A Case Study in Formal Verification
of Register-Transfer Logic with ACL2:
The Floating Point Adder of the AMD Athlon™

Processor

David M. Russinoff

Advanced Micro Devices, Inc.
Austin, TX

Abstract. As an alternative to commercial hardware description lan-
guages, AMD' has developed an RTL language for microprocessor de-
signs that is simple enough to admit a clear semantic definition, providing
a basis for formal verification. We describe a mechanical proof system
for designs represented in this language, consisting of a translator to the
ACL2 logical programming language and a methodology for verifying
properties of the resulting programs using the ACL2 prover. As an il-
lustration, we present a proof of IEEE compliance of the floating-point
adder of the AMD Athlon processor.

1 Introduction

The formal hardware verification effort at AMD has emphasized theorem prov-
ing using ACL2 [3], and has focused on the elementary floating-point operations.
One of the challenges of our earlier work was to construct accurate formal models
of the targeted circuit designs. These included the division and square root op-
erations of the AMD-K5 processor [4, 6], which were implemented in microcode,
and the corresponding circuits of the AMD Athlon processor [7], which were
initially modeled in C for the purpose of testing. In both cases, we were required
to translate the designs by hand into the logic of ACL2, relying on an unrigorous
understanding of the semantics of the source languages.

Ultimately, however, the entire design of the Athlon was specified and vali-
dated at the register-transfer level in a hardware description language that was
developed specifically for that purpose. Essentially a small synthesizable sub-
set of Verilog with an underlying cycle-based execution model, this language is
simple enough to admit a clear semantic definition, providing a basis for formal
analysis and verification. Thus, we have developed a scheme for automatically
translating RTL code into the ACL2 logic [8], thereby eliminating an important
possible source of error. Using this scheme, we have mechanically verified a num-
ber of operations of the Athlon floating-point unit at the register-transfer level,

! AMD, the AMD logo and combinations thereof, AMD-K5, and AMD Athlon are
trademarks of Advanced Micro Devices, Inc.

including all addition, subtraction, multiplication, and comparison instructions.
As an illustration of our methods, this paper describes the proof of correctness
of the Athlon floating-point adder, a state-of-the-art adder with leading one
prediction logic [5].

Much of the effort involved in the projects mentioned above was in the devel-
opment and formalization of a general theory of floating-point arithmetic and its
bit-level implementation. The resulting ACL2 library [9] is available as a part of
ACL2 Version 2.6. Many of the included lemmas are documented in [6] and [7],
and some of the details of the formalization are described in [8]. In Sections 2
and 3 below, we present several extensions of the library that were required for
the present project.

In Sections 4 and 5, we demonstrate the utility of our floating-point theory,
applying it in a rigorous derivation of the correctness of the adder. The theorem
reported here is a formulation of the main requirement for IEEE compliance, as
stipulated in Standard 754-1985 [1]:

[Addition] shall be performed as if it first produced an intermediate
result correct to infinite precision and with unbounded range, and then
rounded that result ...

In fact, we have also verified that the adder design conforms to other aspects
of the behavior prescribed by [1] pertaining to overflow, underflow, and other
exceptional conditions, as well as the refinements necessary for Pentium com-
patibility, as defined in [2]. However, since our main purpose here is to describe
a verification methodology rather than to present the details of a specific proof,
these secondary results have been omitted from this report.

All of our theorems have been formally encoded as propositions in the logic
of ACL2, based on the ACL2 translation of the RTL code, and their proofs have
all been mechanically checked with the ACL2 prover. For this purpose, we have
developed a proof methodology based on some features of ACL2. In Section 5,
we describe both the translation scheme and our proof methodology, using the
adder as an illustration.

The use of mechanical theorem proving in the validation of hardware designs
is still uncommon in the computer industry, mainly because of the effort that
it entails. The work reported here, including the development of the translator
and other reusable machinery, consumed some twenty weeks of the author’s
time, which was divided approximately equally between deriving the informal
proofs and checking them mechanically. However, as has been noted before,
the cost of formal methods is far outweighed by its potential benefits. In this
case, our analysis of the adder exposed a logical error that would have, under
certain conditions, resulted in reversing the sign of the sum of zero and an
arbitrary nonzero number. This flaw had already survived extensive testing and
was unlikely to be detected by conventional validation methods. It was easily
repaired in the RTL, but could have been very expensive if not discovered until
later.

2 Bit Vectors and Logical Operations

Bit vectors are the fundamental data type of our RTL language as well as the
basis of our theory of floating-point arithmetic. We identify the bit vectors of
length n with the natural numbers in the range 0 < z < 2". Accordingly, we
define the k" bit of x to be

alk] = rem(|/2"],2)

while the slice of & from the i** bit down through the j** is given by
o+] = Lrem(e, 2129,

The standard binary logical operations, x & y, = | y, and = " y, are defined
recursively, e.g.,

0 ifz=0
x&y=1< 2(|z/2| & |y/2]) + 1if z and y are both odd
2(1z/2] & |y/2]) otherwise.

If x is a bit-vector of length n, then its complement with respect to n is
compl(z,n) =2" —x — 1.

Following conventional notation, we shall use the abbreviation

“ali + j) = compl(ali : j},i — j +1).

The properties of these functions are collected in the ACL2 floating-point
library [9]. Many of the basic lemmas are documented in [7] and [8]. Here we shall
present several of the more specialized library lemmas that pertain to floating-
point addition, in order to illustrate our methods of proof, especially the use of
mathematical induction.

The design of the adder involves several computational techniques that are
motivated by the observation that while the time required for integer addition
increases logarithmically with the inputs, the logical operations defined in Sec-
tion 2 may be executed in constant time. Thus, for example, the following result,
which is readily proved by induction based on the recursive definitions of the
logical operations, provides an efficient method for adding three vectors using a
two-input adder:

Lemma 1. For all z,y,z € N,
ztyt+z=(x"y 2)+2((z&y)|(x&2)|(y & 2)).

A more interesting optimization, known as leading one prediction, allows the
result of a subtraction to be normalized efficiently (in the event of cancellation)
by performing the required left shift in advance of the subtraction itself. This
requires a prediction of the highest index at which a 1 occurs in the difference.

Although the precise computation of this index appears generally to be as com-
plex as the subtraction itself, a useful approximate solution may be obtained
more quickly.

For any x € Z*, expo(x) will denote the index of the leading one of z, i.e., the
greatest integer satisfying 2¢77°(*) < |z|. Let a and b be integers with 0 < b < a
and expo(a) = e. We shall compute, in constant time (independent of a and b),
a positive integer A such that expo(a — b) is either expo(X) or expo(A) — 1. We
begin by defining a function that returns the desired exponent ¢ = expo(N). If
expo(b) < e —1, then a/2 < a — b < a and we have the trivial solution ¢ = e. In
the remaining case, e — 1 < expo(b) < e, ¢ may be computed as follows: First,
let m be the largest index such that a[m] > b[m], i.e., ajm] = 1 and b[m] = 0.
If am : 0] = 2™ and b[m : 0] = 2™ — 1, then ¢ = 0. Otherwise, ¢ is the largest
index such that ¢ < m and a[¢ — 1] > b[¢ — 1].

The correctness of this computation is established by the following lemma,
in which ¢ is represented as a recursive function:

Lemma 2. Let a,b,n € N. For alld € Z and k € N, let ¢, = a[k] — b[k] and
0 ifk=0
dla,byer—1,k—1)if k>0 and d=0

¢(a,b,d, k — 1) ifk>0andd#0 andd = —cp_
k ifk>0andd#0 and d # —cj_1.

¢(a7 b: d: k) =

Ifa < 2™, b< 2", and a # b, then ¢(a,b,0,n) — 1 < expo(a — b) < ¢(a,b,0,n).

Proof: It is easy to show, by induction on k, that ¢(a,b,d, k) = ¢(b,a, —d, k).
Therefore, we may assume that a > b. Note also that if a[k —1:0] =a'[k—1: 0]
and b[k —1:0] =0b'[k — 1:0], then ¢(a,b,d, k) = ¢(a’, V', d, k).

In the case n =1, we have a =1, b = 0, and

expo(a —b) =0 = ¢(a,b,1,0) = ¢(a,b,0,1).

We proceed by induction, assuming n > 1.
Suppose first that ¢,_; = 0. Let o' = a[n —2: 0] and b’ = b[n — 2 : 0]. Then
by inductive hypothesis,

¢(a’,b',0,n—1) —1<expo(a —b") < ¢(a',b,0,n—1).
But a — b =a' — V', hence expo(a — b) = expo(a’ —b'), and
Qs(a: b7 0: n) = Qs(a: b7 Cn—1,M — 1) = Qs(a: b7 0: n-— 1) = Qs(a’: bl7 0: n-— 1)

Now suppose that ¢,_1 =1 and ¢,—o = —1. Then a[n — 1] =bn - 2] =1
and a[n — 2] = b[n — 1] = 0. It follows that

2l 492 s g >2n ! S > 2n 2
Leta' =a—2"2and ' =b—2""2. Then

s > 2 s > 0.

Once again,
é(a',b',0,n —1) — 1 < expo(a' —b") < p(a’,b',0,n — 1)
and expo(a — b) = expo(a’ — b'). But

(1)((1,6,0777,) = ¢((l,b,]-an - 1) = ¢((l,b,]-an - 2) = ¢(alabla 17” - 2)
=¢(a’,b',0,n —1).

