
Speci�cation and Veri�cation

of Gate-Level VHDL Models

of Synchronous

and Asynchronous Circuits

David M. Russino�

Technical Report 99 May 10, 1994

Computational Logic, Inc.

1717 West Sixth Street, Suite 290

Austin, Texas 78703-4776

TEL: +1 512 322 9951

FAX: +1 512 322 0656

EMAIL: russ@cli.com

This work was sponsored in part at Computational Logic, Inc. by National Aero-
nautics and Space Administration Langley Research Center (NAS1-18878). The
views and conclusions contained in this document are those of the author(s) and
should not be interpreted as representing the o�cial policies, either expressed or
implied, of Computational Logic, Inc., NASA Langley Research Center or the U.S.
Government.

Abstract

We present a mathematical de�nition of a hardware description language (HDL)
that admits a semantics-preserving translation to a subset of VHDL. Our HDL
includes the basic VHDL propagation delay mechanisms and gate-level circuit de-
scriptions. We also develop formal procedures for deriving and verifying concise
behavioral speci�cations of combinational and sequential devices. The HDL and
the speci�cation procedures have been formally encoded in the computational logic
of Boyer and Moore, which provides a LISP implementation as well as a facility
for mechanical proof-checking. As an application, we design, specify, and verify a
circuit that achieves asynchronous communication by means of the biphase mark
protocol.

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

1

1 Introduction

During the course of the design process, a typical hardware device is modeled at
various levels of abstraction. The most abstract representation is generally a se-
quential machine, which is initially derived from a given behavioral speci�cation.
This model is then gradually re�ned to produce a concrete representation, such as
a network of gates, which is more amenable to implementation.

A hardware design is validated by demonstrating the equivalence of these rep-
resentations. This is most commonly e�ected through simulation. The VHSIC
Hardware Description Language (VHDL), which is rapidly becoming an industry
standard, supports modeling and simulation of circuits at all stages of the design
process. In VHDL, a circuit component is represented as an entity, which may be
associated with various alternative architectures. An architecture may either spec-
ify an abstract behavioral description of a device, or provide a concrete structural
de�nition in terms of simpler components. The equivalence of architectures may
be con�rmed through comparative simulations. Once a su�ciently low-level VHDL
architecture has been derived and validated in this manner, it may be implemented
directly, even automatically.

However, since exhaustive testing of complex circuits is impractical, the e�ec-
tiveness of simulation as a validation method is limited. An alternative approach
is provided by formal hardware veri�cation. The object of formal veri�cation is
to prove mathematically that a given model of a hardware device satis�es a given
behavioral speci�cation. Once this is accomplished, the design problem is reduced
to that of implementing the model.

Naturally, the utility of this approach requires that the speci�cation is su�-
ciently abstract to provide a comprehensive description of functionality, and that
the model is su�ciently concrete to allow straightforward implementation. Unfortu-
nately, hardware veri�cation techniques have been de�cient in this regard: proofs of
of high-level speci�cations generally depend on similarly high-level implicit assump-
tions. In particular, veri�cation of sequential machine behavior has been achieved
only by basing the hardware model itself on the sequential machine concept.

For the purpose of addressing this problem, we have designed a formal hardware
simulation language that admits a semantics-preserving translation to a subset of
VHDL. The language is based on the paradigm of event-driven simulation and the
basic signal propagation and delay mechanisms of VHDL. In particular, it includes
the VHDL \delta-delay" mechanism, which complicates its de�nition considerably.
Since this mechanism is irrelevant to our present purpose, we shall present here a
simpli�ed version of the language, in which all delays are required to be positive.
The full language de�nition may be found in [6].

2

The language that we shall describe includes behavioral modules as primitives,
which we use to model gates, and structural modules, with which we represent
hierarchically constructed circuits. Our goal is to derive and verify abstract speci�-
cations of these gate-level models.

First, we consider the relatively simple class of combinational circuits, i.e., cir-
cuits that are free of cyclic paths. Each output of such a circuit is naturally asso-
ciated with a certain Boolean function of the inputs. This association is commonly
stated as follows: the value of an output at any time may be computed by applying
the associated function to the current input values. Obviously, this description is
valid only with respect to hardware models that ignore propagation delay. We shall
derive a more accurate speci�cation of combinational circuits and verify its validity
in the context of our model.

The analysis of sequential circuits is considerably more complicated. While the
abstract sequential machine model is well understood, its precise relationship with
the actual behavior of the hardware that it is intended to describe is not. The
sequential machine characterization is traditionally based on the extravagant as-
sumption that signal values may change only at discrete points occurring at regular
time intervals. This allows the behavior of a signal to be represented abstractly
as a sequence of values. The value of an output over a given interval is then ex-
pressed as a function of the sequence of past input values. Of course, the underlying
model again must disregard propagation delay. This approximation seems question-
able, since the functionality of the basic state-holding elements generally depends
critically on the presence of delays.

We shall treat a class of sequential circuits that may be characterized as syn-
chronous resettable rising-edge-triggered devices. The basic memory element em-
ployed in their construction is a resettable clocked d-ip-op, composed of nand
gates. After verifying a precise speci�cation of the behavior of this component, we
establish a procedure for deriving high-level sequential machine descriptions for this
class of circuits, and prove a theorem that gives a precise statement of the rela-
tionship between the sequential machine description of a circuit and its behavior as
de�ned by our gate-level semantics.

One advantage of our approach is that we can e�ectively model asynchronous
communication between individually synchronous processors. In fact, we shall
present the de�nition of a circuit in our language that consists of two indepen-
dently clocked sequential modules, and prove that communication between them is
achieved by means of the well known biphase mark protocol [5]. The circuit design
and the proof are both based on Moore's work on asynchrony [4], which includes
a formal model of asynchronous communication and a rigorous formulation of the
protocol.

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

3

The syntax and semantics of our language are both based on the S-expressions
of LISP. This decision was motivated by our desire to support its analysis with the
use of the Nqthm system of Boyer and Moore [1]. Nqthm is based on a constructive
formal logic for which the intended model is the domain of S-expressions. Thus, there
is a correspondence between the formulas of this logic and informal propositions
about S-expressions. A user of the system may extend the logic by adding axioms
that correspond to de�nitions of computable functions over this domain.

Mechanical support for the Nqthm logic is provided by a LISP implementation
that includes (1) an evaluator that computes values of functions de�ned in the logic,
and (2) a theorem prover that may be used to derive logical consequences of the
axioms. Since these theorems may be interpreted as propositions about functions
of S-expressions, the prover may be used to verify mechanically the correctness
of properties of these functions that have been derived by traditional (informal)
mathematical methods.

All of the functions involved in the construction of our language, which we de-
scribe informally, meet the computability requirement for encoding as Nqthm def-
initions [1]. In fact, we have developed an Nqthm theory that formalizes these
functions, including the module recognizers that form the syntax of the language,
the interpreter that constitutes its semantics, and various procedures for deriving
behavioral speci�cations of its programs. Thus, we have a complete LISP imple-
mentation of our language, provided by the Nqthm evaluator.

Moreover, all of our results, which are justi�ed by informal (but mathematically
rigorous) proofs, correspond in a natural way to Nqthm formulas. Thus, these
proofs could, in principle, be checked mechanically by the Nqthm prover, thereby
increasing our con�dence in their validity at the the expense of some e�ort. In
general, we have found it practical to employ the prover to check those proofs that
involve extensive computation or detailed case analysis, while relying instead on the
conventional social review process to detect any errors in our more intelligible proofs.
In this instance, most of the results pertaining to speci�c circuits, including the
components of the biphase mark implementation, have been mechanically veri�ed,
but at the time of this writing, most of the more general theorems have not.

