requires that the evaluation of
any numerical expression results in a (64; 17)-
oating point number. We shall say
that P executes successfully for a given list of input bindings if this constraint is
satis�ed.

3.3 Statement of Correctness

The discussion to follow will be based on a �xed execution of FSQRT determined
by a given set of values for the input variables P , mode, and prec. It is easily veri�ed
by inspection of Figure 1 that in any execution of FSQRT , each program variable
is assigned a value at most once. Thus, any reference to a program variable will be
understood unambiguously to refer to the value of that variable produced by this
execution. Our objective is to prove the following theorem, which represents the
IEEE speci�cation [6]:

Theorem 1 Let P be a generalized (64; 15)-
oating point number, P � 0. Let
mode be an IEEE rounding mode and let prec 2 Z+, prec � 64. Then FSQRT

executes successfully on hP;mode; preci and
sqrt = rnd(

p
P ;mode; prec):
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However, because of its reference to the square root, Theorem 1 is not formaliz-
able in the ACL2 logic, which does not provide for the real numbers. The theorem
of rational arithmetic that best approximates Theorem 1 is the following:

Theorem 2 Let P be a generalized (64; 15)-
oating point number, P � 0 Let mode
be an IEEE rounding mode and let prec 2 Z+, prec � 64. Let `; h 2 Q such
that ` � 0, h � 0, and `2 � P � h2. Then FSQRT executes successfully on
hP;mode; preci and

rnd(`;mode; prec)� sqrt � rnd(h;mode; prec):

The equivalence of these two theorems can be proved easily, although without the
support of ACL2. The proof of Theorem 2 as a consequence of Theorem 1 requires
only the monotonicity ofmode, which is guaranteed by Lemmas 2.24, 2.34, and 2.38.
The converse implication, which is of greater concern to us, can be derived from the
well known property of the real numbers that every nonempty interval contains a
rational, along with the following result:

Lemma Let x; y 2 R and let mode be an IEEE rounding mode. Assume x is
irrational and x > 0. Then for every n 2 Z+, there exists � > 0 such that if
jy � xj < �, then rnd(y;mode; n) = rnd(x;mode; n).

Proof: Let a = trunc(x; n+ 1) and b = a + 2expo(a)�n. By Lemmas 2.18, 2.21,
and 2.23, a and b are (n + 1)-exact and since x is not, 0 < a < x < b. We shall
show that the conclusion of the lemma is satis�ed by � = min(x� a; b� x).

The case mode = near is covered by Corollary 2.40. We need only consider the
modes trunc and away, which subsume inf and minf .

Suppose mode = trunc. By Lemma 2.26, trunc(x; n) = trunc(a; n). By
Lemma 2.24, trunc(a; n) � trunc(y; n). Since trunc(y; n) is n-exact by Lemma
2.23, trunc(y; n) � a by Lemma 2.18. But now it follows from Lemma 2.23 that
trunc(y; n) � trunc(a; n), hence

trunc(y; n) = trunc(a; n) = trunc(x; n):

For the case mode = away, it follows from Lemmas 2.18, 2.31, and 2.32 that
b = away(x; n+1), hence away(x; n) = away(b; n) by Lemma 2.35. By Lemma 2.34,
away(y; n) � away(b; n). Since away(y; n) is n-exact, away(y; n) � b. But now
Lemma 2.32 implies away(y; n) � away(b; n), hence

away(y; n) = away(a; n) = away(x; n):2

Proof of Theorem 1: Suppose sqrt 6= rnd(
p
P ;mode; prec). Since Theorem 2

precludes the case
p
P = ` = h 2 Q, we may assume that

p
P is irrational. Choose

� as speci�ed by the lemma above.
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Suppose sqrt < rnd(
p
P;mode; prec). Choose a rational ` in the interval (

p
P �

�;
p
P ). Then `2 < P and

rnd(`;mode; prec) = rnd(
p
P ;mode; prec)> sqrt;

contradicting Theorem 2.
Similarly, if sqrt > rnd(

p
P;mode; prec), then we choose a rational h in the

interval (
p
P;
p
P + �), which must satisfy h2 > P and

rnd(h;mode; prec) = rnd(
p
P;mode; prec)< sqrt;

again contradicting Theorem 2. 2

Our goal, then, is to prove Theorem 2. In order to facilitate the ACL2 formal-
ization, we meticulously avoid any reference to

p
P in the statements and proofs of

the lemmas to follow. Moreover, all of the results of Section 2 remain valid if every
reference to R is replaced by Q. Thus, our proof of Theorem 2 is based entirely on
rational arithmetic. In fact, with the exception of Theorem 1 and its lemma, every
de�nition, lemma, and theorem presented in this paper has been formally encoded
in the ACL2 logic, and every proof has been checked mechanically with the ACL2
prover.

Henceforth, we shall assume that P , mode, and prec satisfy the hypothesis of
Theorem 2. Note that in the case P = 0, we have sqrt = 0 and Theorem 2 holds
trivially. Thus, we shall further assume that P > 0. In the next �ve sections, we
shall show the value of sqrt is as speci�ed in the theorem. Then, in Section 9,
we shall complete the proof by demonstrating that the required exponent bound is
satis�ed by the value of each numerical expression.

4 Initial Approximation

r0  lookup(P )
...

The initial approximation to 1=
p
P , r0, is based on a table, each entry of which

associates a 7-bit key with a 6-bit value. The key is determined by the least signi�-
cant bit of expo(P ) and the most signi�cant 6 bits of the fractional part of sig(P ).
The associated value is interpreted as the fractional part of sig(r0).

We shall represent the table as two sequences of 26 integers each, corresponding
to the two possible values of rem(expo(P ); 2):

De�nition 4.1 E and O are the following sequences of binary integers:
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E = h000000; 111111; 111110; 111101; 111100; 111011; 111010; 111001,
111000; 110111; 110111; 110110; 110101; 110100; 110011; 110011,
110010; 110001; 110001; 110000; 101111; 101111; 101110; 101101,
101101; 101100; 101011; 101011; 101010; 101010; 101001; 101001,
101000; 100111; 100111; 100110; 100110; 100101; 100101; 100100,
100100; 100011; 100011; 100010; 100010; 100010; 100001; 100001,
100000; 100000; 011111; 011111; 011111; 011110; 011110; 011101,
011101; 011101; 011100; 011100; 011011; 011011; 011011; 011010i

O = h011010; 011001; 011001; 011000; 010111; 010111; 010110; 010101,
010101; 010100; 010100; 010011; 010011; 010010; 010001; 010001,
010000; 010000; 001111; 001111; 001111; 001110; 001110; 001101,
001101; 001100; 001100; 001011; 001011; 001011; 001010; 001010,
001001; 001001; 001001; 001000; 001000; 001000; 000111; 000111,
000111; 000110; 000110; 000101; 000101; 000101; 000101; 000100,
000100; 000100; 000011; 000011; 000011; 000010; 000010; 000010,
000010; 000001; 000001; 000001; 000001; 000000; 000000; 000000i,

which will be denoted as
E = h�0; : : : ; �63i

and
O = h�0; : : : ; �63i:

Let e = expo(P ), b = rem(e; 2), h = quot(e; 2), s = sig(P ), and c = trunc(s; 7).
Then sig(r0) will be derived from the table by

sig(r0) =

(
1 + 2�6�i if b = 0
1 + 2�6�i if b = 1;

where i = 26(c� 1). To compute expo(r0) = expo(1=
p
P ), we note that

1p
P

=
1p

22h+bs
= 2�(h+1)

2p
2bs

;

where 1 < 2=
p
2bs � 2. Thus, expo(r0) = �(h + 1) except when b = 0 and s = 1,

in which case expo(r0) = �h. This motivates the following:

De�nition 4.2 Let e = expo(P ), b = rem(e; 2), h = quot(P; 2), s = sig(P ),
c = trunc(s; 7), and i = 26(c� 1). Then

lookup(P ) =

8><
>:

(1 + 2�6�i)=2h+1 if b = 0 and i 6= 0
(1 + 2�6�i)=2

h if b = i = 0
(1 + 2�6�i)=2h+1 if b = 1:
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The table values were actually computed as

�i = 26
�
trunc

�
sig

�
1p

1 + i � 2�6
�
; 7

�
� 1

�

and

�i = 26
 
trunc

"
sig

 
1p

2(1 + i � 2�6)

!
; 7

#
� 1

!
:

Using this information, we could easily show that

lookup(P ) = 2�htrunc

�
1p
2bc

; 7

�
= trunc

 
1p

trunc(P; 7)
; 7

!
;

from which our desired estimate, Lemma 4.2, could be directly derived. However,
like all of our results, this lemma must be proved without any reference to the square
root function.

The only approach left open to us requires considerable computation. The re-
sults of this computation are collected in the next lemma. Each inequality stated
in the lemma has been checked mechanically and will not be proved here.

Lemma 4.1

(a) For i = 1; : : : ; 63,

1� 2�5 � (1 + 2�6i)(1+ 2�6�i)
2=4 < (1 + 2�6(i+ 1))(1 + 2�6�i)

2=4 � 1 + 2�5;

(b) For i = 0,

1� 2�5 � (1 + 2�6i)(1 + 2�6�i)
2 < (1 + 2�6(i+ 1))(1 + 2�6�i)

2 � 1 + 2�5;

(c) For i = 0; : : : ; 63,

1� 2�5 � (1 + 2�6i)(1 + 2�6�i)
2=2 < (1 + 2�6(i+ 1))(1 + 2�6�i)

2=2 � 1 + 2�5:

Lemma 4.2 j1� Pr20j � 2�5.

Proof: Let e, h, b, s, c, and i be de�ned as in De�nition 4.2. By Corollary 2.22
and Lemma 2.21, expo(c) = expo(s) = 0 and c � s < c+ 2�6. But

1 + 2�6i = 1 + 2�626(c� 1) = c;

hence
1 + 2�6i � s < 1 + 2�6(i+ 1):

Consider the case b = 0, i 6= 0. In this case,

Pr20 = 2es(lookup(P ))2 = 22hs(1 + 2�6�i)
2=22h+2 = s(1 + 2�6�i)

2=4;

and hence, using the above estimate for s, we have

(1 + 2�6i))(1 + 2�6�i)
2=4 � Pr20 < (1 + 2�6(i+ 1)))(1+ 2�6�i)

2=4;

and the descired inequality follows from Lemma 4.1(a).
The two remaining cases are similar. 2
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5 Newton-Raphson Approximation

5.1 Recurrence Formula

Given an initial approximation r0 of a root of a di�erentiable functionf , the Newton-
Raphson formula

ri+1 = ri � f(ri)

f 0(ri)

produces, under suitable conditions, a quadratically convergent sequence of esti-
mates. We are interested here in the function

f(x) = 1=x2 � P;

which has a unique positive root 1=
p
P . In this case, the recurrence formula reduces

simply to

ri+1 =
ri
2
(3� Pr2i ):

As noted earlier, however, our statement and derivation of the relevant convergence
theorem must be limited to rational arithmetic. The following result is su�cient
for our purpose:

Lemma 5.1 Let P; x 2 Q with 0 � Px2 � 4 and let y = x
2(3� Px2). Then

0 � 1� Py2 � (1� Px2)2:

Proof: Let U = Px2. Then

1� Py2 = 1� Px2

4
(3� Px2)2 = 1� U

4
(3� U)2:

Since U � 4,
0 � (U � 1)2(U � 4) = U3 � 6U2 + 9U � 4;

hence
4 � U3 � 6U2 + 9U = U(3� U)2;

and it follows that 1� Py2 � 0.
Since

4((1� U)2 � (1� Py2)) = 4� 8U + 4U2 � 4 + U(3� U)2

= U3 � 2U2 + U

= U(U � 1)2

� 0;

1� Py2 � (1� U)2 = (1� Px2)2. 2

We shall apply Lemma 5.1 in estimating the values of the variables r1, r2, and
r3, which are produced by three iterations of the Newton-Raphson formula, using
r0 as a seed. Of course, due to rounding error, these values will not be precisely as
predicted by the formula.
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5.2 First Iteration

The �rst Newton-Raphson iteration yields an approximation r1, based on the seed
r0:

...
Ph  trunc(P; 32)
s0  away(r0Ph; 32)
t0  away(12r0; 32)
u0  away(s0r0; 32)
v0  trunc(3� u0; 32)
r1  trunc(v0t0; 32)
...

Lemma 5.2 j1� Pr21j � 2�10(1 + 2�16).

Proof: The proof of the inequality uses Lemmas 4.2 and 5.1, as well as 2.13,
2.21, 2.31, 2.2, 2.4, and 2.5.