In the remaining case, ¢,_1 = 1 and ¢,,_o > 0. Now
2">a>a—-b>2""' —bn—-3:0]>2""" —2""2 =2n"2
hence n — 2 < expo(a —b) < n — 1, while
¢(a,b,0,n) = ¢(a,b,1,n—1)=n—1.0

Thus, we require a general method for computing a number A such that
expo(A) = ¢(a,b,0,e + 1). First, we handle the relatively simple case expo(b) <
expo(a):

Lemma 3. Let a,b € N* with expo(b) < expo(a) = e, and let
A=2ale—1:0]| ~(2b)[e:0].
Then A > 0 and expo(N) — 1 < expo(a —b) < expo(N).
Proof: Since
¢(a,b,0,e+ 1) = ¢(a,b,1,e) = ¢(ale —1:0],b,1,¢),
it will suffice to show, according to Lemma 2, that
¢(ale —1:0],b,1,e) = expo(N).

Using induction, we shall prove the following more general result: For all a, b, k €
N, if a < 2F and b < 2% then

Hlab, 1,k) = expo(2a | ~(2D)[k - 0]).
If k=0, thena=0=0 and

expo(2a | ~(2b)[k : 0]) = expo(0 | 1) = 0 = ¢(a,b, 1, k).
Suppose k > 0. If a[k — 1] = 0 and b[k — 1] = 1, then

dla,b,1,k) = ¢(a,b, 1,k — 1)
= ¢(a, [—-2:0,1,k—-1)
=¢la,b—2"""1,k-1)
=ex (2(1 | ~(2b— 2Kk —1:0))
—PTp0(2a| "(2b)[k - 0]).

In the remaining case, ¢(a,b,1,k) = k and either a[k — 1] = 1 or b[k — 1] = 0.
Since

expo(2a | ~(2b)[k : 0]) = max(expo(2a), expo(~(2b)[k : 0])) < k,

we need only show maz(expo(2a), expo(~(2b)[k : 0])) > k. But if alk — 1] = 1,
then 2a > 2-2F1 = 2k and if b}k — 1] = 0, then b < 2*~! which implies
“(2b)[k: 0] =21 —2p—1>2F —1. O

The next lemma covers the more complicated case expo(b) = expo(a):
Lemma 4. Let a,b € N* such that a # b and expo(a) = expo(b) = e > 1. Let

At =a” “ble: 0],
Ag =a & “ble: 0],
A ="(a]~ble:0])]e: 0],

“Ale: 2] & Ale—1:1]& “A.Je—2:0]) |
Mle: 2] & Ale—1:1]& “Agle—2:0]) |

Ao =(Mle:2]& Nle—1:1]& "A;[e—2:0]) |
(
(
(CAhele:2] & Ngle—1:1] & “Ajle—2:0])

and
A =2\ +1- X][0]
Then X > 0 and expo(A) — 1 < expo(a —b) < expo(N).
Proof: Let ¢ and ¢ be defined as in Lemma 2. Since ¢, = 0,
¢(a,b,0,e+1) = ¢(a,b,0,e) = ¢(a,b,ce_1,e — 1),

and therefore it will suffice to show that A # 0 and ¢(a,b,c._1,e—1) = expo(N).
In fact, we shall derive the following more general result: For alln € N, ifn < e—1
and a[n : 0] # b[n : 0], then A[n : 0] # 0 and

o(a,b,cp,n) ife, =001 ¢y =0

expo(A[n : 0]) = {¢(a7 b, —c,,,n) otherwise.

For the case n = 0, note that a[0] # b[0] implies A[0 : 0] = 1, hence expo(A[0 :
0]) = 07 while ¢(a7 b: Co; 0) = gzﬁ(a, b7 —Co, 0) =0.
We proceed by induction. Let 0 < n < e — 1. Note that for 0 < k <e -2,

M[k] =1 M[k+2]=1and \j[k+1]=1and A,[k] =0, or
Mlk+2]=0and A\ [k+1]=1and X\, [k] =0, or
Mlk+2] =1 and \.[k + 1] = 1 and A\, [k] = 0, or
Alk+2] =0 and A\ [k + 1] = 1 and A\, [k] = 0.

For 0 <k <e,
Mkl =10, =0, ME]=1&¢, =1, and A k]=1& ¢, = —1.
It follows that for 0 < k < e — 2,

Xo[k] =1 cpy1 #0, and
if ¢y10 = 0 then ¢ # —c41, and
if ¢pao # 0 then ¢ # cpyq-

But since n > 0, A[n] = Ag[n — 1], and since n < e — 1,

An] =1< ¢, #0, and
if ¢;,41 = 0 then ¢, 1 # —cy, and
if ¢pp1 # 0 then ¢, 1 # cp.

If ¢,, = 0, then A[n] =0, hence A[n : 0] = A[n —1:0] # 0 and
expo(Aln : 0]) = expo(A[n — 1:0]) = é(a,b,cn_1,n — 1) = ¢(a,b, cp,n).

Next, suppose ¢, # 0 and ¢,41 = 0. If ¢,_1 = —¢,,, then A[n] = 0, hence
An: 0] =An—1:0] #0 and
expo(A[n : 0]) = expo(Aln —1:0]) = ¢(a,b, —¢c,—1,n — 1) = ¢(a, b, —c,,_1,n)
= ¢(a7 b: Cn, n)'

But if ¢,,_1 # —cy, then A[n] =1 and
expo(A[n : 0]) =n = ¢(a,b,cp,n).

Finally, suppose ¢,, # 0 and ¢;,41 # 0. If ¢,,_1 = ¢, then A\[n] =0, A[n : 0] =
Aln—1:0] #0, and

expo(A[n : 0]) = expo(Aln —1:0]) = ¢(a,b, —¢cp,—1,n — 1) = ¢(a, b, —c,,_1,n)
= ¢(a, b, —cp,n).

But if ¢,,_1 # ¢y, then A[n] = 1 and
expo(Aln : 0]) =n = ¢(a,b,—cp,n). O

Finally, for the purpose of efficient rounding, it will also be useful to predict
the trailing one of a sum or difference, i.e., the least index at which a 1 occurs.
The following lemma provides a method for computing, in constant time, an
integer 7 that has precisely the same trailing one as the sum or difference of
two given operands. As usual, subtraction is implemented through addition, by
incrementing the sum of one operand and the complement of the other. Thus, the
two cases ¢ = 0 and ¢ = 1 of the lemma correspond to addition and subtraction,
respectively. We omit the proof, which is similar to that of Lemma 4.

Lemma 5. Let a,b,c,n,k € N with a < 2", b< 2", k <n, and ¢ < 2. Let

_f(a"b)n—-1:0lifc=0
7T la b ife=1,

_f2(a]|b) ifec=0
K{Q(a&b) ifc=1,

and
7="(c"K)n:0].
Then

(a+b+c)k:00=0< 7[k:0]=0.

3 Floating Point Numbers and Rounding

Floating point representation of rational numbers is based on the observation
that every nonzero rational z admits a unique factorization,

x = sgn(z)sig(x)2°07P)

where sgn(z) € {1,—1} (the sign of z), 1 < sig(z) < 2 (the significand of z),
and expo(z) € 7 (the exponent of x).

A floating point representation of z is a bit vector consisting of three fields,
corresponding to sgn(z), sig(x), and expo(x). A floating point format is a pair of
positive integers ¢ = (o, €), representing the number of bits allocated to sig(x)
and expo(z), respectively. If z is a bit vector of length o + € + 1, then the
sign, exponent, and significand fields of z with respect to ¢ are s = z[o + €|,
e=z[oc+e—1:0], and m = z[o — 1 : 0], respectively. The rational number
represented by z is given by

decode(z,¢) = (—1)° -m - ge—2 " —o42

If z[o — 1] = 1, then z is a normal ¢-encoding. In this case, if x = decode(z, ¢),
then sgn(z) = (=1)%, sig(z) = 2° 'm, and expo(z) = e — (2! — 1). Note
that the exponent field is biased in order to provide for an exponent range
1 -2t < expo(x) < 2¢7L.

Let # € Q and n € N*. Then z is n-ezact iff sig(x)2" ! € Z. It is easily
shown that z is representable with respect to ¢, i.e., there exists z € N such that
x = decode(z, ¢), iff x is o-exact and —2¢7! + 1 < expo(x) < 2671

The AMD Athlon floating-point unit supports four formats, corresponding to
single, double, and extended precision as specified by IEEE, and a larger internal
format:

(24,7), (53,10), (64,15), and (68, 18).

In our discussion of the adder, floating point numbers will always be represented
in the internal (68,18) format. If z is a bit vector of length 87, then we shall
abbreviate decode(z, (68,18)) as z.

A rounding mode is a function M that computes an n-exact number M (z,n)
corresponding to an arbitrary rational z and a degree of precision n € N*. The

most basic rounding mode, truncation (round toward 0), is defined by
trunc(z,n) = sgn(z)| 2" sig(x)|267Po@) —nt1

Thus, trunc(z,n) is the n-exact number y that is closest to = and satisfies
ly| < |z|. Similarly, rounding away from 0 is given by

away(fv, n) = sgn(g;) [2”71819(37)] 2eq:po(,7;),n+17

and the three other modes discussed in [6] are defined simply in terms of those
two: inf(z,n) (round toward oc), minf(x,n) (round toward —o0), and near(z,n)
(round to the nearest m-exact number, with ambiguities resolved by selecting
(n — 1)-exact values.

If M is any rounding mode, ¢ € N*, and x € Q, then we shall write

rnd(z, M, o) = M(z,0).

The modes that are supported by the IEEE standard are trunc, near, inf, and
minf. We shall refer to these as IEEE rounding modes.

As showed in [7], a number can be rounded according to any IEEE rounding
mode by adding an appropriate constant and truncating the sum. In particular,
if = is a positive integer with expo(z) = e, then the rounding constant for x
corresponding to a given mode M and degree of precision o is

2¢-¢7 if M = near
Cle, M, o) =< 2¢7°F1 — 1if M = inf
0 if M = trunc or M = minf.