Another bene�t of the Nqthm formalization is that it provides a basis for a LISP
implementation of the translator from our language to VHDL [3]. This potentially
allows commercial VHDL synthesis tools to be used to implement our programs in
silicon. As another application of more immediate interest, we have executed the
translations of many of our programs using the Vantage VHDL simulator. For the
simulations that we have tested, which include all of those described herein, the
Vantage results were identical to those produced by our LISP-based interpreter.
Aside from the practical advantage of increased e�ciency, this o�ers evidence that

4

we have achieved our goal of semantically capturing the VHDL subset in which
we are interested. Indeed, in the absence of any comprehensive formal semantics
for VHDL itself, these empirical observations provide the most convincing evidence
possible.

2 De�nition of the Language

2.1 S-expressions

Along with the set N of natural numbers, we posit a set B = fT ;Fg and an in�nite
set L, the elements of which are called Boolean and literal atoms, respectively. These
three sets are assumed to be pairwise disjoint, and any element of their union is
called an atom. We further assume that no atom is an ordered pair of atoms,
and we recursively de�ne an S-expression to be an atom or an ordered pair of S-
expressions. S denotes the set of all S-expressions. Three basic operations on S are
de�ned: If z = (x; y) 2 S� S, then car(z) = x, cdr(z) = y, and cons(x; y) = z.

We also assume the existence of various distinct literal atoms, which we shall
mention as we proceed. Among these is the atom NIL. A list is an S-expression that
is either NIL or an ordered pair z 2 S � S such that cdr(z) is a list. The list NIL
is denoted alternatively as (), and a non-NIL list z is denoted as (a1 : : : an), where
a1 = car(z) and (a2 : : : an) denotes cdr(z). In this case, n is the length of z, and
a1; : : : ; an are its members. For 1 � i � n, nth(i; z) is de�ned to be ai. A list is a
bit vector if each of its members is a Boolean atom.

A function f : Bn ! B is an n-ary Boolean function. The following Boolean
functions are called elementary: the 0-ary functions t0 and f0, with values T and F ,
respectively; the unary function not1; the binary functions and2, or2, nand2, nor2,
xor2; the ternary functions and3, or3, nand3, nor3, xor3; the quaternary functions
and4, or4, nand4, nor4, and xor4; and the quinary functions and5, or5, nand5, nor5,
and xor5. The de�nitions of these functions are assumed to be understood.

For the purpose of encoding Boolean function calls, we also assume that each
elementary Boolean function f is associated with a unique literal atom �f that is
denoted with the same name as f . Thus, the function not1 is associated with the
literal atom not1 = NOT1. We de�ne a Boolean term over a list L of distinct literal
atoms to be an S-expression that is either (a) a member of L, or (b) a list (�f �1 : : : �n),
where f is an n-ary elementary Boolean function and each �i is an Boolean term
over L.

Let L = (s1 : : : sk) be a list of distinct literal atoms and let V = (v1 : : : vk) be a
bit vector. Then pairlist(L; V) is the list A = ((s1; v1) : : : (sk; vk)), which is called
an association list. If � is a Boolean term over L, then we de�ne eval(�; A) to be

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

5

(a) vi, if � = si, or (b) f(eval(�1; A); : : : ; eval(�n; A)), if � = (�f �1 : : : �n).

2.2 Waveforms

In the simpli�ed version of our language on which the present work is based, our
model of time is the set N. Thus, a moment is represented by a natural number,
which we take arbitrarily to be the number of picoseconds elapsed since the begin-
ning of a simulation. For t1; t2 2 N, the interval ft 2 N : t1 � t < t2g will be
denoted as [t1; t2).

An event is an ordered pair e = (v; t), where v = value(e) 2 B and t = time(e) 2
N. Let w = ((vn; tn) : : : (v0; t0)) be a list of events. If ti > ti�1 and vi 6= vi�1 for
0 < i � n, and t0 = 0, then w is a waveform. We de�ne ŵ : T ! B by ŵ(t) = vj,
where j is the greatest value of i satisfying ti � t; ŵ(t) is called the value of w
at t. Note that ŵ1 = ŵ2 i� w1 = w2. If t = tj, then we shall say that w has a
new value at t. We also de�ne the history of w relative to t to be the waveform
hist(w; t) = ((vj; tj) : : : (v0; t0)).

A packet is a list of waveforms, p = (w1 : : : wn), n � 0. For any t 2 N, the
value of p at t is the bit vector p̂(t) = (ŵ1(t) : : : ŵn(t)); p has a new value at t
if any member of p does. The history of p relative to t is the packet hist(p; t) =
(hist(w1; t) : : : hist(wn; t)).

The behavior of each signal occurring in a circuit will be modeled as a waveform.
When a waveform is considered in the context of a current time t0, each of its
members e is viewed as a past, current, or future event, according to the relationship
between time(e) and t0. Past and present events are immutable, but future events
are subject to deletion as they are superceded by newly scheduled events.

The fundamental operation of the simulator is the updating of a waveform w
at a time t0 by scheduling a new event e = (v; tv), where t0 < tv. This may be
performed by either of two procedures, corresponding to the transport and inertial
delay modes of VHDL. The simpler of these is transport mode, in which each event
(v0; t0) with t0 � tv is deleted from w, and e is then consed to the result, unless that
result already has value v at tv. The updated waveform w0 is computed as the value
of transport(w; v; tv), which is de�ned recursively as follows:

(1) Let car(w) = (vf ; tf). If tf � tv, then w
0 = transport(cdr(w); v; tv); otherwise:

(2) If vf = v, then w0 = w; otherwise:

(3) w0 = cons((v; tv); w).

6

0 42 6 8 10

(a)

(b)

(c)

Figure 1: Transport and Inertial Delay

Alternatively, w0 may be described in terms of the function ŵ0:

ŵ0(t) =

(
v if t � tv
ŵ(t) if t < tv:

Inertial mode is somewhat more complicated: every event (v0; t0) with t0 > t0 is
deleted from w, and if ŵ(t0) 6= v, then a single event with value v is consed to the
result. If ŵ(tv) = v, then the time of this event is the time of the last event of w
that precedes tv; otherwise, it is tv. Note that this procedure takes the current time
t0 as an additional argument, and requires that t0 < tv. The recursive de�nition of
w0 = inertial(w; v; t0; tv) is given as follows:

(1) Let �w = hist(w; t0). If ŵ(t0) = v, then w0 = �w; otherwise:

(2) Let car(w) = (vf ; tf). If tf � tv, then w0 = inertial(cdr(w); v; t0; tv); other-
wise:

(3) If vf = v, then w0 = cons((v; tf); �w); otherwise:

(4) w0 = cons((v; tv); �w).

The di�erence between the two propagation modes is illustrated in Fig. 1. The
diagram labelled (a) represents the waveform

w = ((T ; 9) (F ; 8) (T ; 6) (F ; 5) (T ; 3) (F ; 1) (T ; 0)):

The results of updating w at time 1 by scheduling an event with time 7 and value
T , in both transport and inertial modes, are

transport(w; T ; 7) = ((T ; 6) (F ; 5) (T ; 3) (F ; 1) (T ; 0))

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

7

and
inertial(w; T ; 1; ; 7) = ((T ; 6) (F ; 1) (T ; 0));

as shown in (b) and (c), respectively.
Transport mode is often used to model wires (along which pulses of arbitrarily

small duration are propagated to the delayed signal), while gate outputs are gener-
ally modeled by inertial delay. The latter, which is the VHDL default mode, will be
used in all of our examples.

The following is a useful summary of both propagation functions. Each result
may be proved by a straightforward induction. Note that (b) is consistent with our
earlier informal observation that past and present events are immutable:

Lemma 2.1 Let w be a waveform, let t0, t1, and tv be time objects with t0 < tv,
and let w0 be either transport(w; v; tv) or inertial(w; v; t0; tv). Then

(a) ŵ0(t) = v for t � tv;
(b) ŵ0(t) = ŵ(t) for t � t0;
(c) if t1 � t0 � t2 � tv and ŵ(t) = u for t 2 [t1; t2), then ŵ0(t) = u for t 2 [t1; t2).