First, we have
P (1� 2�31) � Ph � P;

r0P (1� 2�31) � r0Ph � s0 � r0Ph(1 + 2�31) � r0P (1 + 2�31);

and

r20P (1� 2�31) � s0r0 � u0 � s0r0(1 + 2�31) � r20P (1 + 2�31)2 < r20P (1 + 2�29):

Note that Pr20 � 1 + 2�5 < 3=2, and therefore u0 < 3. Thus,

v0 � 3� u0 � 3� r20P (1� 2�31) � (3� r20P )(1 + 2�31);

and

v0 � (3� u0)(1� 2�31) � (3� r20P (1 + 2�29))(1� 2�31)

� (3� r20P )(1� 2�29)(1� 2�31) � (3� r20P )(1� 2�28):

Since r0=2 is 32-exact, t0 = r0=2.Thus,

r1 � v0t0 � r0
2
(3� r20P )(1 + 2�31);

and

Pr21 �
Pr20
4

(3� r20P )
2(1 + 2�29):
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Since Pr20 � 1+2�5 < 4, Lemma 5.1 yields
Pr2

0

4 (3�r20P )2 � 1, hence Pr21 � 1+2�29

and 1� Pr21 � �2�29.
Similarly,

r1 � v0t0(1� 2�31) � r0
2
(3� r20P )(1� 2�28)(1� 2�31) � r0

2
(3� r20P )(1� 2�27):

Thus,

Pr21 �
Pr20
4

(3� r20P )
2(1� 2�27)2 � Pr20

4
(3� r20P )

2(1� 2�26);

and by Lemmas 4.2 and 5.1,

1� Pr21 � 1� Pr20
4

(3� r20P )
2(1� 2�26)

=

 
1� Pr20

4
(3� r20P )

2

!
+ 2�26

Pr20
4

(3� r20P )
2

� 2�10 + 2�26

= 2�10(1 + 2�16):2

5.3 Second Iteration

The second Newton-Raphson iteration uses the same sequence of operations and
roundings as the �rst, producing an approximation r2:

...
s1  away(r1Ph; 32)
t1  away(12r1; 32)
u1  away(s1r1; 32)
v1  trunc(3� u1; 32)
r2  trunc(v1t1; 32)
...

Lemma 5.3 j1� Pr22j � 2�20(1 + 2�5).

Proof: The proof is nearly identical to that of Lemma 5.2: with r1, s1, t1, u1,
v1, and r2 substituted for r0, s0, t0, u0, v0, and r1, respectively, the same argument
yields

1� Pr22 � �2�29

and

Pr22 �
Pr21
4

(3� r21P )
2(1� 2�26):
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Applying Lemmas 5.1 and 5.2, we have

1� Pr22 � 1� Pr21
4

(3� r21P )
2(1� 2�26)

=

 
1� Pr21

4
(3� r21P )

2

!
+ 2�26

Pr21
4

(3� r21P )
2

� 2�20(1 + 2�16)2 + 2�26

� 2�20(1 + 2�14 + 2�6)

� 2�20(1 + 2�5):2

5.4 Third Iteration

The �nal Newton-Raphson iteration requires higher precision than the �rst two, us-
ing 64-bit rounding and replacing Ph with P , to produce an approximation accurate
to 39 bits:

...
s2  away(r2P; 64)
t2  away(12r2; 64)
u2  away(s2r2; 64)
v2  trunc(3� u2; 64)
r3  trunc(v2t2; 64)
...
In addition to its high precision, r3 is guaranteed to be an underestimate of

1=
p
P :

Lemma 5.4 0 � 1� Pr23 < 2�39.

Proof: The proof is similar to that of Lemma 5.2. First, we have

r2P � s2 � r2P (1 + 2�63)

and

r22P � s2r2 � u2 � s2r2(1 + 2�63) � r22P (1 + 2�63)2 � r22P (1 + 2�61):

By Lemma 5.3, we may also conclude that u2 < 3. Thus,

v2 � 3� u2 � 3� r22P

and

v2 � (3� u2)(1� 2�63) � (3� r22P (1 + 2�61))(1� 2�63)

� (3� r22P )(1� 2�61)(1� 2�63) � (3� r22P )(1� 2�60):
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Since r2=2 is 32-exact, t2 = r2=2.Thus,

r3 � v2t2 � r2
2
(3� r22P )

and hence, by Lemmas 5.1 and 5.3,

1� Pr23 � 1� Pr22
4

(3� r22P ) � 0:

Similarly,

r3 � v2t2(1� 2�63) � r2
2
(3� r22P )(1� 2�60)(1� 2�63) � r3

2
(3� r23P )(1� 2�59);

and hence

Pr23 �
Pr22
4

(3� r22P )
2(1� 2�58):

Finally, by Lemmas 5.1 and 5.3,

1� Pr23 � 1� Pr22
4

(3� r22P )
2(1� 2�58)

= 1� Pr22
4

(3� r22P )
2 + 2�58

Pr22
4

(3� r22P )
2

� 2�40(1 + 2�5)2 + 2�58

< 2�39:2

6 Exactness Test

The Newton-Raphson result provides a �rst approximation to
p
P , namely r3P .

This product is rounded to 64 and 32 bits to produce q and q0. We shall show that
if P 6= q20 , then P does not have a 
oating point square root (Lemma 6.5), and that
in this case, q is an underestimate, accurate to 38 bits (Corollary 6.6).

...
q  trunc(r3P; 64)
q0  away(r3P; 32)
P0  sticky(q20; 64)
rem0  sticky(P � P0; 64)
if rem0 = 0
then sqrt  rnd(q0; mode; prec)

else
...

Lemma 6.1 0 � P � q2 < 2�38P .
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Proof: By Lemmas 2.21 and 5.4,

q2 � (r3P )
2 = P (Pr23) � P

and

q2 � (r3P )
2(1�2�63)2 = P (Pr23)(1�2�63)2 � P (1�2�39)(1�2�63)2 > P (1�2�38):2

Lemma 6.2

(a) jq � q0j � 2�30r3P ; (b) (q � q0)
2 � 2�60P .

Proof:
(a) jq � q0j � jq � r3P j + jq0 � r3P j � r3P (2

�31 + 2�63) � 2�30r3P:
(b) jq � q0j2 � 2�60(r23P )P � 2�60P: 2

Lemma 6.3 rem0 = P � q20.

Proof: Lemmas 2.32, 2.14, and 2.23 guarantee that q0 is 32-exact, q20 is 64-
exact, and P0 = q20 , respectively. By Corollary 2.17, in order to show that P � P0

is 64-exact, it su�ces to show jP � q20j � min(P; q20). But

jP � q20 j � (P � q2) + (q0 � q)(q0 + q)

� 2�38P + (2�30r3P )(r3P + r3P (1 + 2�31))

� 2�38P + (2�30r3P )(3r3P )

� 2�38P + 2�28P

� 2�27P

< P

and
q20 � q2 � (1� 2�38)P > 2�27P � jP � q20 j:

The lemma now follows from Lemma 2.23. 2

Thus, Theorem 2 holds in the special case rem0 = 0:

Lemma 6.4 Let `; h 2 Q such that ` � 0, h � 0, and `2 � P � h2. If rem0 = 0,
then

rnd(`;mode; prec)� sqrt � rnd(h;mode; prec):

Proof: In this case, we have sqrt = rnd(q0; mode; prec). By Lemma 6.3, P =
q20 , hence ` � q0 � h. The result now follows from the monotonicity of mode
(Lemmas 2.24, 2.34, and 2.38). 2

Lemma 6.5 If rem0 6= 0, then P = x2 has no 
oating point solution.
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Proof: We shall derive a contradiction from the assumption P = a2, where a is
a 
oating point number. By Lemma 2.15, a is 32-exact. Since a2 � r23P

2, a � r3P ,
and hence a � q0 by Lemma 2.32. It follows that a > q0, and Lemma 2.18 yields
a � q0 + 2expo(q0)�31. Thus,

a� q � 2expo(q0)�31 > 2�32q0 > 2�32q:

But by Lemma 6.1,

a� q =
P � q2

a+ q
<

P � q2

2q
� 2�38q2

(1� 2�38)2q
< 2�38q:2

Henceforth, we shall assume rem0 6= 0. Note that in view of Lemma 6.5,
Lemma 6.1 can now be written as a strict inequality:

Corollary 6.6 0 < P � q2 < 2�38P .