Lemma 6. Let M be an IEEE rounding mode, 0 € Z, 0 > 1, and x € N* with
expo(x) > o. Then

rnd(z, M, o) = trunc(z + C(expo(x), M,0),v),

where

L, lo- 1 if M = near and z is (o + 1)-ezact but not o-ezxact
o otherwise.

An additional rounding mode is critical to the implementation of floating-
point addition: If x € Q, n € N, and n > 1, then

x if z is (n—1)-exact

sticky(z,n) = {trunc(m, n — 1) 4 sgn(z)2¢7P°@)+1-7 otherwise.

The significance of this operation is that the result of rounding a number z
to o bits, according to any IEEE rounding mode, can always be recovered from
sticky(x, 0 + 2):

Lemma 7. Let M be an IEEE rounding mode, 0 € N*, n € N, and x € Q. If
n > o+ 2, then

rnd(x, M, o) = rnd(sticky(z,n), M, o).

Proof: We may assume that z > 0 and « is not (n — 1)-exact; the other cases
follow trivially. First, note that since sticky(x,n) is n-exact but not (n—1)-exact,
trunc(sticky(z,n),n — 1) = sticky(z,n) — 2°7Po(sticky(z.n))=(n—1)

= sticky(z,n) — 2¢po(@)+1-n

= trunc(z,n — 1).
Thus, for any m < n,
trunc(sticky(x,n), m) = trunc(trunc(z,n — 1), m) = trunc(z, m),

and the corresponding result for away may be similarly derived.

This disposes of all but the case M = near. For this last case, it suffices to
show that if trunc(z, o+1) = trunc(y,o+1) and away(z, o +1) = away(y,oc+1),
then near(z,0) = near(y,o). We may assume z < y. Suppose near(z,o) #
near(y,o). Then for some (o + 1)-exact a, ¢ < a < y. But this implies z =
a, for otherwise trunc(z,0 + 1) < z < a < trunc(y,o + 1). Similarly, y =
a, for otherwise away(z,0 +1) < a < y < away(y,o + 1). Thus, z = y, a
contradiction. O

The following property is essential for computing a rounded sum or difference:
Lemma 8. Let x,y € Q such that y # 0 and v +y #2 0. Let k € Z, k' =

k + expo(x) — expoly), and k" = k + expo(x +y) — expo(y). If k > 1, k' > 1,
E'" > 1, and x is (k' — 1)-exact, then

x + sticky(y, k) = sticky(z + y, k").

Proof: Since = is (k' — 1)-exact, 2k 2-€xpo(v)y, — oK' ~1)—1-eapo(a)y ¢ 7,
Thus,
yis (k — 1)-exact & 2F27eapoW)y ¢ 7,
o 2k7276mp0(y)y 4+ 9k—2-expo(y)y. ¢ 7
PN gk" —2—expo(z+y) (x+y)€Z
< r+yis (K" — 1)-exact.

If y is (k — 1)-exact, then
x + sticky(y, k) = x +y = sticky(x +y, k").

Thus, we may assume that y is not (k — 1)-exact. Now in [6] it was proved, with
k, k', and k" as defined above, and under the weaker assumptions that k& > 0,
k' >0, k" >0, and z is k'-exact, that

trunc(x + y, k") if sgn(x + y) = sgn(y)

@ + trunc(y, k) = { away(x +y, k") if sgn(z + y) # sgn(y).

Hence, if sgn(z + y) = sgn(y), then

z + sticky(y, k) = z + trunc(y, k — 1) + sgn(y)2¢erow)+1-k
= trunc(z + y, k" — 1) + sgn(z + y)2eepoety)+1-k"
= sticky(x +y, k").
On the other hand, if sgn(z + y) # sgn(y), then

z + sticky(y, k) = x + trunc(y, k — 1) + sgn(y)2¢erew)+1-k
= away(z +y, k" — 1) — sgn(z + y)Qezpo(wﬂ,)H,ku
= trunc(z +y, k" — 1) + sgn(z + y)Qezpo(wﬂ,)H,ku
= sticky(z +y,k"). O

4 Description of the Adder

A simplified version of the Athlon floating-point adder is represented in the AMD
RTL language as the circuit description A, displayed in Figs. 1 6. As defined
precisely in [8], a program in this language consists mainly of input declarations,
combinational assignments, and sequential assignments, which have the forms

input slk: 0]; (1)

sk :0] = E; (2)
and

slk: 0] <= E; (3)

respectively, where k € N, s is a signal representing a bit vector of length k& + 1,
and F is an expression constructed from signals and standard logical connectives.
Each signal s occurring anywhere in a description must appear in exactly one of
the three contexts (1), (2), and (3), and is called an input, a wire, or a register,
accordingly. Any signal may also occur in an output declaration,

output sk : 0]; (4)

and is then also called an output. Note that the circuit A has five inputs, a,
b, op, rc, pc (Fig. 1), and one output, r (Fig. 2), which happens to be a wire
(Fig. 6).

A circuit description may also contain constant definitions of the form

‘definer C

where r is an identifier and C is either a numerical constant or a pattern repre-
senting a set of constants. generalized constant expression. For example, accord-
ing to the definition of FSUBO (Fig. 1), the value computed for the assignment

statement to sub (Fig. 2) is 1 whenever the value of the 11-bit vector op matches
the string 1100000x10x.

Any signal that occurs in the defining expresssion F for a (non-input) signal
s is called a direct supporter of s. If s is a wire and s’ is any signal, then s depends
on s’ iff s’ is a direct supporter either of s or of some wire on which s depends.
It is a syntactic requirement of the language that no wire depends on itself.

A combinational circuit is one that is free of registers. The semantics of a
combinational circuit are particularly simple: the behavior of each output may
be described as a function of the inputs. In fact, the same is true of a more
general class of circuits, which we define as follows: A circuit description is an

n-cycle simple pipeline if each of its signals s may be assigned a cycle number
¥(s) € {1,...,n} such that

(1) if s is an input, then ¥(s) = 1;

(2) if s is a wire, then 9(s") = 1(s) for each direct supporter s’ of s;

(3) if s is a register, then ¢ (s") = ¢(s) — 1 for each direct supporter s’ of s;
(4) if s is an output, then ¢(s) = n.

In [8], we present a general semantic definition of the RTL language. associating a
function with each signal. This function returns a sequence of values, interpreted
as the values assumed by the signal on successive cycles, for a given set of
sequences of values of the input signals. It is shown that for a simple pipeline,
the value of each signal s on cycle ¢(s) is determined by the values of the inputs
on cycle 1. Moreover, this functional dependence on inputs is the same as for the
combinational circuit that results from collapsing the pipeline by replacing each
sequential assignment (3) by the corresponding combinational assignment (2)

The actual RTL model of the AMD Athlon floating-point adder is a 4-cycle
simple pipeline. In order to simplify our analysis of the circuit as well as this
presentation, the circuit description A listed below was derived by modifying
the original as follows:

(1) All sequential assignments have been replaced with combinational assign-
ments, yielding an equivalent combinational circuit.

(2) All code pertaining to functions other than addition and subtraction, which
are performed by the same hardware, has been deleted.

(3) All code pertaining to the reporting of exceptional conditions, including
overflow and underflow, has been deleted.

(4) The remaining code has been simplified by eliminating signals and combining
assignments when possible.

(5) Signal names have been changed to promote readability.

The resulting circuit A is shorter and simpler than the original, and bears less
resemblance to the intended gate-level implementation, but the two may easily
be shown to be semantically equivalent with respect to the computation of sums
and differences. In fact, this equivalence has been established mechanically as
discussed in Section 6.

module A;
%3 K3k ok sk ok s o ko ok o ok o K o o K o ok K o K K o K 3K o K 3 o K o ok 3k o K o K o ok o K o ok o K K ok sk o K K o K oK K K o K ok o K ok K ok o
// Definitions

//***

// CLASS DEFINITIONS

‘define UNSUPPORTED 3°b000
‘define SNAN 3°b001
‘define NORMAL 3’b010
‘define INFINITY 3°b011
‘define ZERO 3°b100
‘define QNAN 3°b101
‘define DENORM 3’b110
‘define MMX 3’b111

//0PCODE DEFINITIONS//

‘define FADD 11°b1100xx0x000
‘define FADDU 11°b11010000000
‘define FSUBO 11°b1100000x10x
‘define FSUB1 11°b1100100x10x
‘define FSUB2 11°b1100110x10x
‘define FSUBU 11°b11010000100
‘define FADDT64 11°b11010010001
‘define FSUBT64 11°b11010010000
‘define FADDT68 11°b11010010010
‘define FSUBT68 11°b11010010110

//PRECISION DEFINITIONS//

‘define PC_32 2°b00 // single

‘define PC_64 2°b10 // double

‘define PC_80 2’bl1l // extended

‘define PC_80R 2°b01 // extended (reserved)

//ROUNDING DEFINITIONS//

‘define RC_RN 2°b00 // round to nearest
‘define RC_RM 2°b01 // round to minus infinity
‘define RC_RP 2°b10 // round to plus infinity
‘define RC_RZ 2°b1l1 // truncate

] %3k ok sk ok ko ok o ok ok sk ok sk ook ok ok o ok ok o ok ok ok ok ok ook o ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o
// Parameters
] H 5K KKK K KK KK KKK KKK KKK KKK KK oK o K Ko KoK o K 5K K oK K o K o K K o oK K o K o K o K o 3K K oK K oK oK o K o K K o K

//INPUTS//

input a[89:0]; //first operand
input b[89:0]; //second operand
input op[10:0]; //opcode

input rc[1:0]; //rounding control
input pc[1:0]; //precision control

Fig. 1. Circuit A

//0UTPUT//
output r[89:0]; //sum or difference

//0PERAND FIELDS//

manal[67:0] = a[67:0]; manb[67:0] = b[67:0]; //significand
expal[17:0] = a[85:68]; expb[17:0] = b[85:68]; //exponent
signa = a[86]; signb = b[86]; //sign
classa[2:0] = a[89:87]; classb[2:0] = b[89:87]; //class

azero = (classa[2:0] == ‘ZER0); bzero = (classb[2:0] == ‘ZER0);

