
A Case Study in Formal Veri�cationof Register-Transfer Logic with ACL2:The Floating Point Adder of the AMD AthlonTMProcessorDavid M. Russino�Advanced Micro Devices, Inc.Austin, TXAbstract. As an alternative to commercial hardware description lan-guages, AMD1 has developed an RTL language for microprocessor de-signs that is simple enough to admit a clear semantic de�nition, providinga basis for formal veri�cation. We describe a mechanical proof systemfor designs represented in this language, consisting of a translator to theACL2 logical programming language and a methodology for verifyingproperties of the resulting programs using the ACL2 prover. As an il-lustration, we present a proof of IEEE compliance of the
oating-pointadder of the AMD Athlon processor.1 IntroductionThe formal hardware veri�cation e�ort at AMD has emphasized theorem prov-ing using ACL2 [3], and has focused on the elementary
oating-point operations.One of the challenges of our earlier work was to construct accurate formal modelsof the targeted circuit designs. These included the division and square root op-erations of the AMD-K5 processor [4, 6], which were implemented in microcode,and the corresponding circuits of the AMD Athlon processor [7], which wereinitially modeled in C for the purpose of testing. In both cases, we were requiredto translate the designs by hand into the logic of ACL2, relying on an unrigorousunderstanding of the semantics of the source languages.Ultimately, however, the entire design of the Athlon was speci�ed and vali-dated at the register-transfer level in a hardware description language that wasdeveloped speci�cally for that purpose. Essentially a small synthesizable sub-set of Verilog with an underlying cycle-based execution model, this language issimple enough to admit a clear semantic de�nition, providing a basis for formalanalysis and veri�cation. Thus, we have developed a scheme for automaticallytranslating RTL code into the ACL2 logic [8], thereby eliminating an importantpossible source of error. Using this scheme, we have mechanically veri�ed a num-ber of operations of the Athlon
oating-point unit at the register-transfer level,1 AMD, the AMD logo and combinations thereof, AMD-K5, and AMD Athlon aretrademarks of Advanced Micro Devices, Inc.

including all addition, subtraction, multiplication, and comparison instructions.As an illustration of our methods, this paper describes the proof of correctnessof the Athlon
oating-point adder, a state-of-the-art adder with leading oneprediction logic [5].Much of the e�ort involved in the projects mentioned above was in the devel-opment and formalization of a general theory of
oating-point arithmetic and itsbit-level implementation. The resulting ACL2 library [9] is available as a part ofACL2 Version 2.6. Many of the included lemmas are documented in [6] and [7],and some of the details of the formalization are described in [8]. In Sections 2and 3 below, we present several extensions of the library that were required forthe present project.In Sections 4 and 5, we demonstrate the utility of our
oating-point theory,applying it in a rigorous derivation of the correctness of the adder. The theoremreported here is a formulation of the main requirement for IEEE compliance, asstipulated in Standard 754-1985 [1]:[Addition] shall be performed as if it �rst produced an intermediateresult correct to in�nite precision and with unbounded range, and thenrounded that result ...In fact, we have also veri�ed that the adder design conforms to other aspectsof the behavior prescribed by [1] pertaining to over
ow, under
ow, and otherexceptional conditions, as well as the re�nements necessary for Pentium com-patibility, as de�ned in [2]. However, since our main purpose here is to describea veri�cation methodology rather than to present the details of a speci�c proof,these secondary results have been omitted from this report.All of our theorems have been formally encoded as propositions in the logicof ACL2, based on the ACL2 translation of the RTL code, and their proofs haveall been mechanically checked with the ACL2 prover. For this purpose, we havedeveloped a proof methodology based on some features of ACL2. In Section 5,we describe both the translation scheme and our proof methodology, using theadder as an illustration.The use of mechanical theorem proving in the validation of hardware designsis still uncommon in the computer industry, mainly because of the e�ort thatit entails. The work reported here, including the development of the translatorand other reusable machinery, consumed some twenty weeks of the author'stime, which was divided approximately equally between deriving the informalproofs and checking them mechanically. However, as has been noted before,the cost of formal methods is far outweighed by its potential bene�ts. In thiscase, our analysis of the adder exposed a logical error that would have, undercertain conditions, resulted in reversing the sign of the sum of zero and anarbitrary nonzero number. This
aw had already survived extensive testing andwas unlikely to be detected by conventional validation methods. It was easilyrepaired in the RTL, but could have been very expensive if not discovered untillater.

2 Bit Vectors and Logical OperationsBit vectors are the fundamental data type of our RTL language as well as thebasis of our theory of
oating-point arithmetic. We identify the bit vectors oflength n with the natural numbers in the range 0 � x < 2n. Accordingly, wede�ne the kth bit of x to be x[k] = rem(bx=2kc; 2);while the slice of x from the ith bit down through the jth is given byx[i : j] = brem(x; 2i+1)=2jc:The standard binary logical operations, x & y, x | y, and x ^ y, are de�nedrecursively, e.g.,x & y =8<:0 if x = 02(bx=2c & by=2c) + 1 if x and y are both odd2(bx=2c & by=2c) otherwise:If x is a bit-vector of length n, then its complement with respect to n iscomp1(x; n) = 2n � x� 1:Following conventional notation, we shall use the abbreviation~x[i : j] = comp1(x[i : j]; i� j + 1):The properties of these functions are collected in the ACL2
oating-pointlibrary [9]. Many of the basic lemmas are documented in [7] and [8]. Here we shallpresent several of the more specialized library lemmas that pertain to
oating-point addition, in order to illustrate our methods of proof, especially the use ofmathematical induction.The design of the adder involves several computational techniques that aremotivated by the observation that while the time required for integer additionincreases logarithmically with the inputs, the logical operations de�ned in Sec-tion 2 may be executed in constant time. Thus, for example, the following result,which is readily proved by induction based on the recursive de�nitions of thelogical operations, provides an e�cient method for adding three vectors using atwo-input adder:Lemma 1. For all x; y; z 2 N,x+ y + z = (x ^ y ^ z) + 2((x & y) j (x & z)j(y & z)):A more interesting optimization, known as leading one prediction, allows theresult of a subtraction to be normalized e�ciently (in the event of cancellation)by performing the required left shift in advance of the subtraction itself. Thisrequires a prediction of the highest index at which a 1 occurs in the di�erence.

Although the precise computation of this index appears generally to be as com-plex as the subtraction itself, a useful approximate solution may be obtainedmore quickly.For any x 2 Z�, expo(x) will denote the index of the leading one of x, i.e., thegreatest integer satisfying 2expo(x) � jxj. Let a and b be integers with 0 < b < aand expo(a) = e. We shall compute, in constant time (independent of a and b),a positive integer � such that expo(a � b) is either expo(�) or expo(�) � 1. Webegin by de�ning a function that returns the desired exponent � = expo(�). Ifexpo(b) < e� 1, then a=2 < a� b � a and we have the trivial solution � = e. Inthe remaining case, e� 1 � expo(b) � e, � may be computed as follows: First,let m be the largest index such that a[m] > b[m], i.e., a[m] = 1 and b[m] = 0.If a[m : 0] = 2m and b[m : 0] = 2m � 1, then � = 0. Otherwise, � is the largestindex such that � � m and a[�� 1] � b[�� 1].The correctness of this computation is established by the following lemma,in which � is represented as a recursive function:Lemma 2. Let a; b; n 2 N. For all d 2 Z and k 2 N, let ck = a[k]� b[k] and�(a; b; d; k) = 8>><>>:0 if k = 0�(a; b; ck�1; k � 1) if k > 0 and d = 0�(a; b; d; k � 1) if k > 0 and d 6= 0 and d = �ck�1k if k > 0 and d 6= 0 and d 6= �ck�1:If a < 2n, b < 2n, and a 6= b, then �(a; b; 0; n)� 1 � expo(a� b) � �(a; b; 0; n).Proof: It is easy to show, by induction on k, that �(a; b; d; k) = �(b; a;�d; k).Therefore, we may assume that a > b. Note also that if a[k�1 : 0] = a0[k�1 : 0]and b[k � 1 : 0] = b0[k � 1 : 0], then �(a; b; d; k) = �(a0; b0; d; k).In the case n = 1, we have a = 1, b = 0, andexpo(a� b) = 0 = �(a; b; 1; 0) = �(a; b; 0; 1):We proceed by induction, assuming n > 1.Suppose �rst that cn�1 = 0. Let a0 = a[n� 2 : 0] and b0 = b[n� 2 : 0]. Thenby inductive hypothesis,�(a0; b0; 0; n� 1)� 1 � expo(a0 � b0) � �(a0; b0; 0; n� 1):But a� b = a0 � b0, hence expo(a� b) = expo(a0 � b0), and�(a; b; 0; n) = �(a; b; cn�1; n� 1) = �(a; b; 0; n� 1) = �(a0; b0; 0; n� 1):Now suppose that cn�1 = 1 and cn�2 = �1. Then a[n � 1] = b[n � 2] = 1and a[n� 2] = b[n� 1] = 0. It follows that2n�1 + 2n�2 > a � 2n�1 > b � 2n�2:Let a0 = a� 2n�2 and b0 = b� 2n�2. Then2n�1 > a0 � 2n�2 > b0 � 0:

Once again,�(a0; b0; 0; n� 1)� 1 � expo(a0 � b0) � �(a0; b0; 0; n� 1)and expo(a� b) = expo(a0 � b0). But�(a; b; 0; n) = �(a; b; 1; n� 1) = �(a; b; 1; n� 2) = �(a0; b0; 1; n� 2)= �(a0; b0; 0; n� 1):In the remaining case, cn�1 = 1 and cn�2 � 0. Now2n > a � a� b � 2n�1 � b[n� 3 : 0] > 2n�1 � 2n�2 = 2n�2;hence n� 2 � expo(a� b) � n� 1, while�(a; b; 0; n) = �(a; b; 1; n� 1) = n� 1: 2Thus, we require a general method for computing a number � such thatexpo(�) = �(a; b; 0; e+ 1). First, we handle the relatively simple case expo(b) <expo(a):Lemma 3. Let a; b 2 N� with expo(b) < expo(a) = e, and let� = 2a[e� 1 : 0] j ~(2b)[e : 0]:Then � > 0 and expo(�) � 1 � expo(a� b) � expo(�).Proof: Since�(a; b; 0; e+ 1) = �(a; b; 1; e) = �(a[e� 1 : 0]; b; 1; e);it will su�ce to show, according to Lemma 2, that�(a[e� 1 : 0]; b; 1; e) = expo(�):Using induction, we shall prove the following more general result: For all a; b; k 2N, if a < 2k and b < 2k, then�(a; b; 1; k) = expo(2a j ~(2b)[k : 0]):If k = 0, then a = b = 0 andexpo(2a j ~(2b)[k : 0]) = expo(0 j 1) = 0 = �(a; b; 1; k):Suppose k > 0. If a[k � 1] = 0 and b[k � 1] = 1, then�(a; b; 1; k) = �(a; b; 1; k � 1)= �(a; b[k � 2 : 0]; 1; k � 1)= �(a; b� 2k�1; 1; k � 1)= expo(2a j ~(2b� 2k)[k � 1 : 0])= expo(2a j ~(2b)[k : 0]):

In the remaining case, �(a; b; 1; k) = k and either a[k � 1] = 1 or b[k � 1] = 0.Since expo(2a j ~(2b)[k : 0]) = max(expo(2a); expo(~(2b)[k : 0])) � k;we need only show max(expo(2a); expo(~(2b)[k : 0])) � k: But if a[k � 1] = 1,then 2a � 2 � 2k�1 = 2k, and if b[k � 1] = 0, then b < 2k�1, which implies~(2b)[k : 0] = 2k+1 � 2b� 1 > 2k � 1. 2The next lemma covers the more complicated case expo(b) = expo(a):Lemma 4. Let a; b 2 N� such that a 6= b and expo(a) = expo(b) = e > 1. Let�t = a ^ ~b[e : 0];�g = a & ~b[e : 0];�z = ~(a j ~b[e : 0])[e : 0];�0 = (�t[e : 2] & �g [e� 1 : 1] & ~�z [e� 2 : 0]) j(~�t[e : 2] & �z[e� 1 : 1] & ~�z [e� 2 : 0]) j(�t[e : 2] & �z [e� 1 : 1] & ~�g [e� 2 : 0]) j(~�t[e : 2] & �g [e� 1 : 1] & ~�g [e� 2 : 0]);and � = 2�0 + 1� �t[0]:Then � > 0 and expo(�) � 1 � expo(a� b) � expo(�).Proof: Let ck and � be de�ned as in Lemma 2. Since ce = 0,�(a; b; 0; e+ 1) = �(a; b; 0; e) = �(a; b; ce�1; e� 1);and therefore it will su�ce to show that � 6= 0 and �(a; b; ce�1; e�1) = expo(�).In fact, we shall derive the following more general result: For all n 2 N, if n � e�1and a[n : 0] 6= b[n : 0], then �[n : 0] 6= 0 andexpo(�[n : 0]) = ��(a; b; cn; n) if cn = 0 or cn+1 = 0�(a; b;�cn; n) otherwise:For the case n = 0, note that a[0] 6= b[0] implies �[0 : 0] = 1, hence expo(�[0 :0]) = 0, while �(a; b; c0; 0) = �(a; b;�c0; 0) = 0.We proceed by induction. Let 0 < n � e� 1. Note that for 0 � k � e� 2,�0[k] = 1, �t[k + 2] = 1 and �g [k + 1] = 1 and �z[k] = 0; or�t[k + 2] = 0 and �z [k + 1] = 1 and �z [k] = 0; or�t[k + 2] = 1 and �z [k + 1] = 1 and �g [k] = 0; or�t[k + 2] = 0 and �g [k + 1] = 1 and �g [k] = 0:

For 0 � k � e,�t[k] = 1, ck = 0; �g [k] = 1, ck = 1; and �z [k] = 1, ck = �1:It follows that for 0 � k � e� 2,�0[k] = 1, ck+1 6= 0; andif ck+2 = 0 then ck 6= �ck+1; andif ck+2 6= 0 then ck 6= ck+1:But since n > 0, �[n] = �0[n� 1], and since n � e� 1,�[n] = 1, cn 6= 0; andif cn+1 = 0 then cn�1 6= �cn; andif cn+1 6= 0 then cn�1 6= cn:If cn = 0, then �[n] = 0, hence �[n : 0] = �[n� 1 : 0] 6= 0 andexpo(�[n : 0]) = expo(�[n � 1 : 0]) = �(a; b; cn�1; n� 1) = �(a; b; cn; n):Next, suppose cn 6= 0 and cn+1 = 0. If cn�1 = �cn, then �[n] = 0, hence�[n : 0] = �[n� 1 : 0] 6= 0 andexpo(�[n : 0]) = expo(�[n� 1 : 0]) = �(a; b;�cn�1; n� 1) = �(a; b;�cn�1; n)= �(a; b; cn; n):But if cn�1 6= �cn, then �[n] = 1 andexpo(�[n : 0]) = n = �(a; b; cn; n):Finally, suppose cn 6= 0 and cn+1 6= 0. If cn�1 = cn, then �[n] = 0, �[n : 0] =�[n� 1 : 0] 6= 0, andexpo(�[n : 0]) = expo(�[n� 1 : 0]) = �(a; b;�cn�1; n� 1) = �(a; b;�cn�1; n)= �(a; b;�cn; n):But if cn�1 6= cn, then �[n] = 1 andexpo(�[n : 0]) = n = �(a; b;�cn; n): 2Finally, for the purpose of e�cient rounding, it will also be useful to predictthe trailing one of a sum or di�erence, i.e., the least index at which a 1 occurs.The following lemma provides a method for computing, in constant time, aninteger � that has precisely the same trailing one as the sum or di�erence oftwo given operands. As usual, subtraction is implemented through addition, byincrementing the sum of one operand and the complement of the other. Thus, thetwo cases c = 0 and c = 1 of the lemma correspond to addition and subtraction,respectively. We omit the proof, which is similar to that of Lemma 4.

Lemma 5. Let a; b; c; n; k 2 N with a < 2n, b < 2n, k < n, and c < 2. Let� = �~(a ^ b)[n� 1 : 0] if c = 0a ^ b if c = 1,� = �2(a j b) if c = 02(a & b) if c = 1,and � = ~(� ^ �)[n : 0]:Then (a+ b+ c)[k : 0] = 0, � [k : 0] = 0:3 Floating Point Numbers and RoundingFloating point representation of rational numbers is based on the observationthat every nonzero rational x admits a unique factorization,x = sgn(x)sig(x)2expo(x);where sgn(x) 2 f1;�1g (the sign of x), 1 � sig(x) < 2 (the signi�cand of x),and expo(x) 2 Z (the exponent of x).A
oating point representation of x is a bit vector consisting of three �elds,corresponding to sgn(x), sig(x), and expo(x). A
oating point format is a pair ofpositive integers � = (�; �), representing the number of bits allocated to sig(x)and expo(x), respectively. If z is a bit vector of length � + � + 1, then thesign, exponent, and signi�cand �elds of z with respect to � are s = z[� + �],e = z[� + � � 1 : �], and m = z[� � 1 : 0], respectively. The rational numberrepresented by z is given bydecode(z; �) = (�1)s �m � 2e�2��1��+2:If z[� � 1] = 1, then z is a normal �-encoding. In this case, if x = decode(z; �),then sgn(x) = (�1)s, sig(x) = 2��1m, and expo(x) = e � (2��1 � 1). Notethat the exponent �eld is biased in order to provide for an exponent range1� 2��1 � expo(x) � 2��1.Let x 2 Q and n 2 N� . Then x is n-exact i� sig(x)2n�1 2 Z. It is easilyshown that x is representable with respect to �, i.e., there exists z 2 N such thatx = decode(z; �), i� x is �-exact and �2��1 + 1 � expo(x) � 2��1.The AMD Athlon
oating-point unit supports four formats, corresponding tosingle, double, and extended precision as speci�ed by IEEE, and a larger internalformat: (24; 7), (53; 10), (64; 15), and (68; 18).