7 Re�nement

In this section, we shall compute a correction term res to be added to q, produc-
ing an estimate that is accurate to 74 bits (Lemma 7.7). We also show (Corol-
lary 7.10) that rnd(q + res;mode; prec) is an underestimate of the desired result
rnd(

p
P ;mode; prec).

We begin with the following observation:

Lemma 7.1 P (1� 2�75) <
�
q + (P � q2) r32

�2
< P .

Proof: We �rst note that

P �
�
q + (P � q2)

r3
2

�2
= P � q2 � (P � q2)qr3� (P � q2)2

r23
4

=
1

4
(P � q2)[4� 4qr3 � (P � q2)r23]

=
1

4
(P � q2)[4� 4qr3 + q2r23 � Pr23]

=
1

4
(P � q2)[(2� qr3)

2 � Pr23]:

By Lemma 5.4 and Corollary 6.6,

1 � Pr23 > q2r23 > (1� 2�38)Pr23 � (1� 2�38)(1� 2�39) > (1� 2�38)2;

and hence 1 > qr3 > 1� 2�38.
But then by Lemma 5.4,

0 < (2� qr3)
2 � Pr23 < (1 + 2�38)2 � (1� 2�39) < 1 + 2�36 � 1 + 2�39 < 2�35:
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Finally, by Corollary 6.6,

0 < P �
�
q + (P � q2)

r3
2

�2
<

1

4
2�38P2�35 = 2�75P:2

Thus, we would like to compute res simply by rounding (P � q2)r3=2. However,
since our 
oating point operations are limited to 64-bit operands, we cannot com-
pute P � q2 directly. Our strategy is to derive a close approximation by using the
identity

P � q2 = (P � q20)� 2q0(q � q0)� (q � q0)
2:

...
diff  near(q � q0; 64)
q2  near(2q0; 64)
prod away(q2diff; 64)
sq  away(diff2; 64)
t3  near(12r3; 64)
rem1  sticky(rem0 � prod; 64)
rem2  trunc(rem1 � sq; 64)
res odd(rem2t3; 64)
...

Lemma 7.2 q � q0 is 32-exact.

Proof: First suppose q is 32-exact. Then by Lemma 6.2,

jq � q0j � 2�30r3P < (1� 2�63)r3P � q � q0

and the lemma follows from Corollary 2.17. Therefore, we may assume that q is not
32-exact. Let a = away(q; 32). We shall show that a = q0.

Since a is 64-exact and a > q, a > r3P by Lemma 2.23. Similarly, a � q0 by
Lemma 2.32. But since q0 is 32-exact and q0 � q, Lemma 2.32 also implies q0 � a.
Thus, q0 = a = away(q; 32).

But now, by Lemma 2.31, expo(q�q0) � expo(q)�32, hence Lemma 2.16 applies
with n = 64 and k = 32. 2

Lemma 7.3 No rounding is required in the calculation of diff , q2, prod, sq, t3, or
rem1, i.e.,

(a) diff = q � q0; (d) sq = diff2 = (q � q0)2;
(b) q2 = 2q0; (e) t3 =

1
2r3;

(c) prod = q2diff = 2q0(q � q0); (f) rem1 = (P � q20)� 2q0(q � q0).
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Proof: (a), (b), (c), (d),and (e) are trivial consequences of Lemmas 7.2, 2.14,
2.32, and 2.23.

To prove (f), we shall show that � is 59-exact, where

� = rem0 � prod = (P � q20)� 2q0(q � q0) = (P � q2) + (q � q0)
2:

Since q0 is 32-exact, Lemma 2.14 implies q20 is 64-exact, i.e., q
2
02

63�expo(q2
0
) 2 Z. But

since q20 � q2 > P=2, we have

expo(q20) � expo(q2) � expo(P )� 1;

hence q202
64�expo(P ) 2 Z. Since P is 64-exact, this implies

(P � q20)2
64�expo(P ) = P264�expo(P ) � q202

64�expo(P ) 2 Z:

By Lemma 2.11, 2expo(q) � expo(q2) � 1 � expo(P ) � 2: Therefore, since q is
64-exact, q0 is 32-exact, and expo(q) � expo(q0),

2q0(q � q0)2
95�expo(P ) = q02

31�expo(q)(q � q0)2
63�expo(q)22expo(q)�expo(P )+2 2 Z:

Combining these results, we have

�295�expo(P ) = (P � q20)2
95�expo(P ) � 2q0(q � q0)2

95�expo(P ) 2 Z:

But since � = (P � q2) + (q � q0)
2, Corollary 6.6 and Lemma 6.2 imply

� < 2�38P + 2�60P < 2�37P;

hence expo(�) � expo(P )� 37. Thus,

�258�expo(�) = �295�expo(P )2expo(P )�37�expo(�) 2 Z:2

Corollary 7.4 rem2 = trunc(P � q2; 64):

Proof: rem1 � sq = (P � q20)� 2q0(q � q0)� (q � q0)
2 = P � q2. 2

Lemma 7.5 (q + rem2
r3
2 )

2 < P .

Proof: This follows from Lemma 7.1 and Corollary 7.4. 2

Lemma 7.6 (rem2
r3
2 )

2 < 2�77q2.

Proof: By Lemma 2.21, Corollary 7.4, Lemma 5.4, and Corollary 6.6,

(rem2
r3
2
)2 � (P � q2)2

r23
4
< 2�76P 2 r

2
3

4
= 2�78P (Pr23) � 2�78P < 2�77q2:2
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Lemma 7.7 (q + res)2 � (1� 2�74)P .

Proof: By Lemma 2.41, Lemma 2.21, and Corollary 6.6,

res � trunc(rem2
r3
2
; 64) � rem2

r3
2
(1� 2�63)

� (P � q2)
r3
2
(1� 2�63)2 � (P � q2)

r3
2
(1� 2�62)

� (P � q2)
r3
2
� 2�38P

r3
2
2�62 = (P � q2)

r3
2
� 2�101Pr3;

hence

(q + res)2 �
�
q + (P � q2)

r3
2
� 2�101Pr3

�2
:

We shall apply Lemma 2.7, substituting q + (P � q2) r32 for a, 2�101Pr3 for b, and
�75 for n. Under these substitutions, we have

(1� 2n)P < a2 =

�
q + (P � q2)

r3
2

�2
< P

by Lemma 7.1, and

b2 = 2�202(Pr23)P � 2�202P < 2�152P = 22n�2P

by Lemma 5.4. Thus,

(q + res)2 � (a� b)2 � (1� 2n+1)P = (1� 2�74)P:2

Lemma 7.8 q + res = odd(q + rem2
r3
2 ; m) for some m � 102.