//0PERATION//
int_op = (op == ‘FADDT68) | (op == ‘FSUBT68);
ext_op = (op == ‘FADDT64) | (op == ‘FSUBT64);
sub = casex(op[10:0])
‘FSUBO, ‘FSUB1, ‘FSUB2, ‘FSUBU, ‘FSUBT68, ‘FSUBT64 : 1’b1;
default : 1°b0;
endcase;

esub = sub " signa " signb; //effective subtraction

//ROUNDING CONTROL//

rc_near = (rc[1:0] == ‘RC_RN) | int_op; // round to nearest
rc_minf = (rc[1:0] == ‘RC_RM) & “int_op; // round to minus infinity
rc_inf = (rc[1:0] == ‘RC_RP) & ~int_op; // round to plus infinity

rc_trunc = (rc[1:0] == ‘RC_RZ) & ~int_op; // truncate

//PRECISION CONTROL//

pc_32 = (pc == ‘PC_32) & “ext_op & ~int_op; // single

pc_64 = (pc == ‘PC_64) & “ext_op & “int_op; // double

pc_80 = (((pc == ‘PC_80) | (pc == ‘PC_80R)) & “int_op) | ext_op; // extended
pc_87 = int_op; // internal

] F 5K KA K KK KK KKK KKK KKK KK o K o KKK o K K K oK K 5K K o K K o 5K K oK K o K oK o K o K K oK K oK oK o K o oK K o K o K
// First Cycle
] %3k ks ok ok ok ok ko ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ko ok o sk ok sk ook ok ok o ok ok ok ok o ko ok ook o ok ok ok ok ok ok ok ok ok o ok ok ok ok o sk ok ok ok ok o ok K ok ok ok ok

// SELECT CLOSE OR FAR PATH//

diffpos[18:0] = {1°b0,expal[17:0]1} + {1°b0, expb[17:0]} + 19°bl;

diffneg[17:0] = expb[17:0] + ~expal[17:0] + 18°bl;

swap = “diffpos[18];

expl[17:0] = bzero | (“azero & “swap) 7 expa : expb;

rsal6:0] = swap ? diffneg[6:0] : diffpos[6:0];

overshift = (swap & (ldiffneg[17:7]1)) | (“swap & (|diffpos[17:71)) |
(rsal[6] & ((|lrsa[5:3]) | (&rsal[2:1]1)));

far = “esub | azero | bzero | overshift | (lrsal6:1]);

// CLOSE PATH//

shift_close = expal[0] ~ expb[0];

swap_close = ~(expal[0] " expal[l] ~ expb[1]);

ina_shift_close[68:0] = shift_close ? {1’b0,mana[67:0]} : {mana[67:0] ,1°’b0};
inb_shift_close[68:0] = shift_close ? {1’°b0,manb[67:0]} : {manb[67:0] ,1°’b0};

Fig. 2. Circuit A (continued)

ina_swap_close[68:0] = (shift_close & swap_close) 7
{manb[67:0] ,1°b0} : {manal67:0] ,1°b0};
inb_swap_close[68:0] = (shift_close & swap_close) 7
ina_shift_close[68:0] : inb_shift_close[68:0];

1op0[68:0] = {mana[66:0],2°b0} | {1°b0, manb[66:0],1°b1};

lopl_t[67:0] = manal[67:0] ~ “manb[67:0];

lopl_gl[67:0] = manal67:0] & “manb[67:0];

lopl_z[67:0] = ~“(mana[67:0] | “manb[67:0]);

lop1[67:0] = {1°b0,
(lop1_t[67:2] & lopl_gl[66:11 & “lopl_z[65:01) |
("lop1_t[67:2] & lopl_z[66:1] & ~“lopl_z[65:01) |
(lop1_t[67:2] & lopl_z[66:1] & ~lopl_g[65:01) |
("lopl_t[67:2] & lopl_gl66:1] & “lopl_gl[65:01),

“lopl_t[01};

1op2[68:0] = {manb[66:0],2°b0} | {1°b0, manal66:0],1°b1};

lop[68:0] = shift_close 7 (swap_close 7 lop2[68:0] : 1lop0[68:0]1) : {lop1[67:01,1°b0};

found = 1°b0;

for (i=68; i>=0; i=i-1)

if (lop[il & “found)
begin
found = 1°bl;
1sa[6:0] = 7°h44 - i[6:0];
end

//FAR PATH//
rshiftin_far[67:0] = swap 7 manal[67:0] : manb[67:0];
ina_far[67:0] = azero | (swap & “bzero) ? manb[67:0] : mana[67:0];

] %Kk koo ok s ok sk ko ok ok ks K KKk ok ook koo ook ok ko ook ok ook ook ook ook ook ok ook ook ook ok ok ok ok
// Second Cycle
R

//PREDICT EXPONENT OF RESULT//
1shift[17:0] = far ? (esub ? 18°h3ffff : 18°b0) : ~{11°b0,1lsal6:0]1};
exp[17:0] = expl[17:0] + 1shift[17:0];

//ALIGN OPERANDS//

ina_close[68:0] = “shift_close & (mana < manb) ? inb_swap_close[68:0] << 1lsa[6:0]
ina_swap_close[68:0] << 1lsal[6:0];

far ? {ina_far[67:0], 3°b0} : {ina_close[68:0], 2°’b0};

= “shift_close & (mana < manb) 7 ina_swap_close[68:0] << 1sa[6:0]
inb_swap_close[68:0] << 1sa[6:0];

ina_add[70:0] =
inb_close[68:0]

rshiftout_far[69:0] = overshift | azero | bzero ?
70°b0 : {rshiftin_far[67:0],2°b0} >> rsa[6:0];
sticky_t[194:0] = {rshiftin_far[67:0],127°b0} >> rsa[6:0];
sticky_far = ~(azero | bzero) & (overshift | (|sticky_t[124:58]));
inb_far[70:0] = {rshiftout_far[69:0],sticky_far};
inb_add_nocomp[70:0] = far | azero | bzero ? inb_far[70:0] : {inb_close[68:0],2°b0};
inb_add[70:0] = esub ? “inb_add_nocomp[70:0] : inb_add_nocomp[70:0];

Fig. 3. Circuit A (continued)

//DETERMINE SIGN OF RESULT//
sign_tmp = swap | ("far & “shift_close & (mana < manb)) ? signb ~ sub : signa;
abequal = esub & (mana == manb) & (expa == expb);
sign_reg = ((Tazero & “bzero & "abequal & sign_tmp) |
(“azero & “bzero & abequal & rc_neg) |
(azero & “bzero & (signb ~ sub)) |
(“azero & bzero & signa) |
(azero & bzero & signa & (signb ~ sub)) |
(azero & bzero & (signa ~ (signb ~ sub)) & rc_neg)) & ~(ainf | binf) |
(ainf & signa) | (binf & (signb " sub));

//COMPUTE ROUNDING CONSTANT//
int_noco[70:0] = {68°b0,1°b1,2°b0}; // 71°h4
ext_noco[70:0] = case(1’bl)

rc_trunc : 71°b0; rc_inf : {64°h0, "{7 {sign_regl}}};
rc_near : {65’b1,6°b0}; rc_minf : {64°h0,{7 {sign_regl}}};
endcase;

doub_noco[70:0] = case(1’bl)

rc_trunc : 71°h0; rc_inf : {53°h0,"{18 {sign_regl}}};
rc_near : {54°b1,17°b0}; rc_minf : {53°h0,{18 {sign_regl}}};
endcase;
sing_noco[70:0] = case(1’bl)
rc_trunc : 71°h0; rc_inf : {24°h0, {47 {sign_regl}};
rc_near : {25°b1,46°b0}; rc_minf : {24°h0,{47 {sign_regl}}};
endcase;

rconst_noco[70:0] = case(1’b1)

pc_87 : int_noco; pc_80 : ext_noco;
pc_64 : doub_noco; pc_32 : sing_noco;
endcase;

] %Kk koo ook s ok sk ok ok o ks ok K KRk ko ook ok ok ok ok ok ok ook ook ok ko ook ok ok ook ok ok ook ook ok ok ok ok
// Third Cycle
] %Kk koo ook ook sk ok ok o sk ok K KRk ko ook ok ok ook ok ko ook ok ook ook ook ok ook ook ok ook ook ok ok ok

//CHECK FOR OVERFLOW OR CANCELLATION//

sum[71:0] = {1°b0,ina_add[70:0]} + {1°b0,inb_add[70:0]} + {71°b0,esub};
overflow = sum[71];

ols = “sum[70];

//COMPUTE SUM ASSUMING NO OVERFLOW OR CANCELLATION, CHECK FOR CARRYOQUT//
sum_noco[70:0] = rconst_noco[70:0] ~ ina_add[70:0] ~ inb_add[70:0];
carry_noco[71:0] = {(rconst_noco[70:0] & ina_add[70:01) |

(rconst_noco[70:0] & inb_add[70:0]) |

(ina_add[70:0] & inb_add[70:0]),

1°b0%};

sum71_noco[72:0] = {2°b0,sum_noco[70:0]1} + {1°b0,carry_noco[71:0]1} + {72°b0,esub};
overflow_noco = sum71_noco[71];

Fig. 4. Circuit A (continued)

//COMPUTE SUM ASSUMING OVERFLOW OR CANCELLATION, CHECK FOR CARRYOUT//
rconst_co[70:0] = esub ? {1’°b0,rconst_noco[70:1]1} : {rconst_noco[69:0],rconst_noco[0]};
sum_co[70:0] = rconst_co[70:0] ~ ina_add[70:0] ~ inb_add[70:0];
carry_co[71:0] = {(rconst_co[70:0] & ina_add[70:0]) |