A similar induction shows that both procedures are \idempotent" in the following
sense:

Lemma 2.2 If w is a waveform and t0, tv; t
0

0, t
0

v are time objects with t0 < tv,
t00 < t0v, t0 < t00, and tv < t0v, then

(a) transport(transport(w; v; tv); v; t
0

v) = transport(w; v; tv);
(b) inertial(inertial(w; v; t0; tv); v; t

0

0; t
0

v) = inertial(w; v; t0; tv).

2.3 Behavioral Modules

The simplest programs of our language are the behavioral modules, which contain
explicit information concerning propagation delay and the functional dependence of
outputs on inputs.

A behavioral module is a list M = (BEHAV I O T P D), where

(1) BEHAV is the identifying literal atom for modules of this type;

(2) I = I(M) = (r1 : : : rm) is a list of literal atoms called the inputs of M ;

(3) O = O(M) = (s1 : : : sn) is a list of literal atoms called the outputs of M ;

(4) T = T (M) = (�1 : : : �n) is a list of elementary Boolean terms over I(M),
called the output terms of M ;

8

(5) D = D(M) = (d1 : : : dn) is a list of positive natural numbers, the delays of
M ;

(6) P = P (M) = (p1 : : : pn) is a list of literal atoms called the propagation modes
of M , each of which is either TRANSPORT or INERTIAL.

The members of the list (r1 : : : rm s1 : : : sn) are required to be distinct and are
called the signals of M .

Note that each output is associated with a term, a mode, and a delay. If every
term is either an atom or a list of atoms, (i.e., contains no nested function calls),
then M is primitive.

Gates are generally modeled as primitive modules with inertial delays. For ex-
ample, we represent a simple 2-input nand gate as the primitive module nand2:

(BEHAV (A B) (C) ((NAND2 A B)) (2000) (INERTIAL))

We may de�ne a similar behavioral module, with n inputs and 1 output, correspond-
ing to each elementary n-ary Boolean function, arbitrarily taking the delay to be
2000 in each case. In the sequel, we shall refer to these primitive modules without
explicitly listing their de�nitions.

Another example of a behavioral module is the 1-bit adder adder1:

(BEHAV (A B C) (L H)

((XOR3 A B C) (OR2 (AND2 A (OR2 B C)) (AND2 B C)))

(12000 10000)

(INERTIAL INERTIAL))

The two outputs of this module represent the 2-bit sum of the three input bits. Since
the higher-order \carry" output bit is not expressed as an elementary function of
the inputs, this is not a primitive module.

Let s = nth(j; O(M)) be an output of a behavioral module M and let � =
nth(j; T (M)) be the corresponding term. For any bit vector V of the same length
as I(M), we de�ne the combinational value of s w.r.t. V as

cv(s; V;M) = eval(�; pairlist(I(M); V)):

We shall say that a list of waveforms is an input (resp., output) packet for a
module M if it has the same length as I(M) (resp., O(M)). The semantics of
behavioral modules are de�ned by a function exec of four arguments: (1) a module
M , (2) an input packet pin for M , (3) an output packet pout = (w1 : : : wn) for M ,
and (4) a time object t0. The value of exec(M; pin; pout; t0) is the updated output
packet p0out = (w0

1 : : : w0

n) that results from \executing" M at t0. It is de�ned as

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

9

follows: For i = 1; : : : ; n, let vi be the combinational value of nth(i; O(M)) w.r.t.
p̂in(t0), and let ti = t0 + nth(i; D(M)). Then w0

i is either transport(wi; vi; ti) or
inertial(wi; vi; t0; ti), according to nth(i; P (M)).

Our �rst observation concerning the behavior of exec is that its value depends
only on the current values of the input:

Lemma 2.3 Let p1 and p2 be input packets and let pout be an output packet for a
behavioral module M . For any t0 2 T, if p̂1(t0) = p̂2(t0), then exec(M; p1; pout; t0)
= exec(M; p2; pout; t0).

Two other basic properties may be derived as consequences of Lemmas 2.1(b)
and 2.2:

Lemma 2.4 Let pin and pout be an input packet and an output packet for a behav-
ioral module M . For any t0 2 T, hist(exec(M; pin; pout; t0); t0) = hist(pout; t0).

Lemma 2.5 Let pin and pout be an input packet and an output packet for a behav-
ioral module M and let t0 and t1 be time objects. If t0 < t1 and p̂in(t0) = p̂in(t1),
then exec(M; pin; exec(M; pin; pout; t0); t1) = exec(M; pin; pout; t0).

2.4 Structural Modules

Our language also includes modules that represent hierarchically constructed cir-
cuits. These structures contain information concerning interconnections among the
modules of which they are composed.

A structural module is a list M = (STRUCT I O S LI LO), where

(1) STRUCT is the identifying literal atom for modules of this type;

(2) I = I(M) = (r1 : : : rm) is a list of literal atoms called the (global) inputs of
M ;

(3) O = O(M) = (s1 : : : sn) is a list of literal atoms called the (global) outputs of
M ;

(4) S = S(M) = (�1 : : : �k) is a list of (structural or behavioral) modules, called
the submodules of M ;

(5) LI = LI(M) = (A1 : : : Ak), where for j = 1; : : : ; k, Aj = (aj1 : : : ajmj
) is a

list of literal atoms called the jth local inputs of M , and mj is the length of
I(�j);

10

(6) LO = (B1 : : : Bk), where for j = 1; : : : ; k, Bj = (bj1 : : : bjnj) is a list of literal
atoms called the jth local outputs of M , and nj is the length of O(�j).

The members of the list (r1 : : : rm b11 : : : b1n1 : : : bk1 : : : bknk), consisting of the global
inputs and all local outputs, are required to be distinct and are called the signals
of M . There is no such constraint on the global outputs or local inputs, but each
local input must be a signal of M , and each global output must be a local output.

Note that the local inputs and outputs of M correspond to its submodules.
Thus, intuitively, the submodules of a structure generate signals that are distinct
from each other and from the structure's inputs. Each signal may be connected to
arbitrarily many submodule inputs. A signal other than a global input may serve
as any number of global outputs, but global inputs and outputs are distinct.

Our �rst example is the structural module adder2, composed of nine nand gates
and intended as a gate-level \implementation" of the behavioral module adder1:

(STRUCT (A B C) (L H)

(nand2 nand2 nand2 nand2 nand2 nand2 nand2 nand2 nand2)

((A B) (A T1) (B T1) (T2 T3) (C T4) (T5 T4) (C T5) (T5 T1) (T7 T6))

((T1) (T2) (T3) (T4) (T5) (T6) (T7) (H) (L)))

A circuit diagram for adder2 appears in Fig. 2(b). Later, we shall compare its
behavior with that of the behavioral module adder1.

An important feature of our language is that it allows cyclic signal paths, thereby
providing for the modeling of state-holding devices. Figure 2(a) shows a clocked
resettable d-ip-op, which is modeled by the structural module dff:

(STRUCT (CLK RST D) (Q QN)

(not1 and2 nand2 nand2 nand3 nand2 nand2 nand2)

((RST) (RN D) (B2 B1) (A1 CLK) (B1 CLK B2) (A2 DD) (B1 QN) (Q A2))

((RN) (DD) (A1) (B1) (A2) (B2) (Q) (QN)))

In addition to �ve 2-input nand gates, the submodules of dff include an inverter
not1, an a 2-input and gate and2, and a 3-input nand gate nand3, the de�nitions
of which are assumed to be understood.