Proof: By Lemmas 2.11 and 7.6,

expo(rem2
r3
2
) � 1

2
expo(2�77q2) � 1

2
(2expo(q) + 1� 77) = expo(q)� 38:

In particular, since q is 64-exact, q is also n-exact, where

n = 64� 1 + expo(q)� expo(rem2
r3
2
) > 64:

Hence, by Lemma 2.46,

q + res = q + odd(rem2
r3
2
; 64)

= odd(q + rem2
r3
2
; 64 + expo(q + rem2

r3
2
)� expo(rem2 fracr32)):

where

64 + expo(q + rem2
r3
2
)� expo(rem2

r3
2
) � 64 + expo(q)� expo(rem2

r3
2
)

� 64 + 38 = 102:2
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Corollary 7.9 q + res is not 101-exact.

Proof: This follows from Lemmas 7.8 and 2.44. 2

Corollary 7.10 Let h 2 Q. If h � 0 and h2 � P , then rnd(q + res;mode; prec)�
rnd(h;mode; prec).

Proof: By Lemma 7.5, h > q+rem2
r3
2 . Since 102�2 > 64 � prec, the corollary

follows from Lemma 2.47. 2

Lemma 7.11 Let `; h 2 Q. If ` � 0, h � 0, and `2 � P � h2, then

` � 2expo(q+res)�72 < q + res < h+ 2expo(q+res)�101:

Proof: The �rst inequality is a consequence of Lemma 7.7: since

`2 � P � (q + res)2=(1� 2�74) < (q + res)2=(1� 2�74)2;

` < (q + res)=(1� 2�74) � (q + res)(1 + 2�73) < (q + res) + 2expo(q+res)�72:

The second inequality is derived from Lemmas 7.8, 2.42, and 7.5: since

q + res = odd(q + rem2
r3
2
; m) � trunc(q + rem2

r3
2
; m);

expo(q + res) � expo(trunc(q + rem2
r3
2
; m)) = expo(q + rem2

r3
2
):

Thus,

q + res � q + rem2
r3
2
+ 2expo(q+rem2

r3
2
)�101 < h + 2expo(q+res)�101:2

8 Final Computation

It follows from Lemma 7.7 and Corollary 7.10 that q + res is su�ciently accurate
except when it is only slightly less than a rounding boundary. In order to test for
this condition, q+ res is rounded to 64 bits using the modes trunc, near, and away,
yielding root0, and root1, and root2, respectively. Thus, q + res lies in the interval
between the successive 64-exact numbers root0 and root2. (Corollary 7.9 guarantees
that these two numbers are distinct.) There are two rounding boundaries of concern:
the midpoint of the interval and root2.

The approximate location of q + res relative to this interval is given by the
variable bits, the fractional part of which represents the �rst 8 bits of q + res that
are lost in the truncation to root0 (Lemma 8.7). Thus, there are two values of this
bit sequence that are handled specially: 11111111 and 01111111, corresponding to
bits = 2 � 2�8 and bits = 1 + 2�1 � 2�8, respectively. We shall show that for all
other values, the correct result is given by rnd(q + res;mode; prec). The proof will
then be completed by considering each exceptional case separately.
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8.1 Test for Boundary Cases

...
root0  trunc(q + res; 64)
root1  near(q + res; 64)
root2  away(q + res; 64)
used trunc(root0 � q; 64)
end trunc(res� used; 64)
ulp trunc(root2 � root0; 64)
aeb trunc(ulp+ end; 9)
bits sig(aeb)
if bits =2 f2� 2�8; 1 + 2�1 � 2�8g
then sqrt rnd(q + res;mode; prec)

...

Lemma 8.1 root0 = trunc(q + rem2
r3
2 ; 64).

Proof: This is an immediate consequence of Lemmas 7.8 and 2.45. 2

Corollary 8.2 root20 < P .

Proof: This follows from Lemmas 8.1 and 7.5. 2

Lemma 8.3 res� used = (q + res)� root0.

Proof: We shall show that used = root0� q as an application of Corollary 2.17.
Thus, we must show that jroot0 � qj � min(root0; q). The proof will be based on
the estimate

jroot0 � qj � jroot0 � (q + rem2
r3
2
)j+ jrem2

r3
2
j:

By Lemma 7.6, (rem2
r3
2 )

2 < 2�77P , and by Lemmas 2.21 and 7.5,

(root0 � (q + rem2
r3
2
))2 � 2�126(q + rem2

r3
2
)2 < 2�126P:

It follows that

(root0 � q)2 � (jroot0 � (q + rem2
r3
2
)j+ jrem2

r3
2
j)2

� 4max[(root0 � (q + rem2
r3
2
))2; (rem2

r3
2
)2] < 2�75P:

But by Lemma 6.1, q2 > 2�1P , and by Lemma 2.21

root20 � (q + rem2
r3
2
)2(1� 2�63)2 � q2(1� 2�63)2 > 2�2P:2
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Lemma 8.4 ulp = root2 � root0 = 2expo(q+res)�63.

Proof: By Lemmas 2.23 and 2.32 and Corollary 7.9, root0 and root2 are 64-exact
and q + res is not. Thus, root0 < q + res < root2. Let b = root0 + 2expo(q+res)�63.
By Lemma 2.18, b is 64-exact and root2 � b. But by Lemma 2.23, b > q + res, and
by Lemma 2.32, b � root2. Thus, b = root2. 2

Lemma 8.5 root0 + end = trunc(q + res;m) for some m � 128.

Proof: By Lemma 2.25, expo(q + res � root0) � expo(q + res) � 64, and by
Lemmas 8.3 and 2.27,

root0 + end = root0 + trunc(q + res � root0; 64)

= trunc(q + res; 64 + expo(q + res) � expo(q + res � root0)):2

Corollary 8.6 0 < end < ulp.

Proof: By Lemmas 7.9 and 8.3, end > 0; by Lemmas 7.9, 8.4, and 8.5,

root0 + end � q + res < root2 = root0 + ulp:2

Lemma 8.7 trunc(q + res; 72) = root0 + (bits� 1)ulp.