(rconst_co[70:0] & inb_add[70:0]) |

(ina_add[70:0] & inb_add[70:0]),

1°b0%};

sum71_co[72:0] = {2°b0,sum_co[70:0]1} + {1°b0,carry_col[71:0]} + {72°b0,esub};
overflow_co = sum71_co[72];
ols_co = “sum71_co[70];

//COMPUTE STICKY BIT OF SUM FOR EACH OF THREE CASES//

sticksum[47:0] = esub ? ina_add[47:0] ~ inb_add[47:0] : ~(ina_add[47:0] ~ inb_add[47:0]);

stickcarry[47:0] = esub ? {ina_add[46:0] & inb_add[46:0],1°b0}

{ina_add[46:0] | inb_add[46:0],1°b0};

stick[47:0] = “(sticksum[47:0] ~ stickcarry[47:0]);

sticky_ols = (|stick[44:16] & pc_32) | (lstick[15:5] & (pc_32 | pc_64)) |
(Istick[4:1] & “pc_87) | stick[0] ;

sticky_noco = sticky_ols | (stick[45] & pc_32) | (stick[16] & pc_64)
(stick[5] & pc_80) | stick[1] ;

sticky_co = sticky_noco | (stick[46] & pc_32) | (stick[17] & pc_64) |
(stick[6] & pc_80) | stick[2] ;

//***

// Fourth Cycle
] %Kk koo ook sk s ok ok ks sk ok Kk koo ook ok ook sk ok ook ok ook sk ok sk ok s ok sk ok ok sk ok ok ok ok ok

//COMPUTE SIGNIFICAND//
man_noco[67:0] =
{sum71_noco[72] | sum71_noco[71] | sum71_noco[70],
sum71_noco[69:48],
sum71_noco[47] & ~("sum71_noco[46] & “sticky_noco & pc_32 & rc_near),
sum71_noco[46:19] & {28 {"pc_32}},
sum71_noco[18] & “(pc_32 | ("sum71_noco[17] & ~“sticky_noco & pc_64 & rc_near)),
sum71_noco[17:8] & “{10{pc_32 | pc_64}},
sum71_noco[7] & “(pc_32 | pc_64 | (“sum71_noco[6] & “sticky_noco & pc_80 & rc_near)),
sum71_noco[6:4] & ~“{3{pc_32 | pc_64 | pc_80}},
sum71_noco[3] & ~“(pc_32 | pc_64 | pc_80 | (“sum71_noco[2] & ~sticky_noco & rc_near))
};

man_co[67:0] =

{sum71_co[72] | sum71_co[71],
sum71_co[70:49],
sum71_co[48] & ~("sum71_co[47] & “sticky_co & pc_32 & rc_near),
sum71_co[47:20] & {28 {"pc_32}},
sum71_co[19] & “(pc_32 | ("sum71_co[18] & “sticky_co & pc_64 & rc_near)),
sum71_co[18:9] & ~{10{pc_32 | pc_64}},
sum71_co[8] & “((pc_32 | pc_64) | ("sum71_co[7] & “sticky_co & pc_80 & rc_near)),
sum71_co[7:5] & “{3{pc_32 | pc_64 | pc_80}},
sum71_co[4] & ~“(pc_32 | pc_64 | pc_80 | ("sum71_co[3] & “sticky_co & rc_near))

};

Fig. 5. Circuit A (continued)

man_ols[67:0] =

{sum71_co[70] | sum71_co[69],
sum71_co[68:47],
sum71_co[46] & ~("sum71_co[45] & “sticky_ols & pc_32 & rc_near),
sum71_co[45:18] & {28 {"pc_32}},
sum71_co[17] & “(pc_32 | ("sum71_co[16] & ~“sticky_ols & pc_64 & rc_near)),
sum71_co[16:7] & ~{10{pc_32 | pc_641}},
sum71_co[6] & ~((pc_32 | pc_64) | ("sum71_co[5] & ~“sticky_ols & pc_80 & rc_near)),
sum71_co[5:3] & “{3{pc_32 | pc_64 | pc_80}},
sum71_co[2] & ~“(pc_32 | pc_64 | pc_80 | ("sum71_col[1] & “sticky_ols & rc_near))

};

man_reg[67:0] = case(1’bl)
("esub & “overflow) | (esub & ~ols) : man_noco[67:0];

“esub & overflow : man_co[67:0];
esub & ols : man_ols[67:0];
endcase;

//ADJUST EXPONENT://
exp_noco[17:0] = overflow_noco 7 exp[17:0] + 18°hl : exp[17:0];
exp_co[17:0] = overflow_co 7 exp[17:0] + 18°h2 : exp[17:0] + 18°b1;
exp_noco_sub[17:0] = overflow ~ overflow_noco ?

exp[17:0] + 18°h2 : exp[17:0] + 18°hi;
exp_ols[17:0] = ols_co ? exp[17:0] : exp[17:0] + 18’hi;

exp_reg[17:0] = case(1’b1)
(“esub & “overflow) : exp_noco[17:0];
(“esub & overflow) : exp_co[17:0];

(esub & ~ols) : exp_noco_sub[17:0];
(esub & ols) : exp_ols[17:0];
endcase;

//DETERMINE CLASS//
class_reg[2:0] = case(1’bl)

(azero & bzero) | abequal : ‘ZERO;

default : ‘NORMAL;

endcase;

//FINAL RESULT//
r[89:0] = {class_reg[2:0], sign_reg, exp_regl[17:0], man_reg[67:01};
endmodule

Fig. 6. Circuit A (continued)

Although it is combinational, our listing of A reflects the adder’s 4-cycle
structure insofar as its signals are grouped according to their cycle numbers
with respect to the original RTL specification, and our analysis will be guided
by this organization. As a first step toward understanding the 4-cycle structure,
consider the following procedure, which represents a naive approach to floating
point addition and subtraction:

(1) Compare the exponent fields of the summands to determine the right shift
necessary to align the significands;

(2) Perform the required right shift on the significand field that corresponds to
the lesser exponent;

(3) Add (or subtract) the aligned significands, together with the appropriate
rounding constant;

(4) Determine the left shift required to normalize the result;

(5) Perform the left shift and adjust the exponent accordingly;

(6) Compute the final result by assembling the sign, exponent, and significand
fields.

Under the constraints imposed by contemporary technology and microprocessor
clock rates, each of the above operations might reasonably correspond to a single
cycle, resulting in a six-cycle implementation. It is possible, however, to improve
on this cycle count by executing some of these operations in parallel.

The most important optimization of the above algorithm is based on the
observation that while a large left shift might be required (in the case of sub-
traction, if massive cancellation occurs), and a large right shift might be required
(if the exponents are vastly different), only one of these possibilities will be re-
alized for any given pair of inputs. Thus, the Athlon adder includes two data
paths: on one path, called the far path, the right shift is determined and exe-
cuted; on the other, called the close path, the left shift is performed instead. As
noted in Section 2, the left shift may be determined in advance of the subtrac-
tion. Consequently, steps (4) and (5) may be executed concurrently with steps
(1) and (2), respectively, resulting in a four-cycle implementation. In Section 5,
we shall examine the code corresponding to each cycle in detail.

In the subsequent discussion, we shall assume a fixed execution of A de-
termined by a given set of values corresponding to the inputs. We adopt the
convention of italicizing the name of each signal to denote its value for these
inputs. Thus, r denotes the output value determined by the inputs a, b, op, rc,
and pec.

The input values a and b are the operands. Each operand is a vector of ninety
bits, including a three-bit encoding of its class, along with sign, exponent, and
significand fields, according to the AMD Athlon internal (68,18) format. The
fields of a are assigned to classa, signa, expa, and mana; those of b are similarly
recorded. While all eight classes are handled by the actual RTL, we consider here
only the case classa = classb = NORMAL, and assume that a and b are normal
(68, 18)-encodings, i.e., mana[67] = manb[67] = 1. Further, in order to ensure
that all computed exponent fields are representable in the allotted 18 bits (see,

for example, the proof of Lemma 14(a)), we assume that expa and expb are both
in the range from 69 to 2% — 3.

The operation to be performed is encoded as the input op, which we shall
assume to be one of the 11-bit opcodes listed in Figure 1. This opcode may indi-
cate either addition or subtraction, as reflected by the 1-bit signal sub (Figure 2).
Let £ denote the exact result of this operation, i.e.,

_ &+i)ifsub:0
T la—bif sub=1.

For simplicity, we shall assume that £ # 0.

Rounding control is determined by rc¢ along with op. According to these two
values, exactly one of the bits rc_near, rec_minf, rc_inf, and rc_trunc is 1,
as shown in Figure 2. We shall introduce a variable M, which we define to be
corresponding rounding mode. For example, if op is neither FADDT68 nor FSUBT68
and re¢ = RC_RZ, then rc_trunc = 1 and M = trunc.

Similarly, pc and op together determine which one of the bits pc_32, pc_64,
pc_80, and pc_87 is set. We define ¢ to be the corresponding degree of precision:
24, 53, 64, or 68, respectively.

The result prescribed by the IEEE standard will be denoted as P, i.e.,

P =rnd(E, M, o).
Our goal may now be stated as follows:

Theorem 1. Suppose that a[89 : 77] and b[89 : 87] are both NORMAL and that
a[86 : 0] and b[86 : 0] are normal (68,18)-encodings such that 69 < a[85 : 68] <
2'8 — 3 and 69 < b[85 : 68] < 2'® — 3. Assume that £ # 0. Then r[89 : 87] =
NORMAL, 7[86 : 0] is a normal (68,18)-encoding, and 7 = P.