We shall de�ne the semantics of structural modules by means of a function step,
based on the exec function of the preceding subsection. Note that the notions of
input and output packets may be naturally applied to any module. For a structural
module M , however, instead of a simple output packet, the third argument of step
must be an object that consists of a waveform corresponding to each signal generated
by each component of M . Thus, for any module M , we de�ne a bundle for M to be
a list B such that (a) ifM is behavioral, then B is an output packet forM ; (b) ifM

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

11

RST

CLK

D

A1

B1

A2

B2

Q

QN

C

B
A T1

T2

T3

T4

H

L

T7

T6

T5

Figure 2: (a) D-Flip-Flop (b) 1-Bit Adder

is a structure with S(M) = (�1 : : : �k), then B = (�1 : : : �k), where �i is a bundle
for �i, i = 1; : : : ; k.

Let B be a bundle for a moduleM and let s be a signal ofM that is not an input
of M . The waveform for s determined by B is the waveform w that is computed
as follows: (a) if M is behavioral and s = nth(j; O(M)), then w = nth(j; B);
(b) if M is structural and s = nth(j; nth(i; LO(M))), then w is the waveform for
nth(j; O(nth(i; S(M))) determined by nth(i; B).

The output packet for M determined by B, denoted as outp(M;B), is de�ned as
follows: (a) if M is behavioral, then outp(M;B) = B; (b) if M is structural with
O(M) = (s1 : : : sn), then outp(M;B) = (w1 : : : wn), where for 1 � j � n, wj is the
waveform for sj determined by B.

Let M be a structural module with nth(i; LI(M)) = (ai1 : : : aini). Let p be an
input packet and let B be a bundle forM . The ith input packet determined by p and
B, denoted as inp(i;M; p; B), is the input packet (w1 : : : wm) for nth(i; S(M)), where
for 1 � j � m, wj is computed as follows: (a) if sj is a global input nth(k; I(M)),
then wj = nth(k; p); (b) if sj is a local output, then wj is the waveform for sj
determined by B.

We may now de�ne step. Let p and B be an input packet and a bundle, respec-
tively, for an arbitrary moduleM , and let t 2 T. Then step(M; p;B; t) is the bundle
B0, de�ned as follows: (a) if M is behavioral, then B0 = exec(M; p;B; t) if p has a
new value at t, and B0 = B if not; (b) if M is structural with S(M) = (�1 : : : �k)
and B = (�1 : : : �k), then B

0 = (� 0

1 : : : �
0

k), where �
0

i = step(�i; inp(i;M; p; B); �i; t).
Thus, the execution of a structure at time t amounts to the execution of each

behavioral component for which the value of some input signal changes at t.

12

We have the following generalization of Lemma 2.3:

Lemma 2.6 Let p1 and p2 be input packets and let B be a bundle for a module M .
Let t0 2 T. If hist(p1; t0) = hist(p2; t0), then step(M; p1; B; t0) = step(M; p2; B; t0):

The history of a structural bundle (�1 : : : �k) relative to a time t is recursively
de�ned as hist(B; t) = (hist(�1; t) : : : hist(�k; t)). Lemma 2.4 may be generalized
as follows:

Lemma 2.7 Let p and B be an input packet and a bundle for a module M . For
any t0 2 T, hist(step(M; p;B; t0); t0) = hist(B; t0).

2.5 Simulation

Let p and B be an input packet and a bundle for a module M . For any t 2 N, we
de�ne tnext(t; p; B;M) to be the minimum element of the set of all t0 2 N that occur
as times of events in the waveforms of p and B and that satisfy t0 > t, if this set is
nonempty; otherwise, tnext(t; p; B;M) is unde�ned.

A simulation ofM consists of repeated applications of step, which are performed
by the function run. For t0; tf 2 T, we de�ne run(M; p;B; t0; tf) to be the bundle
B0 that is computed recursively as follows: Let tnext = tnext(t0; p; B;M). If tnext is
de�ned and tnext � tf , then B0 = run(M; p; step(M; p;B; tnext); tnext; tf); otherwise,
B0 = B.

The de�nition of our top-level simulation function sim depends on run as well
as a function init, which generates an initial bundle from a module and an input
packet. First, for a given module M , we de�ne the bundle B0(M):

(1) If M is behavioral, then B0(M) is the output packet (w0 : : : w0) for M , where
w0 = ((F ; 0)).

(2) IfM is structural and S(M) = (�1 : : : �k), then B0(M) = (B0(�1) : : : B0(�k)):

Thus, every waveform of B0(M) is the trivial w0, which has the constant value
ŵ0(t) = F . Prior to simulation, each of these waveforms is updated by executing
every behavioral component of M . The result is the bundle init(M; p), de�ned as
follows:

(1) If M is behavioral, then init(M; p) = exec(M; p;B0(M); 0);

(2) If M is structural with S(M) = (�1 : : : �k), then
init(M; p) = (init(�1; inp(1;M; p; B0(M))) : : : init(�k; inp(k;M; p; B0(M)))).

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

13

adder2

A

B

C

input

L

H

H

L

adder1

32 44 64 72

70 88

10

32 52 92

90

8060

40

20

18

20 22

10 12

Figure 3: Simulation of adder1 and adder2

Now, given an input packet p for M and a time object t, we de�ne

sim(M; p; t) = run(M; p; init(M; p); 0; t):

As an example, simulations of the modules adder1 and adder2 are illustrated
in Fig. 3. The waveforms corresponding to the inputs A, B, and C are

wA = ((F ; 80000) (T ; 12000) (F ; 10000) (T ; 0));

wB = ((F ; 60000) (T ; 20000) (F ; 0));

and
wC = ((T ; 60000) (F ; 40000) (T ; 0));

respectively. The resulting output of the behavioral module adder1 is

sim(adder1; (wA wB wC); 100000) = (wL wH);

where
wL = (((T ; 92000) (F ; 52000) (T ; 32000) (F ; 0)))

and
wH = ((F ; 90000) (T ; 10000) (F ; 0)):

14

This example exhibits a fundamental characteristic of inertial delay, as distinguished
from transport delay: an input pulse of duration less than the delay, as occurs in
wA over the interval [10000; 12000), is not reected in the output.

The corresponding simulation of the circuit adder2 produces a bundle of the
form

sim(adder2; (wAwBwC); 100000) = ((w0

T1)(w
0

T2)(w
0

T3)(w
0

T4)(w
0

T5)(w
0

T6)(w
0

T7)(w
0

H)(w
0

L));

of which we illustrate the output waveforms w0

L and w0

H . Note that the behavior
of adder2 is somewhat more complicated than that of adder1, although for stable
inputs, the two modules eventually produce the same values.

Some basic properties of the simulator that will be critical in the subsequent
development are summarized in the following three lemmas. The �rst of these
provides for the decomposition of a simulation interval:

Lemma 2.8 If p is an input packet for a moduleM , and t1 � t2, then sim(M; p; t2) =
run(M; p; sim(M; p; t1); t1; t2):

An equally important result is the following, which describes the behavior of a
structural module in terms of that of its components. Its proof (which appears in [6])
depends on the two properties of step that are stated in Lemmas 2.6 and 2.7, namely
that module execution is neither predictive (with respect to input) nor retroactive
(with respect to output):

Lemma 2.9 Let p be an input packet for a structural module M with S(M) =
(�1 : : : �k). Let t 2 N and B = (�1 : : : �k) = sim(M; p; t). Then �i = sim(�i; bi; t);
where bi = inp(i;M; p; B), i = 1; : : : ; k.

Finally, as a consequence of Lemma 2.5, we observe that at any time during
a simulation of a behavioral module, the output packet is the result of executing
the module at that time, regardless of whether the execution actually occurs, i.e.,
whether there is change in input:

Lemma 2.10 Let p be an input packet for a behavioral module M , let t 2 N, and
let B = sim(M; p; t). Then B = exec(M; p;B; t).