In our discussion of the adder,
oating point numbers will always be representedin the internal (68; 18) format. If z is a bit vector of length 87, then we shallabbreviate decode(z; (68; 18)) as ẑ.A rounding mode is a functionM that computes an n-exact numberM(x; n)corresponding to an arbitrary rational x and a degree of precision n 2 N� . Themost basic rounding mode, truncation (round toward 0), is de�ned bytrunc(x; n) = sgn(x)b2n�1sig(x)c2expo(x)�n+1:Thus, trunc(x; n) is the n-exact number y that is closest to x and satis�esjyj � jxj. Similarly, rounding away from 0 is given byaway(x; n) = sgn(x)d2n�1sig(x)e2expo(x)�n+1;and the three other modes discussed in [6] are de�ned simply in terms of thosetwo: inf(x; n) (round toward1), minf(x; n) (round toward �1), and near(x; n)(round to the nearest n-exact number, with ambiguities resolved by selecting(n� 1)-exact values.If M is any rounding mode, � 2 N� , and x 2 Q, then we shall writernd(x;M; �) =M(x; �):The modes that are supported by the IEEE standard are trunc, near, inf, andminf. We shall refer to these as IEEE rounding modes.As showed in [7], a number can be rounded according to any IEEE roundingmode by adding an appropriate constant and truncating the sum. In particular,if x is a positive integer with expo(x) = e, then the rounding constant for xcorresponding to a given mode M and degree of precision � isC(e;M; �) = 8<:2e�� if M = near2e��+1 � 1 if M = inf0 if M = trunc or M = minf.Lemma 6. Let M be an IEEE rounding mode, � 2 Z, � > 1, and x 2 N� withexpo(x) � �. Thenrnd(x;M; �) = trunc(x+ C(expo(x);M; �); �);where � = �� � 1 if M = near and x is (� + 1)-exact but not �-exact� otherwise.An additional rounding mode is critical to the implementation of
oating-point addition: If x 2 Q, n 2 N, and n > 1, thensticky(x; n) = �x if x is (n�1)-exacttrunc(x; n� 1) + sgn(x)2expo(x)+1�n otherwise:The signi�cance of this operation is that the result of rounding a number xto � bits, according to any IEEE rounding mode, can always be recovered fromsticky(x; � + 2):

Lemma 7. Let M be an IEEE rounding mode, � 2 N� , n 2 N, and x 2 Q. Ifn � � + 2, then rnd(x;M; �) = rnd(sticky(x; n);M; �):Proof: We may assume that x > 0 and x is not (n� 1)-exact; the other casesfollow trivially. First, note that since sticky(x; n) is n-exact but not (n�1)-exact,trunc(sticky(x; n); n� 1) = sticky(x; n)� 2expo(sticky(x;n))�(n�1)= sticky(x; n)� 2expo(x)+1�n= trunc(x; n� 1):Thus, for any m < n,trunc(sticky(x; n);m) = trunc(trunc(x; n � 1);m) = trunc(x;m);and the corresponding result for away may be similarly derived.This disposes of all but the case M = near. For this last case, it su�ces toshow that if trunc(x; �+1) = trunc(y; �+1) and away(x; �+1) = away(y; �+1),then near(x; �) = near(y; �). We may assume x � y. Suppose near(x; �) 6=near(y; �). Then for some (� + 1)-exact a, x � a � y. But this implies x =a, for otherwise trunc(x; � + 1) � x < a � trunc(y; � + 1). Similarly, y =a, for otherwise away(x; � + 1) � a < y � away(y; � + 1). Thus, x = y, acontradiction. 2The following property is essential for computing a rounded sum or di�erence:Lemma 8. Let x; y 2 Q such that y 6= 0 and x + y 6= 0. Let k 2 Z, k0 =k + expo(x) � expo(y), and k00 = k + expo(x + y) � expo(y). If k > 1, k0 > 1,k00 > 1, and x is (k0 � 1)-exact, thenx+ sticky(y; k) = sticky(x+ y; k00):Proof: Since x is (k0 � 1)-exact, 2k�2�expo(y)x = 2(k0�1)�1�expo(x)x 2 Z.Thus, y is (k � 1)-exact, 2k�2�expo(y)y 2 Z, 2k�2�expo(y)y + 2k�2�expo(y)x 2 Z, 2k00�2�expo(x+y)(x+ y) 2 Z, x+ y is (k00 � 1)-exact:If y is (k � 1)-exact, thenx+ sticky(y; k) = x+ y = sticky(x+ y; k00):Thus, we may assume that y is not (k� 1)-exact. Now in [6] it was proved, withk, k0, and k00 as de�ned above, and under the weaker assumptions that k > 0,k0 > 0, k00 > 0, and x is k0-exact, thatx+ trunc(y; k) = � trunc(x+ y; k00) if sgn(x+ y) = sgn(y)away(x+ y; k00) if sgn(x+ y) 6= sgn(y):

Hence, if sgn(x+ y) = sgn(y), thenx+ sticky(y; k) = x+ trunc(y; k � 1) + sgn(y)2expo(y)+1�k= trunc(x+ y; k00 � 1) + sgn(x+ y)2expo(x+y)+1�k00= sticky(x+ y; k00):On the other hand, if sgn(x+ y) 6= sgn(y), thenx+ sticky(y; k) = x+ trunc(y; k � 1) + sgn(y)2expo(y)+1�k= away(x+ y; k00 � 1)� sgn(x+ y)2expo(x+y)+1�k00= trunc(x+ y; k00 � 1) + sgn(x+ y)2expo(x+y)+1�k00= sticky(x+ y; k00): 24 Description of the AdderA simpli�ed version of the Athlon
oating-point adder is represented in the AMDRTL language as the circuit description A, displayed in Figs. 1{6. As de�nedprecisely in [8], a program in this language consists mainly of input declarations,combinational assignments, and sequential assignments, which have the formsinput s[k : 0]; (1)s[k : 0] = E; (2)and s[k : 0] <= E; (3)respectively, where k 2 N, s is a signal representing a bit vector of length k+1,and E is an expression constructed from signals and standard logical connectives.Each signal s occurring anywhere in a description must appear in exactly one ofthe three contexts (1), (2), and (3), and is called an input, a wire, or a register,accordingly. Any signal may also occur in an output declaration,output s[k : 0]; (4)and is then also called an output. Note that the circuit A has �ve inputs, a,b, op, rc, pc (Fig. 1), and one output, r (Fig. 2), which happens to be a wire(Fig. 6).A circuit description may also contain constant de�nitions of the form`define r Cwhere r is an identi�er and C is either a numerical constant or a pattern repre-senting a set of constants. generalized constant expression. For example, accord-ing to the de�nition of FSUB0 (Fig. 1), the value computed for the assignment

statement to sub (Fig. 2) is 1 whenever the value of the 11-bit vector op matchesthe string 1100000x10x.Any signal that occurs in the de�ning expresssion E for a (non-input) signals is called a direct supporter of s. If s is a wire and s0 is any signal, then s dependson s0 i� s0 is a direct supporter either of s or of some wire on which s depends.It is a syntactic requirement of the language that no wire depends on itself.A combinational circuit is one that is free of registers. The semantics of acombinational circuit are particularly simple: the behavior of each output maybe described as a function of the inputs. In fact, the same is true of a moregeneral class of circuits, which we de�ne as follows: A circuit description is ann-cycle simple pipeline if each of its signals s may be assigned a cycle number (s) 2 f1; : : : ; ng such that(1) if s is an input, then (s) = 1;(2) if s is a wire, then (s0) = (s) for each direct supporter s0 of s;(3) if s is a register, then (s0) = (s)� 1 for each direct supporter s0 of s;(4) if s is an output, then (s) = n.In [8], we present a general semantic de�nition of the RTL language. associating afunction with each signal. This function returns a sequence of values, interpretedas the values assumed by the signal on successive cycles, for a given set ofsequences of values of the input signals. It is shown that for a simple pipeline,the value of each signal s on cycle (s) is determined by the values of the inputson cycle 1. Moreover, this functional dependence on inputs is the same as for thecombinational circuit that results from collapsing the pipeline by replacing eachsequential assignment (3) by the corresponding combinational assignment (2)The actual RTL model of the AMD Athlon
oating-point adder is a 4-cyclesimple pipeline. In order to simplify our analysis of the circuit as well as thispresentation, the circuit description A listed below was derived by modifyingthe original as follows:(1) All sequential assignments have been replaced with combinational assign-ments, yielding an equivalent combinational circuit.(2) All code pertaining to functions other than addition and subtraction, whichare performed by the same hardware, has been deleted.(3) All code pertaining to the reporting of exceptional conditions, includingover
ow and under
ow, has been deleted.(4) The remaining code has been simpli�ed by eliminating signals and combiningassignments when possible.(5) Signal names have been changed to promote readability.The resulting circuit A is shorter and simpler than the original, and bears lessresemblance to the intended gate-level implementation, but the two may easilybe shown to be semantically equivalent with respect to the computation of sumsand di�erences. In fact, this equivalence has been established mechanically asdiscussed in Section 6.

module A;//***// Definitions//***// CLASS DEFINITIONS`define UNSUPPORTED 3'b000`define SNAN 3'b001`define NORMAL 3'b010`define INFINITY 3'b011`define ZERO 3'b100`define QNAN 3'b101`define DENORM 3'b110`define MMX 3'b111//OPCODE DEFINITIONS//`define FADD 11'b1100xx0x000`define FADDU 11'b11010000000`define FSUB0 11'b1100000x10x`define FSUB1 11'b1100100x10x`define FSUB2 11'b1100110x10x`define FSUBU 11'b11010000100`define FADDT64 11'b11010010001`define FSUBT64 11'b11010010000`define FADDT68 11'b11010010010`define FSUBT68 11'b11010010110//PRECISION DEFINITIONS//`define PC_32 2'b00 // single`define PC_64 2'b10 // double`define PC_80 2'b11 // extended`define PC_80R 2'b01 // extended (reserved)//ROUNDING DEFINITIONS//`define RC_RN 2'b00 // round to nearest`define RC_RM 2'b01 // round to minus infinity`define RC_RP 2'b10 // round to plus infinity`define RC_RZ 2'b11 // truncate//***// Parameters//***//INPUTS//input a[89:0]; //first operandinput b[89:0]; //second operandinput op[10:0]; //opcodeinput rc[1:0]; //rounding controlinput pc[1:0]; //precision controlFig. 1. Circuit A