Proof: We shall invoke Lemma 2.29 with x = q + res, n = 64, and k = 8. In
this case, we have trunc(x; n) = root0 and e = expo(q + res)� 63. By Lemma 8.3,

z = trunc(q + res� root0; 64) = trunc(res � used; 64) = end;

and hence
trunc(2e + z; k + 1) = trunc(end+ ulp; 9) = aeb:

Thus, Lemma 2.29 yields

trunc(q + res; 72)� root0 = (sig(aeb)� 1)2e = (bits� 1)ulp:2

Corollary 8.8 Let `; h 2 Q. If ` � 0, h � 0, and `2 � P � h2, then

`� 2expo(q+res)�70 < root0 + (bits� 1)ulp < h+ 2expo(q+res)�101:

Proof: Let e = expo(q + res). By Lemma 2.21,

q + res� 2e�71 < root0 + (bits� 1)ulp � q + res:

Thus, by Corollary 7.11,

`� 2e�70 < `� 2e�72 � 2e�71 < q + res� 2e�71 < root0 + (bits� 1)ulp

and

h+ 2e�101 > q + res � trunc(q + res; 72) = root0 + (bits� 1)ulp:2
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Corollary 8.9

(a) If bits < 1 + 2�1, then q + res < root0 + ulp=2, root1 = root0, and end <
ulp=2;

(b) If bits � 1 + 2�1, then q + res > root0 + ulp=2 and root1 = root2;
(c) If bits > 1 + 2�1, then end > ulp=2.

Proof: Let m = (root0 + root2)=2 = root0 + ulp=2. Note that m is 65-exact.

(a) If bits < 1 + 2�1, then trunc(q + res; 72) < m, hence q + res < m by
Lemma 2.23, and Lemma 2.36 implies root1 = root0. By Lemma 8.5, root0+ end <
m.

(b) In this case, q+res � trunc(q+res; 72) � m. By Corollary 7.9, q+res > m,
and root1 = root2 by Lemma 2.36.

(c) Since bits is 9-exact and expo(bits) = 0, bits > 1 + 2�1 implies bits �
1 + 2�1 + 2�8. Thus,

q + res � root0 + (bits� 1)ulp � root0 + (2�1 + 2�8)ulp = root0 + ulp=2 + 2e�71:

But now by Lemmas 8.5 and 2.21,

root0 + end > q + res� 2e�127 � root0 + ulp=2 + 2e�71 � 2e�127 > root0 + ulp=2:2

Lemma 8.10 Let `; h 2 Q such that ` � 0, h � 0, and `2 � P � h2. If bits =2
f2� 2�8; 1 + 2�1 � 2�8g, then

rnd(`;mode; prec)� sqrt � rnd(h;mode; prec):

Proof: In this case, sqrt = rnd(q + res;mode; prec). By Corollary 7.10,

rnd(q + res;mode; prec)� rnd(h;mode; prec):

Thus, we need only show

rnd(`;mode; prec)� rnd(q + res;mode; prec):

Note that 1 � bits < 2 and bits is 9-exact. Since bits 6= 2 � 2�8, we must have
bits � 2� 2�7: if not, then according to Lemma 2.18, bits > 2� 2�7 would imply

bits � 2� 2�7 + 2�8 = 2� 2�8;

hence bits > 2� 2�8, which in turn would imply bits � 2.
Let e = expo(q + res) = expo(root0). Then ulp = 2e�63 and by Corollary 8.8,

` < root0 + (1� 2�7)2e�63 + 2e�70 = root0 + ulp = root2:
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For the case mode = inf , the desired inequality follows from Lemmas 2.35
and 2.34:

rnd(`;mode; prec) = away(`; prec)� away(root2; prec)

= away(away(q + res; 64); prec) = away(q + res; prec)

= rnd(q + res;mode; prec):

For the case mode 2 ftrunc;minfg, note that since

trunc(`; 64)� ` < root2 = root0 + ulp;

trunc(`; 64) � root0 by Lemma 2.18. Thus, by Lemmas 2.23 and 2.26,

rnd(`;mode; prec) = trunc(`; prec) = trunc(trunc(`; 64); prec)

� trunc(root0; prec) = trunc(trunc(q + res; 64); prec)

= trunc(q + res; prec) = rnd(q + res;mode; prec):

Finally, consider the case mode = near. Let m = root0 + ulp=2: Then m is 65-
exact by Lemma 2.18 and since m < root2 � 2e+1 by Corollary 2.33, expo(m) = e.

Suppose bits � 1 + 2�1. Then m < q + res by Corollary 8.9. Now since
` < root2 = m+ 2e�64, Corollary 2.40 implies

rnd(`;mode; prec) = near(`; prec) � near(q+res; prec) = rnd(q+res;mode; prec):

We may assume, then, that bits < 1+2�1. By hypothesis, bits 6= 1+2�1� 2�8.
If bits > 1 + 2�1 � 2�7, then by Lemma 2.18, we would have

bits � 1 + 2�1 � 2�7 + 2�8 = 1+ 2�1 � 2�8;

hence bits > 1 + 2�1 � 2�8, which in turn would imply bits � 1 + 2�1. Thus, we
may further assume that bits � 1 + 2�1 � 2�7. By Corollary 8.8,

` < root0 + (2�1 � 2�7)2e�63 + 2e�70 = root0 + 2�64:

Since root0 < q + res, the result again follows from Corollary 2.40. 2

8.2 Boundary Cases

The objective of this section is to complete the proof of the inequalities stated in
Theorem 2. The cases mode 6= near and mode = near are handled separately in
the following two lemmas. Note that in view of Lemma 8.10, we may assume that
bits is one of the two boundary values, 2� 2�8 and 1 + 2�1 � 2�8.
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...
else if mode 6= near then
det away(root2root2; 64)
if P � det
then sqrt rnd(root1 + end;mode; prec)
else sqrt  rnd(root0 + end;mode; prec)

...

Lemma 8.11 Let `; h 2 Q such that ` � 0, h � 0, and `2 � P � h2. If mode 6=
near, then

rnd(`;mode; prec)� sqrt � rnd(h;mode; prec):

Proof: We consider two cases, corresponding to the branches of the conditional
statement above.

Case 1: P � det
Let e = expo(q + res). Since bits < 2, Lemma 8.8 implies

` < root0 + ulp+ 2e�70 < root0 + 2ulp = root2 + ulp:

Since P � root22, P > root22 by Lemma 6.5, and hence h > root2.
Substituting root2 for ` in Lemma 8.8, we have

root2 � 2e�70 < root0 + (bits� 1)ulp;

hence

bits > 1 + (root2� root0 � 2e�70)=ulp = 1+ (ulp� 2e�70)=ulp = 2� 2�7 > 1+ 2�1:

By Lemma 8.9, root1 = root2, and hence sqrt = rnd(root2+end;mode; prec). Note
that by Corollary 8.6, root2 < root2 + end < root2 + ulp.