3 Speci�cation of Synchronous Circuits

3.1 Combinational Modules

Before undertaking a characterization of synchronous sequential circuits, we shall
consider the relatively simple class of combinational circuits. Let � = (s1 : : : sp) be a

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

15

list of signals of a structural moduleM such that for each i, 1 < i � p, there exists j
such that si�1 is a member of nth(j; LI(M)) and si is a member of nth(j; LO(M)).
Then � is a path in M from s1 to sp. If s1 = sp, then � is a loop in M . An arbitrary
module M is combinational if either (a) M is behavioral or (b) M is structural with
no loops and all of its submodules are combinational.

The notion of combinational value, which previously applied only to outputs of
behavioral modules, may be extended to combinational modules. Let s be any signal
of a combinational module M and let V be a bit vector of the same length as I(M).

(1) If s = nth(j; I(M)), then cv(s; V;M) = nth(j; V);

(2) If M is structural and s = nth(j; nth(i; LO(M))), where � = nth(i; S(M))
and (a1 : : : am) = nth(i; LI(M)), then

cv(s; V;M) = cv(nth(j; O(�)); (cv(a1; V;M) : : : cv(am; V;M)); �):

We shall describe the behavior of combinational modules in terms of the function
cv. Our analysis begins with the following characterization of behavioral modules:

Lemma 3.1 Let s = nth(j; O(M)) be the jth output of a behavioral module M , let
d = nth(j;D(M)) be the corresponding delay, and let w = nth(j; sim(M; p; tf)).

Assume that for all t 2 [t1; t2), the combinational value of s w.r.t. p̂(t) is v,
where t1 + d � t2 and t1 � tf . Then for all t 2 [t1 + d; t2 + d), ŵ(t) = v.

Proof: Let p1 = sim(M; p; t1). Then according to Lemma 2.10,

p1 = exec(M; p; p1; t1):

It follows from Lemma 2.1(a) that the value of nth(j; p1) is v for all t � t1 + d.
We claim that if p0 is any output packet for M such that nth(j; p0) has value v

throughout [t1 + d; t2 + d), then so does nth(j; run(M; p; p0; t0; tf)), for any t0 � t1.
Once this claim is proved, the lemma will follow from Lemma 2.8 upon substituting
p1 and t1 for p

0 and t0.
The claim is proved by induction. It su�ces to show that if p has a new value

at t00 = tnext(t
0; p; p0;M), and p00 = exec(M; p; p0; t00), then nth(j; p00) has value v

throughout [t1 + d; t2 + d).
If t00 � t2, then the desired result follows from Lemma 2.1(c). Thus, we may

assume t00 < t2 and hence, the combinational value of s w.r.t. p̂(t00) is v. In this case,
nth(j; p00) has value v on [t1 + d; t00 + d) by Lemma 2.1(c), and on [t00 + d; t2 + d) by
Lemma 2.1(a). 2

Lemma 3.1 is illustrated by the simulation of adder1 shown in Fig. 3. Note, for
example, that the output L of adder1, with corresponding term (XOR3 A B C), has

16

the combinational value F throughout the interval from 40000 to 80000, and thus,
since its delay is 12000, the actual value of the signal is F from 52000 to 92000. Note
also that this simple behavior is not shared by the combinational module adder2.

However, we shall derive a generalization of Lemma 3.1 that provides similar
(although somewhat weaker) behavioral speci�cations of arbitrary combinational
modules. First, we associate each signal s of a combinational module M with two
parameters, called the minimum and maximum delays of s, which represent the
range of total delays along all paths connecting the inputs of M to s. These are
de�ned as follows:

(1) If s is a member of I(M), then dmin(s;M) = dmax(s;M) = 0;

(2) If M is behavioral and s = nth(j; O(M)), then dmin(s;M) = dmax(s;M) =
nth(j;D(M));

(3) If M is structural and s = nth(j; nth(i; LO(M))), where � = nth(i; S(M))
and (a1 : : : am) = nth(i; LI(M)), then

dmin(s;M) = dmin(nth(j; O(�)); �) +min(dmin(a1;M); : : : ; dmin(am;M));

dmax(s;M) = dmax(nth(j; O(�)); �)+max(dmax(a1;M); : : : ; dmax(am;M)):

Lemma 3.2 Let s = nth(j; O(M)) be the jth output of a combinational module M ,
d = dmin(s;M), d0 = dmax(s;M), and w = nth(j; outp(M; sim(M; p; tf))).

Assume that p̂ is constant on the interval [t1; t2), where t1 + d0 � t2 and t1 � tf .
Let v = cv(s; p̂(t1);M). Then for all t 2 [t1 + d0; t2 + d), ŵ(t) = v.

Proof: For behavioralM , the conclusion follows from Lemma 3.1. For structural
M , we shall show that it holds more generally for any local output s of M and the
waveform w for s determined by B = sim(M; p; tf). The proof is by induction on
the length of the longest path in M terminating at s.

Suppose s = nth(j; nth(i; LO(M))). Let � = nth(i; S(M)), � = nth(i; B),
(a1 : : : am) = nth(i; LI(M)), and b = inp(i;M; p; B) = (w1 : : : wm). Then w =
nth(j; outp(�; �)), and by Lemma 2.9, � = sim(�; b; tf).

For 1 � ` � m, let d` = dmin(a`;M), d0` = dmax(a`;M), and v` = cv(a`; p̂(t1);M).
If a` is a local output of M , then by inductive hypothesis, ŵ`(t) = v` for all
t 2 [t1 + d0`; t2 + d`); otherwise, a` is an input, and the same is true trivially. Thus,
b̂(t) = (v1 : : : vm) for all t 2 [t1 + �; t2 + �), where � = max(d01; : : : ; d

0

m) and
� = min(d1; : : : ; dm).

By the de�nition of cv,

v = cv(nth(j; O(�)); (v1 : : : vm); �) = cv(nth(j; O(�)); b̂(t1 +�); �):

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

17

Since � is combinational,ŵ(t) = v for all

t 2 [t1 +�+ dmax(nth(j; O(�)); �); t2 + � + dmin(nth(j; O(�)); �))

= [t1 + d0; t2 + d):2

As an example, consider the output signal L of the combinational module adder2.
By tracing all paths from the inputs to L, we may compute cv(L; (a b c); adder2)
as a nested nand2 expression that may be shown to be tautologically equivalent to
xor3(a; b; c). By a similar calculation, we have

dmin(L; adder2) = 4000 and dmax(L; adder2) = 12000:

Thus, according to Lemma 3.2, if t1 + 12000 � t2, t1 � tf , and the input packet p
for adder2 has the constant value p̂(t) = (a b c) for t 2 [t1; t2), then

w = nth(1; outp(adder2; sim(adder2; p; t2)))

has the value ŵ(t) = xor3(a; b; c) for t 2 [t1 + 12000; t2 + 4000). This result is
illustrated in Fig. 3: since the input packet has the constant value (T T T) on the
interval [20000; 40000), the value of the �rst output is xor3(T ; T ; T) = T on the
interval [32000; 44000).

3.2 Sequential Modules

We shall describe a class of sequential circuits that may be characterized as syn-
chronous resettable rising-edge-triggered devices. The ip-op dff of Subsection 2.4
will be used as a primitive in the construction of these circuits.