//OUTPUT//output r[89:0]; //sum or difference//OPERAND FIELDS//mana[67:0] = a[67:0]; manb[67:0] = b[67:0]; //significandexpa[17:0] = a[85:68]; expb[17:0] = b[85:68]; //exponentsigna = a[86]; signb = b[86]; //signclassa[2:0] = a[89:87]; classb[2:0] = b[89:87]; //classazero = (classa[2:0] == `ZERO); bzero = (classb[2:0] == `ZERO);//OPERATION//int_op = (op == `FADDT68) | (op == `FSUBT68);ext_op = (op == `FADDT64) | (op == `FSUBT64);sub = casex(op[10:0])`FSUB0,`FSUB1,`FSUB2,`FSUBU,`FSUBT68,`FSUBT64 : 1'b1;default : 1'b0;endcase;esub = sub ^ signa ^ signb; //effective subtraction//ROUNDING CONTROL//rc_near = (rc[1:0] == `RC_RN) | int_op; // round to nearestrc_minf = (rc[1:0] == `RC_RM) & ~int_op; // round to minus infinityrc_inf = (rc[1:0] == `RC_RP) & ~int_op; // round to plus infinityrc_trunc = (rc[1:0] == `RC_RZ) & ~int_op; // truncate//PRECISION CONTROL//pc_32 = (pc == `PC_32) & ~ext_op & ~int_op; // singlepc_64 = (pc == `PC_64) & ~ext_op & ~int_op; // doublepc_80 = (((pc == `PC_80) | (pc == `PC_80R)) & ~int_op) | ext_op; // extendedpc_87 = int_op; // internal//**// First Cycle//**// SELECT CLOSE OR FAR PATH//diffpos[18:0] = {1'b0,expa[17:0]} + {1'b0,~expb[17:0]} + 19'b1;diffneg[17:0] = expb[17:0] + ~expa[17:0] + 18'b1;swap = ~diffpos[18];expl[17:0] = bzero | (~azero & ~swap) ? expa : expb;rsa[6:0] = swap ? diffneg[6:0] : diffpos[6:0];overshift = (swap & (|diffneg[17:7])) | (~swap & (|diffpos[17:7])) |(rsa[6] & ((|rsa[5:3]) | (&rsa[2:1])));far = ~esub | azero | bzero | overshift | (|rsa[6:1]);// CLOSE PATH//shift_close = expa[0] ^ expb[0];swap_close = ~(expa[0] ^ expa[1] ^ expb[1]);ina_shift_close[68:0] = shift_close ? {1'b0,mana[67:0]} : {mana[67:0] ,1'b0};inb_shift_close[68:0] = shift_close ? {1'b0,manb[67:0]} : {manb[67:0] ,1'b0};Fig. 2. Circuit A (continued)

ina_swap_close[68:0] = (shift_close & swap_close) ?{manb[67:0] ,1'b0} : {mana[67:0] ,1'b0};inb_swap_close[68:0] = (shift_close & swap_close) ?ina_shift_close[68:0] : inb_shift_close[68:0];lop0[68:0] = {mana[66:0],2'b0} | {1'b0,~manb[66:0],1'b1};lop1_t[67:0] = mana[67:0] ^ ~manb[67:0];lop1_g[67:0] = mana[67:0] & ~manb[67:0];lop1_z[67:0] = ~(mana[67:0] | ~manb[67:0]);lop1[67:0] = {1'b0,(lop1_t[67:2] & lop1_g[66:1] & ~lop1_z[65:0]) |(~lop1_t[67:2] & lop1_z[66:1] & ~lop1_z[65:0]) |(lop1_t[67:2] & lop1_z[66:1] & ~lop1_g[65:0]) |(~lop1_t[67:2] & lop1_g[66:1] & ~lop1_g[65:0]),~lop1_t[0]};lop2[68:0] = {manb[66:0],2'b0} | {1'b0,~mana[66:0],1'b1};lop[68:0] = shift_close ? (swap_close ? lop2[68:0] : lop0[68:0]) : {lop1[67:0],1'b0};found = 1'b0;for (i=68; i>=0; i=i-1)if (lop[i] & ~found)beginfound = 1'b1;lsa[6:0] = 7'h44 - i[6:0];end//FAR PATH//rshiftin_far[67:0] = swap ? mana[67:0] : manb[67:0];ina_far[67:0] = azero | (swap & ~bzero) ? manb[67:0] : mana[67:0];//***// Second Cycle//***//PREDICT EXPONENT OF RESULT//lshift[17:0] = far ? (esub ? 18'h3ffff : 18'b0) : ~{11'b0,lsa[6:0]};exp[17:0] = expl[17:0] + lshift[17:0];//ALIGN OPERANDS//ina_close[68:0] = ~shift_close & (mana < manb) ? inb_swap_close[68:0] << lsa[6:0] :ina_swap_close[68:0] << lsa[6:0];ina_add[70:0] = far ? {ina_far[67:0], 3'b0} : {ina_close[68:0], 2'b0};inb_close[68:0] = ~shift_close & (mana < manb) ? ina_swap_close[68:0] << lsa[6:0] :inb_swap_close[68:0] << lsa[6:0];rshiftout_far[69:0] = overshift | azero | bzero ?70'b0 : {rshiftin_far[67:0],2'b0} >> rsa[6:0];sticky_t[194:0] = {rshiftin_far[67:0],127'b0} >> rsa[6:0];sticky_far = ~(azero | bzero) & (overshift | (|sticky_t[124:58]));inb_far[70:0] = {rshiftout_far[69:0],sticky_far};inb_add_nocomp[70:0] = far | azero | bzero ? inb_far[70:0] : {inb_close[68:0],2'b0};inb_add[70:0] = esub ? ~inb_add_nocomp[70:0] : inb_add_nocomp[70:0];Fig. 3. Circuit A (continued)

//DETERMINE SIGN OF RESULT//sign_tmp = swap | (~far & ~shift_close & (mana < manb)) ? signb ^ sub : signa;abequal = esub & (mana == manb) & (expa == expb);sign_reg = ((~azero & ~bzero & ~abequal & sign_tmp) |(~azero & ~bzero & abequal & rc_neg) |(azero & ~bzero & (signb ^ sub)) |(~azero & bzero & signa) |(azero & bzero & signa & (signb ^ sub)) |(azero & bzero & (signa ^ (signb ^ sub)) & rc_neg)) & ~(ainf | binf) |(ainf & signa) | (binf & (signb ^ sub));//COMPUTE ROUNDING CONSTANT//int_noco[70:0] = {68'b0,1'b1,2'b0}; // 71'h4ext_noco[70:0] = case(1'b1)rc_trunc : 71'b0; rc_inf : {64'h0, ~{7 {sign_reg}}};rc_near : {65'b1,6'b0}; rc_minf : {64'h0,{7 {sign_reg}}};endcase;doub_noco[70:0] = case(1'b1)rc_trunc : 71'h0; rc_inf : {53'h0,~{18 {sign_reg}}};rc_near : {54'b1,17'b0}; rc_minf : {53'h0,{18 {sign_reg}}};endcase;sing_noco[70:0] = case(1'b1)rc_trunc : 71'h0; rc_inf : {24'h0,~{47 {sign_reg}}};rc_near : {25'b1,46'b0}; rc_minf : {24'h0,{47 {sign_reg}}};endcase;rconst_noco[70:0] = case(1'b1)pc_87 : int_noco; pc_80 : ext_noco;pc_64 : doub_noco; pc_32 : sing_noco;endcase;//***// Third Cycle//***//CHECK FOR OVERFLOW OR CANCELLATION//sum[71:0] = {1'b0,ina_add[70:0]} + {1'b0,inb_add[70:0]} + {71'b0,esub};overflow = sum[71];ols = ~sum[70];//COMPUTE SUM ASSUMING NO OVERFLOW OR CANCELLATION, CHECK FOR CARRYOUT//sum_noco[70:0] = rconst_noco[70:0] ^ ina_add[70:0] ^ inb_add[70:0];carry_noco[71:0] = {(rconst_noco[70:0] & ina_add[70:0]) |(rconst_noco[70:0] & inb_add[70:0]) |(ina_add[70:0] & inb_add[70:0]),1'b0};sum71_noco[72:0] = {2'b0,sum_noco[70:0]} + {1'b0,carry_noco[71:0]} + {72'b0,esub};overflow_noco = sum71_noco[71];Fig. 4. Circuit A (continued)