Before proceeding with the proof of Theorem 1, we must note that the circuit
description A contains a construct of the RTL language that was not described
in [8], namely, the for loop (Fig. 3):

found = 1’b0;
for (i=68; i>=0; i=i-1)
if (lopl[i] & “found)
begin
found = 1’bi;
1sal[6:0] = 7°h44 - i[6:0];
end

If an assignment to a signal s occurs within a for loop, then its value s is
computed by a recursive function determined by the loop. In this example, the
recursive function @ for the signal 1sa is defined by

lsa ifi<O
O(lsa, found,lop,i) = { O(68 —i,1,i — 1,lop) if lop[i] =1 and found =0
O(lsa, found,i — 1,lop) otherwise,

and the value of 1sa is given by

Isa = 0(0,0,val 4(lop,Z,R),68).

5 Proof of Correctness

The proof of Theorem 1 may be simplified by noting that we may restrict our
attention to the case & > 0. In order to see this, suppose that we alter the inputs
by toggling the sign bits a[86] and b[86] and replacing r¢ with r¢’, where

RC_RM if r¢ = RC_RP
r¢’ = { RCRP if rc = RC_RM
re otherwise.

It is clear by inspection of the code that the only signals affected are signa,
signb, sgn_tmp, and sgn_reg, each of which is complemented, and rc_inf and
rc_minf, which are transposed. Consequently, 7 is negated and M is replaced
by M', where

minfif M = inf
M =< inf if M = minf
M otherwise.

Now, from the simple identity rnd(—z, M’',0) = —rnd(z, M, o), it follows that
if Theorem 1 holds under the assumption £ > 0, then it holds generally.

The proof proceeds by examining the signals associated with each cycle in
succession.

First Cycle

In the initial cycle, the operands are compared, the path is selected, and the
left and right shifts are computed for the close and far paths, respectively. We
introduce the following notation:

A = |expa — expb|,

o = { mana if expa > expb V (expa = expb A (far = 1V mana > manb))
manb otherwise,

and

8= manb if o = mana
| mana if « = manb.

We begin by comparing the exponents of the operands:

Lemma 9. (a) swap =1 iff expa < expb; (b) expl = max(expa, expd).

Proof: Since diffpos = expa + ~expb[17 : 0] + 1 = 2'® + expa — expb < 219,
swap = 1 & diffpos[18] = 0 & diffpos < 2'* < expa < expb. O

The path selection is determined by the signal far, which depends on esub
and A. For the far path, the magnitude of the right shift is given by A. We
distinguish between the cases A > 70 and A < 70.

Lemma 10.

(a) overshift =1 iff A > 70;

(b) if overshift =0, then rsa = A;

(c) far =0 iff esub=1 and A < 1.

Proof: If swap = 0, then diffpos[17 : 0] = diffpos — 2% = expa — expb,
and if swap = 1, then diffneg[17 : 0] = diffneg = expb — expa. Thus, in either
case, rsa = A[6 : 0] = rem(A,128). It follows that overshift = 1 iff either
A[17 : 7] = | A/128] # 0 or rsa > 70, which implies (a), from which (b) and (c)
follow immediately. O

The next lemma is an immediate consequence of Lemma 9:
Lemma 11. Assume far = 1.

(a) ina_far = «; (b) rshiftin_far = j.

For the close path, the ordering of exponents is determined by shift_close
and swap_close:
Lemma 12. Assume far = 0.

(a) shift_close = 0 iff expa = expb;
(b) if shift_close = 1, then swap_close = 1 iff expa < expb;
2mana if expa = expb

(¢) ina_swap_close = { 20 if expa # expb;

2manb if expa = expb

(d) inb_swap_close = {5 if expa # expb.

Proof: (a) is a consequence of Lemma 10; (c¢) and (d) follow from (a) and (b).
To prove (b), first note that

expa > expb & expa — expb = 1
< rem(expa — expb,4) =1
< rem(expall : 0] — expb[l : 0],4) = 1.

Now suppose that expa[0] = 0. Then expb[0] = 1 and

swap_close = 1 & expa[l] = expb[l] & rem(expall : 0] — expb[l : 0],4) = 1.
On the other hand, if expa[0] = 1, then expb[0] = 0 and
swap_close = 1 & expall] # expb[l] & rem(expa[l : 0] — expb[l:0],4) =1. O

The magnitude of the left shift is determined by the signal lsa:

Lemma 13. If far =0, then 66 — Isa < expo(a — 2723) < 67 — Isa.
Proof: As noted in Section 4, lsa = ©(0,0, lop, 68), where

lsa ifi<0
O(lsa, found,lop,i) = O(68 —i,1,i — 1,lop) if lop[i] =1 and found =0
O(lsa, found,i — 1,lop) otherwise.

It is easily shown by induction on i that if 0 < 4 < 68 and 0 < lop < 2/*!,
then ©(0,0,lop,i) = 68 — expo(lop). In particular, if 0 < lop < 2% then Isa =
68 — expo(lop). Thus, it will suffice to show that lop > 0 and that

expo(lop) — 2 < expo(a — 272 6) < expo(lop) — 1.

First consider the case expa > expb. We may apply Lemma 3, substituting
2mana, manb, and lop = lop0 for a, b, and A, respectively, and conclude that
lop > 0 and

expo(lop) — 1 < expo(2mana — manb) < expo(lop).
But in this case,
expo(2mana — manb) = expo(2(a — 271 f)) = expo(a — 272 6) + 1,

and the desired inequality follows. The case expa < expb is similar.
Now suppose expa = expb. Here we apply Lemma 4, substituting mana,
manb, and lopl for a, b, and A, which yields lopl > 0 and

expo(lopl) — 1 < expo(mana — manb) < expo(lopl).
But
expo(mana — manb) = expo(a —) = expo(a — 274 3)

and expo(lop) = expo(2lopl) = expo(lopl) + 1. O

Second Cycle

In the next cycle, the sign of the result is computed, its exponent is approxi-
mated, and the significand fields of the operands are aligned by performing the
appropriate shifts. The results of this alignment are the signals ina_add and
inb_add_nocomp. In the case of subtraction, inb_add_nocomp is replaced by its
complement.

In all cases, a and 3 are first padded on the right with three 0’s, and f is
shifted right according to A. On the close path, both inputs are then shifted
left as determined by Isa, and the exponent field of the result is predicted as
expl — lsa — 1:

Lemma 14. Assume far = 0.
(a) exp = expl — lsa — 1;
(b) ina_add = rem(2!**+3q, 27");
(c) inb_add_nocomp = rem(2!5¢+3-4 3,271,

Proof: (a) The constraints on expa and expb ensure that 69 < expl < 2!% - 3.
Since 0 < Isa < 68, it follows that 0 < expl —Isa — 1 < 2'®, hence

exp = rem(expl + 2'® —lsa —1,2'%) = expl — Isa — 1.
(b) It follows from Lemma 12 that ina_close = rem(2a - 219, 29) hence
ina_add = 4rem(2a - 2157 ,25%) = rem (215913, 27").

(c) This is similar to (b). O

On the far path, 3 is rounded after it is shifted to the right. The predicted
exponent field is expl for addition and expl — 1 for subtraction:
Lemma 15. Assume far = 1.

(a) exp = expl — esub;

(b) ina_add = 8a;

. 3—A - .
(¢) inb_add_nocomp = {stzcky(? 8,71 —A) if A< 70

1 if A > 70.

Proof: (a) and (b) are trivial, as is (c) in the case A > 70. Suppose A < 70.
Since rshiftin_far = § and expo(f - 22~4) = 69 — A,

rshiftout_far = |8 - 2272 | = trunc(f - 2274,70 — A)
and sticky_t = 3-2'2"-4_ Thus,

sticky_far =0 & (8-2"27")[124 : 58] = 0
& (62" M[124:01 =0
& [B-212774 is divisible by 2'2°
& p3-2274€en
& Bis (70 — A)-exact.
Thus, if sticky_far = 0, then

inb_add_nocomp = 2 - rshiftout_far + 0
= trunc(f - 2°2,70 — A)
= sticky(B-2°74,71 — A),

and otherwise,

inb_add_nocomp = 2 - rshiftout_far + 1
= trunc(f - 2°74,70 — A) 4 26-A+FEDFLI=(T1-4)
= sticky(f-2°72,71 — A). O

It is clear that the sign of the final result is correctly given by sign_reg:

Lemma 16. If £ > 0, then sign_reg = 0.

The rounding constant is also computed in this cycle. The following lemma
is easily verified for all possible values of M and o:

Lemma 17. If £ > 0, then rconst_noco = C(70, M, o).

Third Cycle

In this cycle, three sums are computed in parallel. The first of these is the
unrounded sum

sum = ina_add + inb_add + esub.

In the case of (effective) addition, the leading bit sum[71] is examined to check
for overflow, i.e., to determine whether expo(sum) is 70 or 71. In the subtrac-
tion case, only sum[70 : 0] is of interest—the leading bit sum][70] is checked to
determine whether cancellation occurred. Thus, one of three possible rounding
constants is required, depending on whether the exponent of the unrounded sum
is 69, 70, or 71. The second adder computes the rounded sum assuming an ex-
ponent of 70; the third assumes 71 in the addition case and 69 for subtraction.
Concurrently, the relevant sticky bit of the unrounded sum is computed for each
of the three cases.