Let M be a structural module with I(M) = (r1 : : : rm), where m � 2, S(M) =
(�1 : : : �k), and for i = 1; : : : ; k, nth(i; LI(M)) = (ai1 : : : aimi

) and nth(i; LO(M)) =
(bi1 : : : bini). Let q 2 N. Then M is a sequential module with multiplicity q =
mult(M) if either (a) q = 0 and M = dff, or (b) 0 < q � k and the following
conditions hold:

(1) For 1 � i � q, �i is a sequential module;

(2) For q < i � k, �i is a combinational module;

(3) For 1 � i � k and 1 � j � mi, aij = r1 i� i � q and j = 1;

(4) For 1 � i � k and 1 � j � mi, aij = r2 i� i � q and j = 2;

18

(5) If (s1 : : : sp) is a path in M with s1 = sp, then for some i and j, where
1 � i � p and 1 � j � q, si is a member of nth(j; LO(M));

(6) If (s1 : : : sp) is a path in M with s1 a global input and sp a global output of
M , then for some i and j, where 1 � i � p and 1 � j � q, si is a member of
nth(j; LO(M)).

Throughout the remainder of this section, we shall assume that M is a sequential
module with I(M), S(M), LI(M), and LO(M) as denoted above. Note thatM must
have at least two inputs, r1 and r2, which we call the clock and reset, respectively;
the other inputs are called data. According to (3) and (4), if M 6= dff, then the
clock and reset of M are connected to the clock and reset, respectively, of each
sequential submodule of M , and to no other submodule inputs.

We de�ne a path in M to be combinational if it contains no signal that is a local
output of a sequential submodule. According to (5) of the de�nition, M contains
no combinational loop; according to (6), no combinational path connects an input
to an output.

We de�ne a signal s ofM to be native if there is no combinational path from any
global input to s; the signals Q and QN of dff are also de�ned to be native. Thus,
all outputs of M are native signals.

A native signal s of M is registered if either (a) M = dff and s is an output
of M , or (b) M 6= dff and s is a local output bij where i � q and nth(j; O(�i)) is
a registered signal of �i. This property will have special signi�cance in connection
with asynchronous communication.

Two examples of sequential modules are diagrammed in Fig. 4. The enabled
d-ip-op, edff, is de�ned to be the following structure:

(STRUCT

(CLK RST EN D)

(Q QN)

(dff not1 nand2 nand2 nand2)

((CLK RST S4) (EN) (S1 Q) (D EN) (S2 S3))

((Q QN) (S1) (S2) (S3) (S4)))

Clearly, this module satis�es the de�nition, with mult(edff) = 1.
The 3-bit counter count3 is a sequential module of multiplicity 3, de�ned as

follows:

(STRUCT

(CLK RST EN)

(Q0 Q1 Q2)

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

19

(edff edff edff and2 xor2 xor2)

((CLK RST EN QN0) (CLK RST EN S3) (CLK RST EN S2)

(Q0 Q1) (S1 Q2) (Q0 Q1))

((Q0 QN0) (Q1 QN1) (Q2 QN2) (S1) (S2) (S3)))

Note that all outputs of both of these modules are registered.

3.3 Sequential Values

Our description of the behavior of sequential modules will be based on a function
that computes a sequence of values for each output corresponding to a given sequence
of input values. The de�nition of this function the notion of state. An object � is
a state of M if

(1) M = dff and � 2 B,

(2) mult(M) = 1 and � is a state of �1, or

(3) mult(M) = q > 1 and � = (�1 : : : �q), where for i = 1; : : : ; q, �i is a state of
�i.

Thus, a state associates a Boolean value with each ip-op. The reset state �0(M)
is the state for which each of these values is F :

(1) �0(dff) = F ;

(2) If mult(M) = 1, then �0(M) = �0(�1);

(3) If mult(M) = q > 1, then �0(M) = (�0(�1) : : : �0(�q)).

A data vector for M is a bit vector of length m � 2, the components of which
correspond to the data inputs of M . We shall de�ne a function next(V;�;M) that
computes a state of M from a data vector V and a state �. This de�nition requires
two auxiliary functions.

First, for a native signal s and a state � of M , we de�ne the native value of s
determined by �, denoted as nv(s;�;M), as follows:

(1) nv(Q;�; dff) = � and nv(QN;�; dff) = not1(�);

(2) If mult(M) = 1 and s = b1j, then nv(s;�;M) = nv(nth(j; O(�1));�; �1);

(3) If mult(M) = q > 1 and s = bij, where i � q, then

nv(s;�;M) = nv(nth(j; O(�i)); nth(i;�); �i);

20

(4) If mult(M) = q � 1 and s = bij, where i > q, then

nv(s;�;M) = cv(nth(j; O(�i)); (nv(ai1;�;M) : : : nv(aimi
;�;M)); �i):

Now, let V = (v3 : : : vm) and � be a data vector and a state of M , respectively.
We de�ne the resultant value of a signal s determined by V and �, denoted as
rv(s; V;�;M), as follows:

(1) If s = ri is a data input of M , then rv(s; V;�;M) = vi;

(2) If s is native to M , then rv(s; V;�;M) = nv(s;�;M);

(3) If mult(M) = q > 0 and s = bij, where i > q, then

rv(s; V;�;M) = cv(nth(j; O(�i)); (rv(ai1; V;�;M) : : : rv(aimi
; V;�;M)); �i):

We may now de�ne the function next. Let mult(M) = q and for i = 1; : : : ; q,
let Li = (rv(ai1; V;�;M) : : : rv(aimi

; V;�;M)). Then next(V;�;M) = �0, where

(1) If q = 0 (i.e., M = dff), then �0 = v3;

(2) If q = 1, then �0 = next(L1;�; �1);

(3) If q > 1 and � = (�1 : : : �q), then �0 = (next(L1; �1; �1) : : : next(Lq; �q; �q)):

Now, let V = (V3 : : : Vm), where for i = 3; : : : ; m, Vi = (vi1 : : : vin) is a bit vector
of length n. V may be viewed as a Boolean matrix, the rows of which correspond
to the data inputs of M . Each column of this matrix, �Vj = (v3j : : : vmj), where
j = 1; : : : ; n, is a data vector for M . A sequence of n+ 1 states is determined by V
as follows:

state(j;V;M) =

(
�0(M) if j = 0
next(�Vj ; ; state(j � 1;V;M);M) if 0 < j � n:

For any native signal s ofM , the jth sequential value of s determined by V is de�ned
as

sv(j; s;V;M) = nv(s; state(j;V;M);M):

Thus, the sequential values corresponding to a given matrix of input values are
determined by the functions nv and next. As an illustration, we shall analyze the
behavior of these functions for the modules edff and count3. Clearly, a state of

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

21

RST
QN

QD

CLK

S2

D

EN

CLK

RST

Q

QN

S4

S3

S1
RST

QD

QN
EN
CLK

RST

QD

QN
EN
CLK

RST

QD

QN
EN
CLK

EN

CLK

RST

Q0

Q1

Q2
S2

S3

S1

Figure 4: (a) edff (b) count3

edff is a state of dff, i.e., a Boolean value. If � is such a state and V = (v3 v4) is
a data vector, then

rv(Q; V;�; edff) = nv(Q; V;�; edff) = nv(Q;�; dff) = �

and

rv(QN; V;�; edff) = nv(QN; V;�; edff) = nv(QN;�; dff) = not1(�):

Expanding the de�nition of rv, we have

rv(S4; V;�; edff) = nand2(nand2(not1(v3);�); nand2(v3; v4));

which is also the value of next(V;�; edff). A trivial calculation yields the following:

Proposition 3.1 Let � and V = (v3 v4) be a state and a data vector for edff.
Then

nv(Q; V;�; edff) = � and nv(QN; V;�; edff) = not1(�);

next(V;�; edff) =

(
v4 if v3 = T
� if v3 = F :

A state of count3 is a vector of 3 Boolean values, corresponding to the

mult(count3) = 3

22

occurrences of edff. If � = (�0 �1 �2) and V = (v3) are a state and a data vector,
then

rv(S1; V;�; count3) = and2(�0; �1),
rv(S2; V;�; count3) = xor2(and2(�0; �1); �2),
rv(S3; V;�; count3) = xor2(�0; �1),

and it follows from Proposition 3.1 that

next(V;�; count3) =

(
(not1(�0) xor2(�0; �1) xor2(and2(�0; �1); �2) if v3 = T
� if v3 = F :

This result is conveniently expressed in terms of the function inc(W), de�ned as
follows for an arbitrary bit vector W :

(1) If W = NIL, then inc(W) = NIL; otherwise:

(2) If car(W) = T , then inc(W) = cons(F ; inc(cdr(W))); otherwise:

(3) inc(W) = cons(T ; cdr(W)).