//COMPUTE SUM ASSUMING OVERFLOW OR CANCELLATION, CHECK FOR CARRYOUT//rconst_co[70:0] = esub ? {1'b0,rconst_noco[70:1]} : {rconst_noco[69:0],rconst_noco[0]};sum_co[70:0] = rconst_co[70:0] ^ ina_add[70:0] ^ inb_add[70:0];carry_co[71:0] = {(rconst_co[70:0] & ina_add[70:0]) |(rconst_co[70:0] & inb_add[70:0]) |(ina_add[70:0] & inb_add[70:0]),1'b0};sum71_co[72:0] = {2'b0,sum_co[70:0]} + {1'b0,carry_co[71:0]} + {72'b0,esub};overflow_co = sum71_co[72];ols_co = ~sum71_co[70];//COMPUTE STICKY BIT OF SUM FOR EACH OF THREE CASES//sticksum[47:0] = esub ? ina_add[47:0] ^ inb_add[47:0] : ~(ina_add[47:0] ^ inb_add[47:0]);stickcarry[47:0] = esub ? {ina_add[46:0] & inb_add[46:0],1'b0} :{ina_add[46:0] | inb_add[46:0],1'b0};stick[47:0] = ~(sticksum[47:0] ^ stickcarry[47:0]);sticky_ols = (|stick[44:16] & pc_32) | (|stick[15:5] & (pc_32 | pc_64)) |(|stick[4:1] & ~pc_87) | stick[0] ;sticky_noco = sticky_ols | (stick[45] & pc_32) | (stick[16] & pc_64) |(stick[5] & pc_80) | stick[1] ;sticky_co = sticky_noco | (stick[46] & pc_32) | (stick[17] & pc_64) |(stick[6] & pc_80) | stick[2] ;//***// Fourth Cycle//***//COMPUTE SIGNIFICAND//man_noco[67:0] ={sum71_noco[72] | sum71_noco[71] | sum71_noco[70],sum71_noco[69:48],sum71_noco[47] & ~(~sum71_noco[46] & ~sticky_noco & pc_32 & rc_near),sum71_noco[46:19] & {28 {~pc_32}},sum71_noco[18] & ~(pc_32 | (~sum71_noco[17] & ~sticky_noco & pc_64 & rc_near)),sum71_noco[17:8] & ~{10{pc_32 | pc_64}},sum71_noco[7] & ~(pc_32 | pc_64 | (~sum71_noco[6] & ~sticky_noco & pc_80 & rc_near)),sum71_noco[6:4] & ~{3{pc_32 | pc_64 | pc_80}},sum71_noco[3] & ~(pc_32 | pc_64 | pc_80 | (~sum71_noco[2] & ~sticky_noco & rc_near))};man_co[67:0] ={sum71_co[72] | sum71_co[71],sum71_co[70:49],sum71_co[48] & ~(~sum71_co[47] & ~sticky_co & pc_32 & rc_near),sum71_co[47:20] & {28 {~pc_32}},sum71_co[19] & ~(pc_32 | (~sum71_co[18] & ~sticky_co & pc_64 & rc_near)),sum71_co[18:9] & ~{10{pc_32 | pc_64}},sum71_co[8] & ~((pc_32 | pc_64) | (~sum71_co[7] & ~sticky_co & pc_80 & rc_near)),sum71_co[7:5] & ~{3{pc_32 | pc_64 | pc_80}},sum71_co[4] & ~(pc_32 | pc_64 | pc_80 | (~sum71_co[3] & ~sticky_co & rc_near))}; Fig. 5. Circuit A (continued)

man_ols[67:0] ={sum71_co[70] | sum71_co[69],sum71_co[68:47],sum71_co[46] & ~(~sum71_co[45] & ~sticky_ols & pc_32 & rc_near),sum71_co[45:18] & {28 {~pc_32}},sum71_co[17] & ~(pc_32 | (~sum71_co[16] & ~sticky_ols & pc_64 & rc_near)),sum71_co[16:7] & ~{10{pc_32 | pc_64}},sum71_co[6] & ~((pc_32 | pc_64) | (~sum71_co[5] & ~sticky_ols & pc_80 & rc_near)),sum71_co[5:3] & ~{3{pc_32 | pc_64 | pc_80}},sum71_co[2] & ~(pc_32 | pc_64 | pc_80 | (~sum71_co[1] & ~sticky_ols & rc_near))};man_reg[67:0] = case(1'b1)(~esub & ~overflow) | (esub & ~ols) : man_noco[67:0];~esub & overflow : man_co[67:0];esub & ols : man_ols[67:0];endcase;//ADJUST EXPONENT://exp_noco[17:0] = overflow_noco ? exp[17:0] + 18'h1 : exp[17:0];exp_co[17:0] = overflow_co ? exp[17:0] + 18'h2 : exp[17:0] + 18'b1;exp_noco_sub[17:0] = overflow ^ overflow_noco ?exp[17:0] + 18'h2 : exp[17:0] + 18'h1;exp_ols[17:0] = ols_co ? exp[17:0] : exp[17:0] + 18'h1;exp_reg[17:0] = case(1'b1)(~esub & ~overflow) : exp_noco[17:0];(~esub & overflow) : exp_co[17:0];(esub & ~ols) : exp_noco_sub[17:0];(esub & ols) : exp_ols[17:0];endcase;//DETERMINE CLASS//class_reg[2:0] = case(1'b1)(azero & bzero) | abequal : `ZERO;default : `NORMAL;endcase;//FINAL RESULT//r[89:0] = {class_reg[2:0], sign_reg, exp_reg[17:0], man_reg[67:0]};endmodule Fig. 6. Circuit A (continued)

Although it is combinational, our listing of A re
ects the adder's 4-cyclestructure insofar as its signals are grouped according to their cycle numberswith respect to the original RTL speci�cation, and our analysis will be guidedby this organization. As a �rst step toward understanding the 4-cycle structure,consider the following procedure, which represents a naive approach to
oatingpoint addition and subtraction:(1) Compare the exponent �elds of the summands to determine the right shiftnecessary to align the signi�cands;(2) Perform the required right shift on the signi�cand �eld that corresponds tothe lesser exponent;(3) Add (or subtract) the aligned signi�cands, together with the appropriaterounding constant;(4) Determine the left shift required to normalize the result;(5) Perform the left shift and adjust the exponent accordingly;(6) Compute the �nal result by assembling the sign, exponent, and signi�cand�elds.Under the constraints imposed by contemporary technology and microprocessorclock rates, each of the above operations might reasonably correspond to a singlecycle, resulting in a six-cycle implementation. It is possible, however, to improveon this cycle count by executing some of these operations in parallel.The most important optimization of the above algorithm is based on theobservation that while a large left shift might be required (in the case of sub-traction, if massive cancellation occurs), and a large right shift might be required(if the exponents are vastly di�erent), only one of these possibilities will be re-alized for any given pair of inputs. Thus, the Athlon adder includes two datapaths: on one path, called the far path, the right shift is determined and exe-cuted; on the other, called the close path, the left shift is performed instead. Asnoted in Section 2, the left shift may be determined in advance of the subtrac-tion. Consequently, steps (4) and (5) may be executed concurrently with steps(1) and (2), respectively, resulting in a four-cycle implementation. In Section 5,we shall examine the code corresponding to each cycle in detail.In the subsequent discussion, we shall assume a �xed execution of A de-termined by a given set of values corresponding to the inputs. We adopt theconvention of italicizing the name of each signal to denote its value for theseinputs. Thus, r denotes the output value determined by the inputs a, b, op, rc,and pc.The input values a and b are the operands. Each operand is a vector of ninetybits, including a three-bit encoding of its class, along with sign, exponent, andsigni�cand �elds, according to the AMD Athlon internal (68; 18) format. The�elds of a are assigned to classa, signa, expa, and mana; those of b are similarlyrecorded. While all eight classes are handled by the actual RTL, we consider hereonly the case classa = classb = NORMAL, and assume that a and b are normal(68; 18)-encodings, i.e., mana[67] = manb[67] = 1. Further, in order to ensurethat all computed exponent �elds are representable in the allotted 18 bits (see,

for example, the proof of Lemma 14(a)), we assume that expa and expb are bothin the range from 69 to 218 � 3.The operation to be performed is encoded as the input op, which we shallassume to be one of the 11-bit opcodes listed in Figure 1. This opcode may indi-cate either addition or subtraction, as re
ected by the 1-bit signal sub (Figure 2).Let E denote the exact result of this operation, i.e.,E = � â+ b̂ if sub = 0â� b̂ if sub = 1.For simplicity, we shall assume that E 6= 0.Rounding control is determined by rc along with op. According to these twovalues, exactly one of the bits rc_near, rc_minf , rc_inf , and rc_trunc is 1,as shown in Figure 2. We shall introduce a variable M, which we de�ne to becorresponding rounding mode. For example, if op is neither FADDT68 nor FSUBT68and rc = RC_RZ, then rc_trunc = 1 and M = trunc.Similarly, pc and op together determine which one of the bits pc_32, pc_64,pc_80, and pc_87 is set. We de�ne � to be the corresponding degree of precision:24, 53, 64, or 68, respectively.The result prescribed by the IEEE standard will be denoted as P , i.e.,P = rnd(E ;M; �):Our goal may now be stated as follows:Theorem 1. Suppose that a[89 : 77] and b[89 : 87] are both NORMAL and thata[86 : 0] and b[86 : 0] are normal (68; 18)-encodings such that 69 � a[85 : 68] �218 � 3 and 69 � b[85 : 68] � 218 � 3. Assume that E 6= 0. Then r[89 : 87] =NORMAL, r[86 : 0] is a normal (68; 18)-encoding, and r̂ = P.Before proceeding with the proof of Theorem 1, we must note that the circuitdescription A contains a construct of the RTL language that was not describedin [8], namely, the for loop (Fig. 3):found = 1'b0;for (i=68; i>=0; i=i-1)if (lop[i] & ~found)beginfound = 1'b1;lsa[6:0] = 7'h44 - i[6:0];endIf an assignment to a signal s occurs within a for loop, then its value s iscomputed by a recursive function determined by the loop. In this example, therecursive function � for the signal lsa is de�ned by�(lsa; found; lop; i) = 8<: lsa if i < 0�(68� i; 1; i� 1; lop) if lop[i] = 1 and found = 0�(lsa; found; i� 1; lop) otherwise;