Let b = root2 + 2expo(root2)�63. Then b � root2 + ulp and by Lemma 2.18, root2
and b are successive 64-exact numbers. By Lemmas 2.18 and 2.32,

away(root2 + end; 64) = away(root2 + ulp; 64) = b � away(h; 64);

and by Lemma 2.35, it follows that

away(root2 + end; prec) = away(root2 + ulp; prec)� away(h; prec):

By Lemmas 2.18 and 2.23,

trunc(root2 + end; 64) = root2 � trunc(`; 64);
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and by Lemma 2.26, it follows that

trunc(root2 + end; prec) = trunc(root2; prec) � trunc(`; prec):

If mode = inf , then

sqrt = away(root2 + end; prec) = away(root2 + ulp; prec)

and since ` < root2 + ulp,

away(`; prec)� away(root2 + ulp; prec) � away(h; prec):

If mode = minf or mode = trunc, then

sqrt = trunc(root2 + end; prec) = trunc(root2; prec)

and since root2 < h,

trunc(`; prec) � trunc(root2; prec) � trunc(h; prec):

Case 2: P < det

Since P is 64-exact, P < away(root22; 64) implies P < root22 by Lemma 2.32,
hence ` < root2. By Lemma 8.2, root0 < h. In this case, sqrt = rnd(root0 +
end;mode; prec), and by Corollary 8.6,

root0 < root0 + end < root0 + ulp = root2:

If mode = inf , then by Lemmas 2.32 and 2.35,

sqrt = away(root0 + end; prec) = away(away(root0 + end; 64); prec)

= away(root2; prec)

and

away(`; prec) = away(away(`; 64); prec)� away(root2; prec)

� away(away(h; 64); prec) = away(h; prec):

If mode = minf or mode = trunc, then by Lemmas 2.23 and 2.26,

sqrt = trunc(root0 + end; prec) = trunc(trunc(root0 + end; 64); prec)

= trunc(root0; prec)

and

trunc(`; prec) = trunc(trunc(`; 64); prec)� trunc(root0; prec)

� trunc(h; prec):2
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...
else (* mode = near *)
det trunc(root1root2; 64)
if P � det then
sqrt near(root0 + end; prec)

else if bits = 2� 2�8 then
ends trunc( 1

16end; 64)
sqrt near(root2 + ends; prec)

else sqrt  near(root2 � end; prec)

Lemma 8.12 Let `; h 2 Q such that ` � 0, h � 0, and `2 � P � h2. If mode =
near, then

rnd(`;mode; prec)� sqrt � rnd(h;mode; prec):

Proof: Let e = expo(q + res) = expo(root0),

m = root0 + ulp=2 = (root0 + root2)=2;

and
m0 = root2 + ulp=2:

We shall proceed by a case analysis based on the structure of the algorithm. In
each case to be considered, the computed value of sqrt is near(�; prec) for some
�. We shall see that this value always lies within one of the following three inter-
vals: (root0; m), (m; root2), and (root2; m

0). Note that if (�; �) is any one of these
intervals, then � is 65-exact and � < � � � + 2expo(�)�64. Thus, according to
Corollary 2.40, in order to prove

near(`; prec) � near(�; prec) � near(h; prec);

it su�ces to show (a) � < � < �, (b) ` < �, and (c) h > �.

Case 1: P > det, bits = 2� 2�8

(a) � = root2 + ends, where 0 < ends < ulp=16, hence root2 < � < m0.
(b) By Corollary 8.8, ` < root0 + (bits� 1)ulp+ 2e�70 < m0.
(c) By Lemma 8.9, root1 = root2, and so P > trunc(root22; 64). Since P is

64-exact, P > root22 by Lemma 2.23, hence h > root2.

Case 2: P > det, bits = 1+ 2�1 � 2�8

(a) � = root2 � end. Since 0 < end < ulp, m < � < root2.
(b) By Corollary 8.8, ` < root0 + (bits� 1)ulp+ 2e�70 < root2.
(c) By Lemma 8.9, root1 = root0, hence P > trunc(root0root2; 64) and by

Lemma 2.23, P > root0root2. But then by Lemma 2.18, since root0root2 and P are
both 128-exact,

P � root0root2 + 2expo(root0root2)�127 � root0root2 + 22e�127:
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But
root0root2 = (m� 2e�64)(m+ 2e�64) = m2 � 22e�128

and hence
P � m2 � 22e�128 + 22e�127 > m2:

Thus, h > m.

Case 3: P � det, bits = 2� 2�8

(a) � = root0 + end. By Corollary 8.9, m < � < root2.
(b) Since P � root1root2 � root22, P < root22, hence ` < root2.
(c) By Corollary 8.8, h > root0 + (bits� 1)ulp� 2e�101 > root0 + ulp=2 = m.

Case 4: P � det, bits = 1+ 2�1 � 2�8

(a) Again, we have � = root0 + end. But in this case, by Corollary 8.9, root0 <
� < m.

(b) By Corollary 8.9, root1 = root0. As we observed under Case 2,

root0root2 = m2 � 22e�128 < m2:

But in this case, P � root0root2, hence ` < m.
(c) By Corollary 8.2, h > root0. 2

9 Exponent Bounds

It remains to show that the prescribed exponent bound is uniformly satis�ed. Two
technical lemmas will be required:

Lemma 9.1 Let x; x0; y 2 R with j1� xy2j � 1=2 and expo(x0) = expo(x). Then
(a) jexpo(y)j < jexpo(x)j=2 + 2;
(b) jexpo(x0y)j < jexpo(x)j=2+ 3.

Proof: Since 1=2 � xy2 � 3=2,

�1 = expo(1=2) � expo(xy2) � expo(3=2) = 0:

Thus, by Lemma 2.11,

j2expo(y) + expo(x)j
� j2expo(y)� expo(y2)j+ jexpo(y2) + expo(x)� expo(xy2)j+ jexpo(xy2)j
� 1 + 1 + 1 = 3;

hence 2jexpo(y)j � jexpo(x)j+ 3, which implies (a).
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For the proof of (b), we have

j2expo(x0y)j � 2jexpo(x0y)� (expo(x0) + expo(y))j
+j2expo(y) + expo(x0)j+ jexpo(x0)j

= 2jexpo(x0y)� (expo(x0) + expo(y))j
+j2expo(y) + expo(x)j+ jexpo(x)j

� 2 + 3+ jexpo(x)j:2

Lemma 9.2 Let x; y 2 R and n 2 Z+, n > 1. If x and y are n-exact, then

jexpo(x� y)j � max(jexpo(x)j; jexpo(y)j)+ n� 1

Proof: First suppose that xy < 0. Then we may assume x > 0 and y < 0, hence

0 < x < x� y < 2max(x;�y)

and

expo(x) � expo(x� y) � expo(2max(x;�y)) � max(jexpo(x)j; jexpo(y)j)+ 1:

Thus, we may assume that xy > 0 and, without loss of generality, that y > x > 0.
But then by Corollary 2.19,

expo(y) � expo(y � x) � expo(x) + 1� n:2

Theorem 1 will follow from our �nal lemma:

Lemma 9.3 If P is a non-negative generalized (64; 15)-
oating point number, mode
is an IEEE rounding mode, prec 2 Z+, and prec � 64, then FSQRT executes
successfully on hP;mode; preci.