Proposition 3.2 Let � = (�0 �1 �2) and V = (v3) be a state and a data vector for
count3. Then

nv(Q0; V;�; count3) = �0; nv(Q1; V;�; count3) = �1; nv(Q2; V;�; count3) = �2;

next(V;�; count3) =

(
inc(�) if v3 = T
� if v3 = F :

3.4 Behavior of dff

Naturally, the behavior of sequential modules depends on that of the primitive dff.
A precise behavioral speci�cation of dff is given by the following lemma, the proof
of which is an elaboration of the informal argument found in [7]:

Lemma 3.3 Let t1+4000 � t�, t�+6000 � t2, and t1 � tf . Let p = (wCLKwRSTwD)
be an input packet for dff, and suppose that

ŵCLK(t) =

(
F for all t 2 [t1 � 6000; t1) [[t�; t2)
T for all t 2 [t1; t�);

ŵRST(t) = r for all t 2 [t1 � 8000; t1);

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

23

and
ŵD(t) = d for all t 2 [t1 � 6000; t1):

Let sim(dff; p; tf) = ((wRN) (wDD) (wA1) (wB1) (wA2) (wB2) (wQ) (wQN)) and let v =
and2(not1(r); d). Then ŵQ(t) = v and ŵQ(t) = not1(v) for all t 2 [t1 + 6000; t2 +
4000). Moreover, if these same values hold for all t 2 [t1; t1 + 4000), then they also
hold for all t 2 [t1 + 4000; t1 + 6000).

Proof: By Lemmas 3.1 and 2.9, we have ŵRN(t) = not1(r) for all t 2 [t1 �
6000; t1 + 2000). Applying the same two lemmas again, we have ŵDD(t) = v for all
t 2 [t1�4000; t1+2000). Similarly, ŵA2(t) = ŵB1(t) = T for t 2 [t1�4000; t1+2000),
ŵB2(t) = not1(v) for t 2 [t1 � 2000; t1 + 4000), and hence ŵA1(t) = v for t 2
[t1; t1 + 4000).

We shall consider the case v = F ; the case v = T is similar. In this case, ŵB1(t) =
T for t 2 [t1 + 2000; t1 + 6000), and hence ŵA2(t) = F for t 2 [t1 + 2000; t1 + 6000).

Let t0 be the least time such that t0 > t1 + 2000 and some waveform in the
set fwA1; wB1; wA2; wB2g assumes a new value at t0. Then ŵA1(t) = ŵA2(t) = F
and ŵB1(t) = ŵB2(t) = T for t 2 [t1 + 2000; t0). Since t0 � t1 + 4000, it follows
that ŵB1(t) = ŵB2(t) = T and ŵA1(t) = F for t 2 [t1 + 4000; t0 + 2000). Similarly,
ŵA2(t) = F for t 2 [t1+4000; min(t0+4000; t�+2000)). Thus, only wA2 can possibly
assume a new value at t0, and this requires that t0 � t� + 2000.

Hence, ŵB1(t) = T and ŵA2(t) = F for t 2 [t1 + 2000; t� + 2000). It follows
that ŵQN(t) = T for t 2 [t1 + 4000; t� + 4000), and hence ŵQ(t) = F for t 2
[t1 + 6000; t� + 4000).

Let t00 be the least time such that t00 > t1 + 6000 and either wQ or wQN assumes
a new value at t00. By an argument similar to the above, it is easily shown that
t00 � t2 + 4000. Thus, ŵQ(t) = F = ur for t 2 [t1 + 6000; t2 + 4000), and ŵQN(t) =
T = not1(ur) for t 2 [t1 + 4000; t2 + 4000).

Now suppose that ŵQ(t) = F and ŵQN(t) = T for t 2 [t1; t1 + 4000). Then
ŵQN(t) = T for t 2 [t01; t2 + 4000). It follows that ŵQ(t) = F for t 2 [t1 + 4000; t2 +
4000). 2

3.5 Parameters

Our objective is to impose constraints on the input to a sequential module that will
allow its outputs to be described in terms of sequential values. In particular, the
clock input will be required to exhibit periodic behavior. We shall call each event
of its associated waveform a rising or falling edge, according to whether its value is
T or F . An interval between two successive rising edges is called a cycle. Each of
the remaining inputs will be required to maintain a stable value over a prescribed

24

interval preceding each rising edge. For the reset input r2, this value is T for an
initial cycle, and F for every cycle thereafter.

Under these constraints, we shall show that the behavior of M admits a fairly
simple description. A state ofM will be associated with each rising edge. This state
may computed from the data values prior to the edge and the previous state by the
function next. The values of the outputs, which may change only during a short
interval following a rising edge, are the corresponding sequential values.

We shall describe the behavior of the signals of M in terms of several parame-
ters. First, we associate with each input other than the clock a setup time, which
represents the duration over which the signal is required to hold constant prior to a
rising edge. For the case M = dff, as suggested by Lemma 3.3, we de�ne

setup(RST; dff) = 8000 and setup(D; dff) = 6000:

Now suppose mult(M) = q > 0 and let s be any signal of M other than r1. Assume
setup(s0;M) has been de�ned for each s0 6= s that lies on a combinational path
starting at s. For i = 1; : : : ; k, let �i be de�ned as follows:

(1) If s 6= aij for all j, 1 � j � mi, then �i = 0; otherwise:

(2) If i � q, then �i is the maximum setup(nth(j; I(�i)); �i) such that s = aij,
j = 2; : : : ; mi; otherwise:

(3) i > q, and �i is the maximum sum dmax(nth(j; O(�i)); �i) + setup(bij;M)
such that setup(bij;M) > 0, j = 1; : : : ; ni.

Then setup(s;M) = max(�1; : : : ; �k).
Each native signal of M is associated with a minimum and a maximum delay,

which determine an interval during which the signal's value may change following a
rising edge. For the case M = dff, we de�ne

dmin(Q; dff) = dmin(QN; dff) = 4000,
dmax(Q; dff) = dmax(QN; dff) = 6000:

Now suppose mult(M) = q > 0 and let s = bij be any native signal of M .

(1) If i � q, then

dmin(s;M) = dmin(nth(j; O(�i)); �i),

dmax(s;M) = dmax(nth(j; O(�i)); �i);

(2) If i > q, then

dmin(s;M) = dmin(nth(j; O(�i)); �i)+min(dmin(ai1;M); : : : ; dmin(aimi
;M));

dmax(s;M) = dmax(nth(j; O(�i)); �i)+max(dmax(ai1;M); : : : ; dmax(aimi
;M)):

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

25

We also de�ne three parameters pertaining to the behavior of the clock input
of M , called the clock high, the clock low, and the minimum period of M . These
represent the minimum durations between a rising edge and the next falling edge,
a falling edge and the next rising edge, and successive rising edges, respectively.
First, we de�ne high(dff) = 4000, low(dff) = 6000, and per(dff) = 10000. For
mult(M) = q > 0, we de�ne

high(M) = max(high(�1); : : : ; high(�q));

low(M) = max(low(�1); : : : ; low(�q));

per(M) = max(P1; P2; P3), where

P1 = maxfper(�i) : 1 � i � qg;

P2 = maxfsetup(ri;M) : 2 � i � mg;

P3 = maxfsetup(bij;M) + dmax(nth(j; O(�i)); �i) : 1 � i � q; 1 � j � nig.