and the value of lsa is given bylsa = �(0; 0; valA(lop; I;R); 68):5 Proof of CorrectnessThe proof of Theorem 1 may be simpli�ed by noting that we may restrict ourattention to the case E > 0. In order to see this, suppose that we alter the inputsby toggling the sign bits a[86] and b[86] and replacing rc with rc0, whererc0 =8<:RC RM if rc = RC RPRC RP if rc = RC RMrc otherwise.It is clear by inspection of the code that the only signals a�ected are signa,signb, sgn_tmp, and sgn_reg, each of which is complemented, and rc_inf andrc_minf , which are transposed. Consequently, r̂ is negated and M is replacedby M0, where M0 = 8<:minf if M = infinf if M = minfM otherwise.Now, from the simple identity rnd(�x;M0; �) = �rnd(x;M; �), it follows thatif Theorem 1 holds under the assumption E > 0, then it holds generally.The proof proceeds by examining the signals associated with each cycle insuccession.First CycleIn the initial cycle, the operands are compared, the path is selected, and theleft and right shifts are computed for the close and far paths, respectively. Weintroduce the following notation:� = jexpa� expbj;� = �mana if expa > expb _ (expa = expb ^ (far = 1 _mana � manb))manb otherwise,and � = �manb if � = manamana if � = manb.We begin by comparing the exponents of the operands:Lemma 9. (a) swap = 1 i� expa < expb; (b) expl = max(expa; expb).

Proof: Since di�pos = expa+ ~expb[17 : 0] + 1 = 218 + expa� expb < 219,swap = 1, di�pos[18] = 0, di�pos < 218 , expa < expb: 2The path selection is determined by the signal far, which depends on esuband �. For the far path, the magnitude of the right shift is given by �. Wedistinguish between the cases � � 70 and � < 70.Lemma 10.(a) overshift = 1 i� � � 70;(b) if overshift = 0, then rsa = �;(c) far = 0 i� esub = 1 and � � 1.Proof: If swap = 0, then di�pos[17 : 0] = di�pos � 218 = expa � expb,and if swap = 1, then di�neg[17 : 0] = di�neg = expb � expa. Thus, in eithercase, rsa = �[6 : 0] = rem(�; 128). It follows that overshift = 1 i� either�[17 : 7] = b�=128c 6= 0 or rsa � 70, which implies (a), from which (b) and (c)follow immediately. 2The next lemma is an immediate consequence of Lemma 9:Lemma 11. Assume far = 1.(a) ina_far = �; (b) rshiftin_far = �.For the close path, the ordering of exponents is determined by shift_closeand swap_close:Lemma 12. Assume far = 0.(a) shift_close = 0 i� expa = expb;(b) if shift_close = 1, then swap_close = 1 i� expa < expb;(c) ina_swap_close = �2mana if expa = expb2� if expa 6= expb;(d) inb_swap_close = �2manb if expa = expb� if expa 6= expb.Proof: (a) is a consequence of Lemma 10; (c) and (d) follow from (a) and (b).To prove (b), �rst note thatexpa > expb, expa� expb = 1, rem(expa� expb; 4) = 1, rem(expa[1 : 0]� expb[1 : 0]; 4) = 1:Now suppose that expa[0] = 0. Then expb[0] = 1 andswap_close = 1, expa[1] = expb[1], rem(expa[1 : 0]� expb[1 : 0]; 4) = 1:On the other hand, if expa[0] = 1, then expb[0] = 0 andswap_close = 1, expa[1] 6= expb[1], rem(expa[1 : 0]� expb[1 : 0]; 4) = 1: 2The magnitude of the left shift is determined by the signal lsa:

Lemma 13. If far = 0, then 66� lsa � expo(�� 2���) � 67� lsa.Proof: As noted in Section 4, lsa = �(0; 0; lop; 68), where�(lsa; found; lop; i) = 8<: lsa if i < 0�(68� i; 1; i� 1; lop) if lop[i] = 1 and found = 0�(lsa; found; i� 1; lop) otherwise:It is easily shown by induction on i that if 0 < i � 68 and 0 < lop < 2i+1,then �(0; 0; lop; i) = 68� expo(lop). In particular, if 0 < lop < 269, then lsa =68� expo(lop). Thus, it will su�ce to show that lop > 0 and thatexpo(lop)� 2 � expo(� � 2���) � expo(lop)� 1:First consider the case expa > expb. We may apply Lemma 3, substituting2mana, manb, and lop = lop0 for a, b, and �, respectively, and conclude thatlop > 0 and expo(lop)� 1 � expo(2mana�manb) � expo(lop):But in this case,expo(2mana�manb) = expo(2(�� 2�1�)) = expo(�� 2���) + 1;and the desired inequality follows. The case expa < expb is similar.Now suppose expa = expb. Here we apply Lemma 4, substituting mana,manb, and lop1 for a, b, and �, which yields lop1 > 0 andexpo(lop1)� 1 � expo(mana�manb) � expo(lop1):But expo(mana�manb) = expo(�� �) = expo(�� 2���)and expo(lop) = expo(2lop1) = expo(lop1) + 1. 2Second CycleIn the next cycle, the sign of the result is computed, its exponent is approxi-mated, and the signi�cand �elds of the operands are aligned by performing theappropriate shifts. The results of this alignment are the signals ina_add andinb_add_nocomp. In the case of subtraction, inb_add_nocomp is replaced by itscomplement.In all cases, � and � are �rst padded on the right with three 0's, and � isshifted right according to �. On the close path, both inputs are then shiftedleft as determined by lsa, and the exponent �eld of the result is predicted asexpl � lsa� 1:

Lemma 14. Assume far = 0.(a) exp = expl � lsa� 1;(b) ina_add = rem(2lsa+3�; 271);(c) inb_add_nocomp = rem(2lsa+3���; 271).Proof: (a) The constraints on expa and expb ensure that 69 � expl � 218�3.Since 0 � lsa � 68, it follows that 0 � expl � lsa� 1 < 218, henceexp = rem(expl + 218 � lsa� 1; 218) = expl � lsa� 1:(b) It follows from Lemma 12 that ina_close = rem(2� � 2lsa; 269), henceina_add = 4rem(2� � 2lsa; 269) = rem(2lsa+3�; 271):(c) This is similar to (b). 2On the far path, � is rounded after it is shifted to the right. The predictedexponent �eld is expl for addition and expl � 1 for subtraction:Lemma 15. Assume far = 1.(a) exp = expl � esub;(b) ina_add = 8�;(c) inb_add_nocomp = �sticky(23���; 71��) if � < 701 if � � 70.Proof: (a) and (b) are trivial, as is (c) in the case � � 70. Suppose � < 70.Since rshiftin_far = � and expo(� � 22��) = 69��,rshiftout_far = b� � 22��c = trunc(� � 22��; 70��)and sticky_t = � � 2127��. Thus,sticky_far = 0, (� � 2127��)[124 : 58] = 0, (� � 2127��)[124 : 0] = 0, � � 2127�� is divisible by 2125, � � 22�� 2 Z, � is (70��)-exact:Thus, if sticky_far = 0, theninb_add_nocomp = 2 � rshiftout_far + 0= trunc(� � 23��; 70��)= sticky(� � 23��; 71��);and otherwise,inb_add_nocomp = 2 � rshiftout_far + 1= trunc(� � 23��; 70��) + 2(3��+67)+1�(71��)= sticky(� � 23��; 71��): 2It is clear that the sign of the �nal result is correctly given by sign_reg:

Lemma 16. If E > 0, then sign_reg = 0.The rounding constant is also computed in this cycle. The following lemmais easily veri�ed for all possible values of M and �:Lemma 17. If E > 0, then rconst_noco = C(70;M; �).Third CycleIn this cycle, three sums are computed in parallel. The �rst of these is theunrounded sum sum = ina add+ inb add+ esub:In the case of (e�ective) addition, the leading bit sum[71] is examined to checkfor over
ow, i.e., to determine whether expo(sum) is 70 or 71. In the subtrac-tion case, only sum[70 : 0] is of interest|the leading bit sum[70] is checked todetermine whether cancellation occurred. Thus, one of three possible roundingconstants is required, depending on whether the exponent of the unrounded sumis 69, 70, or 71. The second adder computes the rounded sum assuming an ex-ponent of 70; the third assumes 71 in the addition case and 69 for subtraction.Concurrently, the relevant sticky bit of the unrounded sum is computed for eachof the three cases.Lemma 18. Assume E > 0 and esub = 0.(a) expo(sum) = �70 if overflow = 071 if overflow = 1;(b) rnd(sum;M; �) = 2217+69�expP.Proof: In this case, sum = ina add+ inb add:Suppose � < 70. Then by Lemma 8,sum = 8�+ sticky(23���; 71��)= 8sticky(�+ 2���; expo(� + 2���) + 4);where 67 � expo(�+ 2���) � 68.On the other hand, if � � 70, then since expo(�) = expo(�) = 67, we have0 < 22��� < 1 and expo(�+ 2���) = 67, which implytrunc(�+ 2���; 70) = b270�1�67(� + 2���)c267+1�70= b22�+ 22���c2�2= �

and sum = 8�+ 1= 8(trunc(�+ 2���; 70) + 2expo(�+2���)+1�71)= 8sticky(�+ 2���; 71)= 8sticky(�+ 2���; expo(� + 2���) + 4):In either case, 70 � expo(sum) � 71, which yields (a).To complete the proof of (b), note �rst thatjâj+ jb̂j = 2expa�217�66mana+ 2expb�217�66manb = 2expl�217�66(� + 2���);and hence, since exp = expl,rnd(� + 2���;M; �) = 2�exp+217+66rnd(jâj+ jb̂j;M; �) = 2�exp+217+66P :Now since � � 68, Lemma 7 impliesrnd(sum;M; �) = 23rnd(sticky(�+ 2���; expo(�+ 2���) + 4);M; �)= 23rnd(� + 2���;M; �)= 2217+69�expP : 2Lemma 19. Assume E > 0 and esub = 1.(a) expo(sum[70 : 0]) = �70 if ols = 069 if ols = 1;(b) rnd(sum[70 : 0];M; �) = 2217+68�expP.Proof: In this case,sum = ina add+ inb add+ 1 = 271 + ina add� inb add nocomp:Also note that jjâj � jb̂jj = 2expl�217�66(�� 2���);hencernd(� � 2���;M; �) = 2�expl+217+66rnd(jjâj � jb̂jj;M; �) = 2�expl+217+66P :Suppose �rst that far = 0. By Lemmas 13 and 14,sum[70 : 0] = rem(rem(2lsa+3�; 271)� rem(2lsa+3���; 271); 271)= rem(2lsa+3(�� 2���); 271)= 2lsa+3(� � 2���);where 69 � expo(2lsa+3(�� 2���)) � 70. Thus, since exp = expl� lsa� 1,rnd(sum[70 : 0];M; �) = 2lsa+3rnd(� � 2���;M; �)= 2lsa+32�expl+217+66P= 2217+68�expP :

Next, suppose far = 1. Then � � 2, and it follows that 66 � expo(� �2���) � 67. If � < 70, thensum[70 : 0] = 8�� sticky(23���; 71��)= 8sticky(�� 2���; expo(� � 2���) + 4):But if � � 70, then 0 < 22��� < 1, and hencetrunc(�� 2���; expo(�� 2���) + 3)= b22(� � 2���)c2�2 = b22�� 22���c2�2 = (22�� 1)2�2 = �� 2�2;which impliessticky(�� 2���; expo(�� 2���) + 4)= trunc(� � 2���; expo(�� 2���) + 3) + 2�3 = �� 2�3;and againsum[70 : 0] = 8�� 1 = 8sticky(�� 2���; expo(� � 2���) + 4):Thus, 69 � expo(sum[70 : 0]) = expo(� � 2���) + 3 � 70:Since expo(�� 2���) + 4 � 70 � � + 2and exp = expl � 1, Lemma 7 impliesrnd(sum[70 : 0];M; �) = 23rnd(sticky(�� 2���; expo(� � 2���) + 4);M; �)= 23rnd(� � 2���;M; �)= 2217+68�expP : 2The next lemma is a straightforward application of Lemma 1:Lemma 20. sum71 noco = rconst noco+ sum.If the exponent of the sum is not 70, a di�erent rounding constant must beused. Applying Lemma 1 again, and referring to the de�nition of C, we have thefollowing:Lemma 21. sum71 co = rconst co+ sum, where if E > 0,rconst co = �C(71;M; �) if esub = 0C(69;M; �) if esub = 1.The next lemma is required for the near case:

Lemma 22. Let S = �sum if esub = 0sum[70 : 0] if esub = 1. Then S is (�+1)-exact i� anyof the following holds:(a) esub = 0, overflow = 0, and sticky noco = 0;(b) esub = 0, overflow = 1, and sticky co = 0;(c) esub = 1, ols = 0, and sticky noco = 0;(d) esub = 1, ols = 1, and sticky ols = 0.Proof: S is (� + 1)-exact i� S is divisible by 2expo(S)��, i.e., sum[expo(S)�� � 1 : 0] = 0. Invoking Lemma 5 with a = ina add[47 : 0], b = inb add[47 : 0],c = esub, and n = 48, we conclude that for all k < 48, sum[k : 0] = 0 i�stick[k : 0] = 0. In particular, since expo(S) � � � 1 � 71 � 24 � 1 = 46, S is(� + 1)-exact i� stick[expo(S)� � � 1 : 0] = 0.Suppose, for example, that esub = ols = 1 and � = 24. In this case,sticky ols = 0, stick[44 : 16] = stick[15 : 5] = stick[4 : 1] = stick[0] = 0, stick[44 : 0] = 0:But expo(S)���1 = 69�24�1 = 44, hence S is (�+1)-exact i� sticky ols = 0.All other cases are similar. 2Fourth CycleIn the �nal cycle, the signi�cand �eld is extracted from the appropriate sum,and the exponent �eld is adjusted as dictated by over
ow or cancellation. Theresulting output r is an encoding of the prescribed result P , as guaranteed byTheorem 1.We now complete the proof of the theorem. As noted earlier, we may assumethat E > 0. By Lemma 16, sign reg = 0, hence our goal is to show that2exp reg�217�66man reg = P :We shall present the proof for the case esub = 1, ols = 0; the other three casesare similar.By Lemma 19, expo(sum[70 : 0]) = 70 andrnd(sum[70 : 0];M; �) = 2217+68�expP :Since man reg = man noco and exp reg = exp noco sub, we must show thatman noco = 2�exp noco sub+217+66P= 2�exp noco sub+217+662�217�68+exprnd(sum[70 : 0];M; �)= 2exp�exp noco sub�2rnd(sum[70 : 0];M; �):Let� = �� � 1 if M = near and sum[70 : 0] is (� + 1)-exact but not �-exact� otherwise.

By Lemmas 6 and 17,rnd(sum[70 : 0];M; �) = trunc(sum[70 : 0] + rconst noco; �):By Lemma 22, sum[70 : 0] is (�+1)-exact i� sticky noco = 0. If sticky noco = 0and M = near, thensum[70 : 0] is �-exact, sum[70� �] = 0, (sum+ 270��)[70� �] = sum71 noco[70� �] = 1:Thus,� = �� � 1 if M = near and sticky noco = sum71 noco[70� �] = 0� otherwise,and it is easy to check, for each possible value of �, thatman noco[66 : 0] = sum71 noco[69 : 71� �] � 268�� :Since expo(sum[70 : 0]) = 70 and expo(rconst noco) � 70� �,70 � expo(sum[70 : 0] + rconst noco) � 71;and thereforeexpo(sum[70 : 0] + rconst noco) = 70, (sum[70 : 0] + rconst noco)[71] = 0, (sum+ rconst noco)[71] = sum[71], overflow noco = overflow:Suppose �rst that overflow noco 6= overflow. Since expo(sum[70 : 0]) = 70and expo(rnd(sum[70 : 0];M; �)) = expo(sum[70 : 0] + rconst noco) = 71;rnd(sum[70 : 0];M; �)) = 271. In this case, exp noco sub = exp+2, so we mustprove that man noco = 2�4rnd(sum[70 : 0];M; �) = 267:Since 271 � sum[70 : 0] + rconst noco < 271 + 271�� ;we havesum71 noco[70 : 0] = (sum[70 : 0] + rconst noco)[70 : 0] < 271��;which implies sum71 noco[70 : 71� �] = 0, and therefore man noco[66 : 0] = 0.But since 270 � sum71 noco < 273,man noco[67] = sum71 noco[72] j sum71 noco[71] j sum71 noco[70] = 1

and man noco = 267.Now suppose that overflow noco = overflow. Since exp reg = exp+ 1, wemust show man noco = 2�3rnd(sum[70 : 0];M; �):But since expo(sum[70 : 0] + rconst noco) = 70,man noco = sum71 noco[70 : 71� �] � 268��= 2�3(sum71 noco[70 : 0] & (271 � 271��))= 2�3trunc(sum71 noco[70 : 0]; �)= 2�3trunc(sum[70 : 0] + rconst noco; �)= 2�3rnd(sum[70 : 0];M; �): 26 ACL2 FormalizationIn this section, we describe formalization of Theorem 1, including the automatictranslation of the RTL model to the ACL2 logic, the formal statement of thetheorem, and the mechanization of its proof. Naturally, a prerequisite for all ofthis is the formalization of the general theory of bit vectors and
oating-pointarithmetic. This is described in some detail in [8], and the reader may also referto the complete on-line
oating-point library [9].Our translator is an ACL2 program that accepts any simple pipeline (as de-�ned in Section 4) and automatically produces an equivalent set of executableACL2 function. For the present purpose, the translator was applied to two cir-cuit descriptions. The �rst was the actual register-transfer logic for the AMDAthlon adder, the main object of interest. The second was a simpli�ed version,an extension of the circuit A shown in Section 4, including additional inputs andoutputs pertaining to over
ow, under
ow, and other exceptional conditions. Theproof of equivalence of the corresponding resulting ACL2 functions was a criticalstep in verifying the correctness of the adder.The �rst task of the translation is to check that the given circuit descriptionis indeed a simple pipeline, so that it may be replaced by an equivalent com-binational circuit. An ordering of the signals of the circuit is then constructed,with respect to which each signal is preceded by those on which it depends.The main enterprise of the translator is the de�nition of an ACL2 functioncorresponding to each signal s, excluding inputs, based on the RTL expression fors. This requires a translation from each primitive RTL operation to an appropri-ate primitive or de�ned function of ACL2. For example, the function de�nitiongenerated for the signal sticksum of Fig. 4, constructed from the assignmentsticksum[47:0] = esub ?ina_add[47:0] ^ inb_add[47:0]: ~(ina_add[47:0] ^ inb_add[47:0]);is