Lemma 18. Assume & > 0 and esub = 0.

| 70 if over flow = 0
() expo(sum) = {71 if over flow = 1;

(b) rnd(sum, M, o) = 22" +69—expp
Proof: In this case,
sum = ina_add + inb_add.
Suppose A < 70. Then by Lemma 8,

sum = 8a + sticky(2°~26,71 — A)
= 8sticky(a + 2723, expo(a + 274 3) + 4),

where 67 < expo(a + 274 3) < 68.
On the other hand, if A > 70, then since expo(a) = expo(3) = 67, we have
0 < 22748 < 1 and ezpo(a + 272 3) = 67, which imply

trunc(a+2726,70) = 27071767 (q + 274) | 207+ -T0
= [2%a+22 4p)2°2

=

and

sum = 8a + 1
= 8(trunc(a + 2743, 70) + Qempo(aJrTAﬁ)“iﬂ)
= 8sticky(a + 2743, 71)
= 8sticky(a +2 28, ezpo(a + 22 8) + 4).

In either case, 70 < expo(sum) < 71, which yields (a).
To complete the proof of (b), note first that

jal + 16 = 9eapa =266, o 4 9erPb= 266, — 2”‘”’7217766@ +2749)

)

and hence, since exp = expl,
rnd(a + 2748, M, o) = 22+ 466 (16| + |B, M, o) = 27 cept2 T H66p
Now since o < 68, Lemma 7 implies

rnd(sum, M, o) = 2 rnd(sticky(a + 2728, expo(a + 2726) + 4), M, o)
= 2rnd(a + 2746, M, 0)
— 2217+697emprp. O

Lemma 19. Assume & > 0 and esub = 1.

) | T704fols =0
(a) expo(sum[70 : 0]) = {69 if ols = 1;

(b) rnd(sum[70 : 0], M, o) = 22 +68—capp,
Proof: In this case,
sum = ina_add + inb_add + 1 = 2™ + ina_add — inb_add_nocomp.
Also note that
a] — [b]] = 271 =27 =50 (0 — 274),
hence
rnd(a — 2748, M, 0) = 27ezpl+217+66rnd(\|fz| — B[, M, o) = g-eapl+2 66
Suppose first that far = 0. By Lemmas 13 and 14,

sum|[70 : 0] = rem(rem(2*9F3q, 2™) — rem(2!5T3-4 8 2™ 2™
= rem(2"*9F3 (. — 2741),2™)
— 2lsa+3(a _ 27A/3)7

where 69 < expo(2913(a — 274)) < 70. Thus, since exp = expl — lsa — 1,

rnd(sum[70 : 0], M, o) = 23 rnd(a — 2723, M, 0)
— 2lsa+327empl+217+66p

17 _
22 +68 emprP.

Next, suppose far = 1. Then A > 2, and it follows that 66 < expo(a —
2743) < 67. If A < 70, then

sum|70 : 0] = 8 — sticky(2° 45,71 — A)
= 8sticky(a — 2743, expo(a — 274 3) + 4).

But if A > 70, then 0 < 22743 < 1, and hence

trunc(a — 2726, expo(a — 272 6) + 3)
= [2%(a—272p8)]272 = |2%a - 2"43]27 = (2’a-1)2 2 =a - 272,

which implies

sticky(a — 2726, expo(a — 272 6) + 4)
= trunc(a — 2728, expo(a —2723) +3) +2 3 =a — 273,

and again
sum[70 : 0] = 8a — 1 = 8sticky(a — 2728, expo(a — 2726) + 4).
Thus,
69 < expo(sum[70 : 0]) = expo(a — 2~ 243) + 3 < 70.
Since
expo(a —274B) +4 > 70> 0 +2
and exp = expl — 1, Lemma 7 implies

rnd(sum[70 : 0], M, o) = 23rnd(sticky(a — 223, expo(a — 27 28) +4), M, o)
= 2rnd(a — 2746, M, 0)
— 2217+687emprp. O
The next lemma is a straightforward application of Lemma 1:

Lemma 20. sum71_noco = rconst_noco + sum.

If the exponent of the sum is not 70, a different rounding constant must be
used. Applying Lemma 1 again, and referring to the definition of C, we have the
following;:

Lemma 21. sum71_co = rconst_co + sum, where if £ > 0,

C(71,M,0) if esub =0
C(69, M, 0) if esub = 1.

rconst_co = {

The next lemma is required for the near case:

sum if esub =0

sum[70 : 0] if esub = 1. Then S is (o + 1)-ezact iff any

Lemma 22. Let S = {
of the following holds:

(a) esub =0, over flow = 0, and sticky_noco = 0;
(b) esub =0, over flow = 1, and sticky_co = 0;
(c) esub=1, ols = 0, and sticky_noco = 0;

(d) esub=1, ols = 1, and sticky_ols = 0.

Proof: S is (o + 1)-exact iff S is divisible by 2¢*P°(5)=7 je. sum[expo(S) —
0 —1:0] = 0. Invoking Lemma 5 with a = ina_add[47 : 0], b = inb_add[47 : 0],
¢ = esub, and n = 48, we conclude that for all k& < 48, suml[k : 0] = 0 iff
stick[k : 0] = 0. In particular, since expo(S) —o —1 <71 —24 —1 =46, S is
(o + 1)-exact iff stick[expo(S) —o —1:0] = 0.

Suppose, for example, that esub = ols = 1 and o = 24. In this case,

sticky-ols = 0 & stick[44 : 16] = stick[15 : 5] = stick[4 : 1] = stick[0] =0
& stick[44 : 0] = 0.

But ezpo(S)—0—1 =69—24—1 = 44, hence S is (0 +1)-exact iff sticky_ols = 0.
All other cases are similar. O

Fourth Cycle

In the final cycle, the significand field is extracted from the appropriate sum,
and the exponent field is adjusted as dictated by overflow or cancellation. The
resulting output r is an encoding of the prescribed result P, as guaranteed by
Theorem 1.

We now complete the proof of the theorem. As noted earlier, we may assume
that £ > 0. By Lemma 16, sign_reg = 0, hence our goal is to show that

gewp-reg—2 66man_reg =P.

We shall present the proof for the case esub = 1, ols = 0; the other three cases
are similar.
By Lemma 19, expo(sum]70 : 0]) = 70 and

o517
rnd(sum[70 : 0], M, o) = 92" +68—eapp.
Since man_reg = man_noco and exp_reg = exp_noco_sub, we must show that

0 = 27ear,p_n,r)(,=()_.<sul’)+21 7+66P

517 517
— 27ewp_noco_sub+2 +66272 768+ezprnd(sum[70 . 0],M,0’)

_ 25$p*ewp—noco‘SUb72T’n,d(sumwo : 0], _/\/l7 (T).

man_noc

Let

oo 1if M = near and sum[70: 0] is (0 4+ 1)-exact but not o-exact
o otherwise.

By Lemmas 6 and 17,
rnd(sum[70 : 0], M, o) = trunc(sum[70 : 0] + rconst_noco,v).

By Lemma 22, sumn[70 : 0] is (o + 1)-exact iff sticky_noco = 0. If sticky_noco = 0
and M = near, then

sum[70 : 0] is o-exact & sum[70 — o] =0

& (sum + 27°77)[70 — o] = sum71_noco[70 — o] = 1.
Thus,

S R 1if M = near and sticky_noco = sum71_noco[70 — o] = 0
o otherwise,

and it is easy to check, for each possible value of o, that
man_noco[66 : 0] = sum71_noco[69 : 71 — v] - 28877,

Since expo(sum[70 : 0]) = 70 and expo(rconst_noco) < 70 — o,
70 < expo(sum[70 : 0] + reconst_noco) < 71,

and therefore

expo(sum[70 : 0] + rconst_noco) = 70 < (sum[70 : 0] 4+ rconst_noco)[71] = 0
& (sum + reonst_noco)[71] = sum|71]

& over flow_noco = over flow.

Suppose first that over flow_noco # over flow. Since expo(sum|[70 : 0]) = 70
and

expo(rnd(sum[70 : 0], M, 0)) = expo(sum|[70 : 0] + rconst_noco) = 71,

rnd(sum[70 : 0], M, o)) = 271, In this case, exp_noco_sub = exp + 2, so we must
prove that

man_noco = 2~ *rnd(sum[70 : 0], M, o) = 257,
Since
271 < sum|70 : 0] + rconst_noco < 271 + 2777
we have
sumT71_noco[70 : 0] = (sum[70 : 0] + rconst_noco)[70 : 0] < 2777,

which implies sum71_noco[70 : 71 — o] = 0, and therefore man_noco[66 : 0] = 0.
But since 270 < sum71_noco < 273,

man_noco[67] = sumT1.noco[72] | sumT1_noco[71] | sum71_noco[70] = 1

and man_noco = 2°7.
Now suppose that over flow_noco = over flow. Since exp_reg = exp + 1, we
must, show

man_noco = 2~ 3rnd(sum[70 : 0], M, o).

But since expo(sum]70 : 0] + rconst_noco) = 70,

man_noco = sumT1_noco[70 : 71 — v] - 2687

=273 (sum71moco[70 : 0] & (2™ — 2717¥))
= 2 %trunc(sum71_noco[70 : 0], v)
= 27 3trunc(sum|70 : 0] 4+ rconst_noco, v)

=2 %rnd(sum[70 : 0], M,). O

6 ACL2 Formalization

In this section, we describe formalization of Theorem 1, including the automatic
translation of the RTL model to the ACL2 logic, the formal statement of the
theorem, and the mechanization of its proof. Naturally, a prerequisite for all of
this is the formalization of the general theory of bit vectors and floating-point
arithmetic. This is described in some detail in [8], and the reader may also refer
to the complete on-line floating-point library [9].

Our translator is an ACL2 program that accepts any simple pipeline (as de-
fined in Section 4) and automatically produces an equivalent set of executable
ACL2 function. For the present purpose, the translator was applied to two cir-
cuit descriptions. The first was the actual register-transfer logic for the AMD
Athlon adder, the main object of interest. The second was a simplified version,
an extension of the circuit 4 shown in Section 4, including additional inputs and
outputs pertaining to overflow, underflow, and other exceptional conditions. The
proof of equivalence of the corresponding resulting ACL2 functions was a critical
step in verifying the correctness of the adder.