Proof: It is evident by inspection that the value of every numerical expression
occurring in the program is 64-exact. Thus, we need only show that no value is
generated with an exponent outside of the interval [1 � 2�16; 216]. We begin with
the observation that jexpo(P )j � 215, which is clearly implied by the hypothesis,
and proceed by considering each assignment statement in turn. The proof is a series
of applications of Lemmas 9.1 and 9.2.

We begin with the bindings generated during the �rst Newton-Raphson itera-
tion. Since expo(Ph) = expo(P ), jexpo(Ph)j � 215. Furthermore, by Lemma 4.2,

jexpo(r0)j < jexpo(P )j=2+ 2 � 214 + 2

and
jexpo(s0)j � jexpo(r0Ph)j+ 1 < jexpo(P )j=2 + 3 + 1 � 214 + 4:
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This in turn implies

jexpo(t0)j � jexpo(r0)j+ 1 + 1 � 214 + 4

and

jexpo(u0)j � jexpo(s0r0)j+ 1 � jexpo(s0)j+ jexpo(r0)j+ 2 � 215 + 8:

Thus,

jexpo(v0)j � jexpo(3� u0)j+ 1 � max(jexpo(u0)j; 1)+ 31 + 1 � 215 + 40:

Finally, by Lemma 5.2,

jexpo(r1)j < jexpo(P )j=2 + 2 � 214 + 2:

The variables involved in the second and third iterations are handled similarly.
Next, by Lemma 5.4, we have

jexpo(q)j = jexpo(r3P )j < jexpo(P )j=2 + 3 � 214 + 3

and
jexpo(q0)j � jexpo(r3P )j+ 1 < 214 + 4:

Thus,
jexpo(P0)j = jexpo(q20)j � 2jexpo(q0)j+ 1 � 215 + 9

and

jexpo(rem0)j � jexpo(P �P0)j+1 � max(jexpo(P )j; jexpo(P0)j)+63+1 � 215+73:

We may assume that execution continues with the re�nement phase. Thus,

jexpo(diff)j = jexpo(q � q0)j � max(jexpo(q)j; jexpo(q0)j) + 63 � 214 + 67;

jexpo(q2)j � jexpo(q0)j+ 1 � 214 + 5;

jexpo(prod)j � jexpo(q2diff)j+ 1 � jexpo(q2)j+ jexpo(diff)j+ 2 � 215 + 74;

jexpo(sq)j � jexpo(diff2)j+ 1 � 2jexpo(diff)j+ 2 � 215 + 136;

jexpo(t3)j � jexpo(r3)j+ 1 + 1 � 214 + 4;

jexpo(rem1)j = jexpo(rem0 � prod)j � max(jexpo(rem0)j; jexpo(prod)j)+ 63

� 215 + 137;

jexpo(rem2)j = jexpo(rem1�sq)j � max(jexpo(rem1)j; jexpo(sq)j)+63 � 215+200;
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and

jexpo(res)j = jexpo(rem2t3)j � jexpo(rem2)j+ jexpo(t3)j+ 1 � 215 + 214 + 205:

Since q < q + res < 2q, we have

jexpo(q + res)j � jexpo(q)j+ 1 � 214 + 4:

Thus, for i = 0; 1; and 2, jexpo(rooti)j � 214 + 5. Continuing, we have

jexpo(used)j = jexpo(root0 � q)j � max(jexpo(root0)j; jexpo(q)j)+ 63 � 214 + 68;

jexpo(end)j = jexpo(res� used)j � max(jexpo(res)j; jexpo(used)j)+ 63

� 215 + 214 + 268;

jexpo(aeb)j = jexpo(ulp)j � jexpo(root0)j+ 63 � 214 + 68;

and
jexpo(bits)j = 0:

In each of the boundary cases, we have for some mode and some i and j,

jexpo(det)j = jexpo(rnd(rootirootjmode; 64))j
� jexpo(rooti)j+ jexpo(rootj)j+ 2 � 215 + 12:

In the boundary case for mode = near, we must also observe that

jexpo(ends)j = jexpo( 1
16
end)j � jexpo(end)j+ 4 � 215 + 214 + 272:

Finally, since q2 < P < (2q)2, we have

rnd(q;mode; prec)� sqrt � rnd(2q;mode; prec);

and hence

jexpo(sqrt)j � max(jexpo(rnd(q;mode; prec))j; jexpo(rnd(2q;mode; prec))j)
� jexpo(q)j+ 2 � 214 + 5:2
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10 Modi�cation of the Algorithm

It was mentioned in our introduction that a minor modi�cation of the original K5
square root algorithm was required to produce the �nal version presented here. We
conclude with a discussion of this modi�cation and AMD's decision to adopt it.

The modi�cation was a change in the rounding mode used in the computation
of the variable res: originally, trunc was used instead of odd. The purpose of this
variable was to produce an approximation q+res that represented an improvement
over q while ensuring the inequality q + res <

p
P , which was exploited in the

subsequent analysis. In our attempt to formalize this analysis, we found that it
depended on the assumption that q + res was not 64-exact, which we were unable
to justify. A violation of this assumption, however improbable, would have the
disastrous consequences root0 = root1 = root2 and ulp = 0, a possibility that had
not been considered by the designers of the algorithm.

Although this assumption has been recognized by the designers as an oversight,
it remains unclear that it is incorrect, since we have been unable to exhibit a coun-
terexample. To see why this may be di�cult, note that q and res are both computed
with 64-bit precision, and by Lemma 7.6, the exponents of these numbers di�er by
38 or more. Thus, in order for q + res to be 64-exact, the least signi�cant 38 bits
of res must all be 0. Since there is no apparent reason for this to be any more or
less probable than the occurrence of any other sequence of 38 bits, it is reasonable
to suppose that this will occur with probability 2�38. Following this line, we would
expect the algorithm to fail at most once in 238 executions, assuming randomly
distributed inputs. It is not surprising, therefore, that failure was not observed
in simulation. Moreover, since there is no obvious correlation between this 38-bit
sequence and the properties of the input P , it should be no more surprising that we
have been unable to engineer a counterexample.

The decision to modify the implementation was not clear at �rst, but became
easier when Tom Lynch proposed an elegant solution. Although the solution intro-
duced a new rounding mode, odd, which increased the complexity of proof, it did
not a�ect the cycle count of the instruction.

With this modi�cation, it was clear that q + res could not be 64-exact (Corol-
lary 7.9), and according to Lynch's intuition, the critical properties of the approxi-
mation were preserved even though the inequality q+res <

p
P was no longer true.

Indeed, the weaker inequality given by Corollary 7.10 was found to be su�cient.
Thus, the �nal result was both provably correct and e�ciently implemented.
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