(defun sticksum (inb-add ina-add esub)(if (equal esub 0)(comp1 (logxor (bits ina-add 47 0)(bits inb-add 47 0))48)(logxor (bits ina-add 47 0)(bits inb-add 47 0)))).Iteration presents a minor complication to this scheme, but the RTL loopconstruct may be e�ectively translated into LISP recursion. For example, theiterative de�nition of the signal lsa of Fig. 3 generates the following ACL2code:(defun lsa-aux (lsa found lop i)(declare (xargs :measure (1+ i)))(if (and (integerp i) (>= i 0))(if (not (equal (logand (bitn lop i)(comp1 found 1))0))(lsa-aux (- 68 i) found lop (1- i))(lsa-aux lsa 1 lop (1- i)))lsa))(defun lsa (lop) (lsa-aux 0 0 lop 68))Note that a measure declaration was inserted by hand as a hint to the proverin establishing the admissibility of the recursive de�nition of lsa-aux, but thiswas the only modi�cation required of the automatically generated code.Finally, an ACL2 function corresponding to each output of the circuit is gen-erated, with the circuit inputs as arguments. This function is de�ned by meansof the let* operator, calling in succession the functions corresponding to thecircuit's wires and binding their values to variables that represent the corre-sponding signals. Finally, the binding of the selected output signal is returned.The function corresponding to the sole output of our simpli�ed adder takes thefollowing form:(defun adder (a b op rc pc)(let* ((mana (mana a))(manb (manb b))(expa (expa a))(expb (expb b))(signa (signa a))(signb (signb b)).....(r (r class-reg sign-reg exp-reg man-reg)))r))

The number of bindings in this de�nition (i.e., the number of wires in the cir-cuit) is 209. The translation of the actual adder RTL is similar, but much longer,involving over 700 bindings. However, the proof of equivalence of these two func-tions was fairly straightforward (using the ACL2 prover), and we were thenable to restrict our attention to the simpler circuit without compromising ourobjective of establishing the correctness of the actual RTL.While there are a number of other feasible translation schemes, the one de-scribed above was selected because (a) the correspondence between the RTL andthe resulting ACL2 code is easily recognizable, and (b) the ACL2 code may beexecuted (and thus tested) fairly e�ciently. The disadvantage of this scheme,however, is that it produces functions that are not amenable to direct formalanalysis. For this purpose, some reformulation of these functions is required.Our goal is to generate a mechanical proof of Theorem 1 by formalizing thereasoning of Section 5. Thus, we would like to be able to state and prove a lemmapertaining to a given signal, invoking previously proved results concerning othersignals, without explicitly listing these previous results or stating the dependenceon these other signals in the hypothesis of the lemma. This does not seem possibleif our lemmas are to be statements about the ACL2 functions described above.Our solution to this problem is based on two features of ACL2: encapsulation,which allows functions to be characterized by constraining axioms rather thancomplete de�nitions, and functional instantiation, which allows lemmas pertain-ing to constrained functions to be applied to other functions that can be shownto satisfy the same constraints.Suppose that the hypothesis and conclusion of Theorem 1 are formally rep-resented by the functions input-spec and output-spec, respectively, so thatthe theorem is encoded as the formula(implies (input-spec a b op rc pc)(output-spec a b op rc pc (adder a b op rc pc))).Through encapsulation, we introduce constant functions a*, b*, etc. correspond-ing to the inputs by executing the following ACL2 event:(encapsulate ((a* () t) (b* () t) ...)(local (defun a* () ...))(local (defun b* () ...))...(defthm inputs* (input-spec (a*) (b*) (op*) (rc*) (pc*)))).Here, the de�nitions of a*, b*, etc. are irrelevant as long as they allow the proofof the formula inputs*. The result of this event is that the functions that itintroduces are unde�ned, but constrained to satisfy inputs*.Next, we de�ne a second set of functions corresponding to the wires of thecircuit. These functions are constants, derived from the �rst set of functionsby replacing each occurrence of a signal with the corresponding constant. Forexample:

(defun sticksum* ()(if (equal (esub*) 0)(comp1 (logxor (bits (ina-add*) 47 0)(bits (inb-add*) 47 0))48)(logxor (bits (ina-add*) 47 0)(bits (inb-add*) 47 0)))).(In fact, the translator has been modi�ed to generate these de�nitions as well.)The purpose of these functions is to facilitate formal reasoning about the signalsof our circuit, allowing us to prove a lemma about the behavior of a signal byinvoking previously proved lemmas about the signals on which it depends. Thus,to prove a lemma pertaining to the constant (sticksum*), we may expand itsde�nition and invoke any relevant lemmas about (ina-add*) and (inb-add*).In this manner, tracing the proofs of Section 5 step by step, we arrive at thefollowing result:(defthm r*-spec(output-spec (a*) (b*) (op*) (rc*) (pc*) (r*))).But simply by expanding de�nitions, we may also easily prove(defthm r*-adder(equal (r*) (adder (a*) (b*) (op*) (rc*) (pc*))))and combining the last two lemmas, we trivially deduce(defthm outputs*(output-spec (a*) (b*) (op*) (rc*) (pc*)(adder (a*) (b*) (op*) (rc*) (pc*))))Finally, our desired theorem may be derived from the constraint inputs*and the theorem outputs* by functional instantiation:(defthm correctness-of-adder(implies (input-spec a b op rc pc)(output-spec a b op rc pc (adder a b op rc pc))):hints (("goal" :use((:functional-instance outputs*(a* (lambda ()(if (input-spec a b op rc pc) a (a*))))(b* (lambda ()(if (input-spec a b op rc pc) b (b*))))...)))))In this �nal ACL2 event, a hint is provided to the prover: use the fuctional in-stance of the lemma outputs* that is produced by replacing each of the functionsa*,b*, : : : with a certain zero-argument lambda expression. Thus, the functiona* is to be replaced by the lambda expression

(lambda () (if (input-spec a b op rc pc) a (a*))),the value of which is(if (input-spec a b op rc pc) a (a*)),and the constant corresponding to each of the other inputs is similarly instan-tiated. Then, according to the principle of functional instantiation, the desiredtheorem may be established by proving two subgoals. The �rst is the implicationthat the statement of the theorem follows from the instantiated lemma:(implies(output-spec a b op rc pc(adder (if (input-spec a b op rc pc) a (a*))(if (input-spec a b op rc pc) b (b*))...))(implies (input-spec a b op rc pc)(output-spec a b op rc pc (adder a b op op rc pc)))The second subgoal is the corresponding functional instance of the constraintinputs*:(input-spec (if (input-spec a b op rc pc) a (a*))(if (input-spec a b op rc pc) b (b*))...).But the �rst subgoal is trivial, second follows from inputs* itself, and the the-orem correctness-of-adder follows.AcknowledgementsSeveral people have contributed to this project. The RTL-ACL2 translator wasimplemented by Art Flatau. Stuart Oberman designed the Athlon adder andexplained it to the author. Matt Kaufmann and J Moore provided some helpfulmodi�cations of ACL2 and advice in its use.References1. Institute of Electrical and Electronic Engineers, \IEEE Standard for Binary FloatingPoint Arithmetic", Std. 754-1985, New York, NY, 1985.2. Intel Corporation, Pentium Family User's Manual, Volume 3: Architecture and Pro-gramming Manual, 1994.3. Kaufmann, M., Manolios, P., and Moore, J, Computer-Aided Reasoning: an Ap-proach, Kluwer Academic Press, 2000.4. Moore, J, Lynch, T., and Kaufmann, M., \A Mechanically Checked Proof of theCorrectness of the Kernel of the AMD5K86 Floating Point Division Algorithm",IEEE Transactions on Computers, 47:9, September, 1998.

5. Oberman, S., Hesham, A., and Flynn, M., \The SNAP Project: Design of FloatingPoint Arithmetic Units", Computer Systems Lab., Stanford U., 1996.6. Russino�, D., \A Mechanically Checked Proof of IEEE Compli-ance of the AMD-K5 Floating Point Square Root Microcode", For-mal Methods in System Design 14 (1):75-125, January 1999. See URLhttp://www.onr.com/user/russ/david/fsqrt.html.7. Russino�, D., \A Mechanically Checked Proof of IEEE Compliance of the AMD-K7Floating Point Multiplication, Division, and Square Root Algorithms". See URLhttp://www.onr.com/user/russ/david/k7-div-sqrt.html.8. Russino�, D. and Flatau, A., \RTL Veri�cation: A Floating-Point Multi-plier", in Kaufmann, M., Manolios, P., and Moore, J, eds., Computer-AidedReasoning: ACL2 Case Studies, Kluwer Academic Press, 2000. See URLhttp://www.onr.com/user/russ/david/acl2.html.9. Russino�, D., \An ACL2 Library of Floating-Point Arithmetic", 1999. See URLhttp://www.cs.utexas.edu/users/moore/publications/others/fp-README.html.