The first task of the translation is to check that the given circuit description
is indeed a simple pipeline, so that it may be replaced by an equivalent com-
binational circuit. An ordering of the signals of the circuit is then constructed,
with respect to which each signal is preceded by those on which it depends.

The main enterprise of the translator is the definition of an ACL2 function
corresponding to each signal s, excluding inputs, based on the RTL expression for
s. This requires a translation from each primitive RTL operation to an appropri-
ate primitive or defined function of ACL2. For example, the function definition
generated for the signal sticksum of Fig. 4, constructed from the assignment

sticksum[47:0] = esub ?
ina_add[47:0] -~ inb_add[47:0]
“(ina_add[47:0] -~ inb_add[47:0]);

is

(defun sticksum (inb-add ina-add esub)
(if (equal esub 0)
(compl (logxor (bits ina-add 47 0)
(bits inb-add 47 0))
48)
(logxor (bits ina-add 47 0)
(bits inb-add 47 0)))).

Tteration presents a minor complication to this scheme, but the RTL loop
construct may be effectively translated into LISP recursion. For example, the
iterative definition of the signal 1sa of Fig. 3 generates the following ACL2
code:

(defun lsa-aux (lsa found lop i)
(declare (xargs :measure (1+ i)))
(if (and (integerp i) (>= i 0))
(if (not (equal (logand (bitn lop i)
(compl found 1))
0))
(1sa-aux (- 68 i) found lop (1- i))
(1sa-aux l1lsa 1 lop (1- i)))
1sa))

(defun 1sa (lop) (lsa-aux O O lop 68))

Note that a measure declaration was inserted by hand as a hint to the prover
in establishing the admissibility of the recursive definition of 1sa-aux, but this
was the only modification required of the automatically generated code.

Finally, an ACL2 function corresponding to each output of the circuit is gen-
erated, with the circuit inputs as arguments. This function is defined by means
of the let* operator, calling in succession the functions corresponding to the
circuit’s wires and binding their values to variables that represent the corre-
sponding signals. Finally, the binding of the selected output signal is returned.
The function corresponding to the sole output of our simplified adder takes the
following form:

(defun adder (a b op rc pc)
(let* ((mana (mana a))
(manb (manb b))
(expa (expa a))
(expb (expb b))
(signa (signa a))
(signb (signb b))
(r (r class-reg sign-reg exp-reg man-reg)))

r))

The number of bindings in this definition (i.e., the number of wires in the cir-
cuit) is 209. The translation of the actual adder RTL is similar, but much longer,
involving over 700 bindings. However, the proof of equivalence of these two func-
tions was fairly straightforward (using the ACL2 prover), and we were then
able to restrict our attention to the simpler circuit without compromising our
objective of establishing the correctness of the actual RTL.

While there are a number of other feasible translation schemes, the one de-
scribed above was selected because (a) the correspondence between the RTL and
the resulting ACL2 code is easily recognizable, and (b) the ACL2 code may be
executed (and thus tested) fairly efficiently. The disadvantage of this scheme,
however, is that it produces functions that are not amenable to direct formal
analysis. For this purpose, some reformulation of these functions is required.

Our goal is to generate a mechanical proof of Theorem 1 by formalizing the
reasoning of Section 5. Thus, we would like to be able to state and prove a lemma
pertaining to a given signal, invoking previously proved results concerning other
signals, without explicitly listing these previous results or stating the dependence
on these other signals in the hypothesis of the lemma. This does not seem possible
if our lemmas are to be statements about the ACL2 functions described above.

Our solution to this problem is based on two features of ACL2: encapsulation,
which allows functions to be characterized by constraining axioms rather than
complete definitions, and functional instantiation, which allows lemmas pertain-
ing to constrained functions to be applied to other functions that can be shown
to satisfy the same constraints.

Suppose that the hypothesis and conclusion of Theorem 1 are formally rep-
resented by the functions input-spec and output-spec, respectively, so that
the theorem is encoded as the formula

(implies (input-spec a b op rc pc)
(output-spec a b op rc pc (adder a b op rc pc))).

Through encapsulation, we introduce constant functions a*, b*, etc. correspond-
ing to the inputs by executing the following ACL2 event:

(encapsulate ((a* () t) (bx () t) ...)
(local (defun ax () ...))
(local (defun bx () ...))

(c.iéfthm inputs* (input-spec (ax*) (b*) (op*) (rc*x) (pcx)))).

Here, the definitions of a*, b*, etc. are irrelevant as long as they allow the proof
of the formula inputs*. The result of this event is that the functions that it
introduces are undefined, but constrained to satisfy inputs*.

Next, we define a second set of functions corresponding to the wires of the
circuit. These functions are constants, derived from the first set of functions
by replacing each occurrence of a signal with the corresponding constant. For
example:

(defun sticksumx ()
(if (equal (esubx) 0)
(compl (logxor (bits (ina-addx) 47 0)
(bits (inb-addx*) 47 0))
48)
(logxor (bits (ina-addx*) 47 0)
(bits (inb-addx*) 47 0)))).

(In fact, the translator has been modified to generate these definitions as well.)
The purpose of these functions is to facilitate formal reasoning about the signals
of our circuit, allowing us to prove a lemma about the behavior of a signal by
invoking previously proved lemmas about the signals on which it depends. Thus,
to prove a lemma pertaining to the constant (sticksum#), we may expand its
definition and invoke any relevant lemmas about (ina-add*) and (inb-addx*).
In this manner, tracing the proofs of Section 5 step by step, we arrive at the
following result:

(defthm r*-spec
(output-spec (ax) (b*) (op*) (rcx) (pcx) (r*))).

But simply by expanding definitions, we may also easily prove

(defthm r*x-adder
(equal (r*) (adder (a*) (b*) (op*) (rcx) (pc*))))

and combining the last two lemmas, we trivially deduce

(defthm outputs*
(output-spec (a*x) (b*) (op*) (rcx) (pcx)
(adder (a*) (b*) (op*) (rcx*) (pcx))))

Finally, our desired theorem may be derived from the constraint inputs*
and the theorem outputs* by functional instantiation:

(defthm correctness-of-adder
(implies (input-spec a b op rc pc)
(output-spec a b op rc pc (adder a b op rc pc)))
thints (("goal" :use
((:functional-instance outputsx
(a*x (lambda ()
(if (input-spec a b op rc pc) a (ax*))))
(b* (lambda ()
(if (input-spec a b op rc pc) b (bx*))))
000D

In this final ACL2 event, a hint is provided to the prover: use the fuctional in-
stance of the lemma outputs* that is produced by replacing each of the functions
ax.b*, ... with a certain zero-argument lambda expression. Thus, the function
ax is to be replaced by the lambda expression

(lambda () (if (input-spec a b op rc pc) a (ax))),
the value of which is
(if (input-spec a b op rc pc) a (ax)),

and the constant corresponding to each of the other inputs is similarly instan-
tiated. Then, according to the principle of functional instantiation, the desired
theorem may be established by proving two subgoals. The first is the implication
that the statement of the theorem follows from the instantiated lemma:

(implies
(output-spec a b op rc pc
(adder (if (input-spec a b op rc pc) a (ax))
(if (input-spec a b op rc pc) b (bx))
o))
(implies (input-spec a b op rc pc)
(output-spec a b op rc pc (adder a b op op rc pc)))

The second subgoal is the corresponding functional instance of the constraint
inputs*:

(input-spec (if (input-spec a b op rc pc) a (ax*))
(if (input-spec a b op rc pc) b (bx*))
).

But the first subgoal is trivial, second follows from inputs* itself, and the the-
orem correctness-of-adder follows.

Acknowledgements

Several people have contributed to this project. The RTL-ACL2 translator was
implemented by Art Flatau. Stuart Oberman designed the Athlon adder and
explained it to the author. Matt Kaufmann and J Moore provided some helpful
modifications of ACL2 and advice in its use.

References

1. Institute of Electrical and Electronic Engineers, “IEEE Standard for Binary Floating
Point Arithmetic”, Std. 754-1985, New York, NY, 1985.

2. Intel Corporation, Pentium Family User’s Manual, Volume 3: Architecture and Pro-
grammang Manual, 1994.

3. Kaufmann, M., Manolios, P., and Moore, J, Computer-Aided Reasoning: an Ap-
proach, Kluwer Academic Press, 2000.

4. Moore, J, Lynch, T., and Kaufmann, M., “A Mechanically Checked Proof of the
Correctness of the Kernel of the AM D586 Floating Point Division Algorithm”,
IEEE Transactions on Computers, 47:9, September, 1998.

. Oberman, S., Hesham, A., and Flynn, M., “The SNAP Project: Design of Floating
Point Arithmetic Units”, Computer Systems Lab., Stanford U., 1996.

. Russinoff, D., “A Mechanically Checked Proof of IEEE Compli-
ance of the AMD-K5 Floating Point Square Root Microcode”, For-
mal Methods in System Design 14 (1):75-125, January 1999. See URL
http://www.onr.com/user/russ/david/fsqrt.html.

. Russinoff, D., “A Mechanically Checked Proof of IEEE Compliance of the AMD-K7
Floating Point Multiplication, Division, and Square Root Algorithms”. See URL
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

. Russinoff, D. and Flatau, A., “RTL Verification: A Floating-Point Multi-
plier”, in Kaufmann, M., Manolios, P., and Moore, J, eds., Computer-Aided
Reasoning: ACL2 Case Studies, Kluwer Academic Press, 2000. See URL
http://www.onr.com/user/russ/david/acl2.html.

. Russinoff, D., “An ACL2 Library of Floating-Point Arithmetic”, 1999. See URL
http://www.cs.utexas.edu/users/moore/publications/others/fp-README. html.