Consider, for example, the circuits edff and count3. First, the setup times for
the signals of edff may be computed directly from the de�nitions, by tracing along
all combinational paths. For example,

setup(RST; edff) = 8000,

setup(EN; edff) = 12000,

setup(D; edff) = 10000;

The setups for count3 follow trivially:

setup(RST; count3) = 8000,

setup(EN; count3) = 12000.

In fact, it follows from our de�nitions that the reset input of every sequential module
is 8000.

All outputs of both of these devices are registered. It follows that the minimum
and maximum delay of each output are 4000 and 6000, respectively.

Similarly, the clock high and low of each device (in fact, of any sequential device)
are 4000 and 6000, respectively, as determined by dff. Calculation of the minimum
period, on the other hand, involves a comparison of various setups and delays. In
the case of edff, the minimum period is found to be

setup(Q; edff) + dmax(Q; dff) = 10000 + 6000 = 16000;

for count3, it is

setup(Q0; count3) + dmax(Q; edff) = 14000 + 6000 = 20000:

26

3.6 The Main Theorem

The input constraints for sequential modules will be expressed in terms of the func-
tions setup, high, low, and per. First, we de�ne a waveform w to be an n-cycle
pulse based at t0 with high h, low `, and period � = h+ ` if for k = 0; : : : ; n� 1,

ŵ(t) =

(
T for all t 2 [t0 + k�; t0 + k� + h)
F for all t 2 [t0 + k� + h; t0 + (k + 1)�):

If h � high(M), ` � low(M), and � � per(M), then w is an admissible pulse for
M .

Let V = (v1 : : : vn) be a bit vector and let � � u > 0. Let w be a waveform
such that for k = 1; : : : ; n, ŵ(t) = vk for all t 2 [t0 + k� � u; t0 + k�). Then w is
a stable n-cycle waveform based at t0 with setup u, value list V , and period �. If
u = setup(r2;M), v1 = T , and v2 = : : : = vr = F , then w is an admissible reset
waveform for M .

For i = 1; : : : ; k, let wi be a stable n-cycle waveform based at t0 with value list Vi,
setup ui, and period �. Let V = (V1 : : : Vk), U = (u1 : : : uk), and W = (w1 : : : wk).
Then W is a stable n-cycle packet based at t0 with value matrix V, setup list U , and
period �. If k = m � 2 and ui = setup(ri+2;M) for i = 1; : : : ; k, then W is an
admissible data packet for M .

Let w1 be an admissible (n+2)-cycle pulse for M based at t0 with period �. Let
w2 be an admissible (n + 1)-cycle reset waveform for M based at t0 with period �.
Let w3 : : : wm) be an admissible n-cycle data packet forM based at t0+� with value
matrix V and period �. Then (w1 : : : wm) is an admissible n-cycle input packet for
M based at t0 with value matrix V and period �.

We may now state a behavioral speci�cation for sequential modules:

Theorem 3.1 Let s = nth(j; O(M)) be the jth output of a sequential module M ,
d0 = dmax(s;M), and w = nth(j; outp(M; sim(M; p; tf))).

Assume that p is an admissible n-cycle input packet for M based at t0 with
value matrix V and period �, where tf � t0 + (n + 1)�. For i = 0; : : : ; n, let
vi = sv(i; s;V;M). Then w is a stable (n + 1)-cycle waveform based at t0 + � with
setup � � d0, value list (v0 : : : vn), and period �;

Assume further that s is a registered signal of M and vi�1 = vi, for some i,
1 � i � n. Then ŵ(t) = vi for all t 2 [t0 + (i+ 1)�; t0 + (i + 2)�).

Theorem 3.1 is an immediate consequence of the following:

Lemma 3.4 Let s = nth(j; O(M)) be the jth output of a sequential module M ,
d = dmin(s;M), d0 = dmax(s;M), and w = nth(j; outp(M; sim(M; p; tf))).

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

27

Assume that p is an admissible n-cycle input packet for M based at t0 with value
matrix V and period �. Let t0 + (n+1)� = t1, t1 + � = t2, and assume t1 � tf . Let
v = sv(n; s;V;M). Then ŵ(t) = v for all t 2 [t1 + d0; t2 + d).

Suppose further that s is a registered signal of M . If n > 0 and sv(n �
1; s;V;M) = v, then ŵ(t) = v for all t 2 [t1 + d; t2 + d).

Proof: For the case M = dff, the lemma is simply a restatement of Lemma 3.3.
Thus, we may assume that M 6= dff and proceed by induction on the structure of
M . Let V = (V3 : : : Vm), where for i = 3; : : : ; m, Vi = (vi1 : : : vir). For j = 0; : : : ; n,
let �j = state(j;V;M).

Let B = sim(M; p; tf), and for each signal s of M , let

ws =

(
nth(i; p) if s is a global input ri
the waveform for s determined by B if s is a local output bij;

If s is not r1 or r2, then for 0 � ` < n, let

val(s; `) = rv(s; (v3(`+1) : : : vm(`+1));�`;M):

If s is native, then by de�nition we have

val(s; `) = nv(s;�`;M) = sv(`; s;V;M):

Thus, for native s, we extend the de�nition to ` = n by

val(s; n) = sv(n; s;V;M):

For any ` 2 N, let t` = t0 + (` + 1)�, so that t1 = tn and t2 = tn+1 = tn + �.
We shall prove, by induction on `, that the following three statements hold for each
` � n:

(a) For each i, 1 � i � q, inp(i;M; p; B) is an admissible `-cycle input packet for
�i based at t0 with value matrix

((val(ai3; 0) : : : val(ai3; `� 1)) : : : (val(aimi
; 0) : : : val(aimi

; `� 1)))

and period �.

(b) For each native signal s = bij of M ,

ŵs(t) = val(s; `) for all t 2 [t` + dmax(s;M); t`+1 + dmin(s;M));

if s is a registered signal of M , then the same is true for the interval

[t` + dmin(s;M); t`+1 + dmin(s;M));

28

(c) If ` < n, then for each signal s of M other than r1 and r2,

ŵs(t) = val(s; `) for all t 2 [t`+1 � setup(s;M); t`+1):

The lemma will then follow from (b), taking ` = n.
Proof of (a): For ` = 0, this follows from (3) and (4) in the de�nition of sequential

module. For ` > 0, we must also invoke the inductive hypothesis that (c) holds with
` replaced by `� 1.

Proof of (b): We induct on the length of the longest combinational path ter-
minating at s. Let s = bij . In the base case, where i � q, the result follows from
the inductive assumption that the lemma holds for the sequential submodule �i,
Lemma 2.9, and (a). In the inductive case, where i > q, it follows from Lemmas 2.9
and 3.2.

Proof of (c): This is similarly proved by induction on the length of the longest
combinational path terminating at s. In the base case, s is either a global input ri,
i � 3, or a local output bij, i � q. If s = ri, then the claim follows directly from the
admissibility of the input packet p. Suppose s = bij, i � q. It follows from (b) that

ŵs(t) = val(s; `) for all t 2 [t` + dmax(s;M); t`+1):

According to the de�nition of per(M),

� � setup(bij; ;M) + dmax(nth(j; O(�i)); �i):

Hence,

t` + dmax(s;M) = t`+1 � � + dmax(nth(j; O(�i)); �i) � t`+1 � setup(bij;M):

The induction is completed as in the proof of (b). 2

4 Asynchronous Communication

Suppose we have a circuit in which an output of one sequential module, called the
sender, is connected to a data input of another, called the receiver. Under suitable
conditions on the sender's input, its output waveform is guaranteed by Theorem 3.1
to be stable with respect to the period of the sender's clock. On the other hand, in
order to apply the results of Section 3 to the behavior of the receiver, we must be
able to assume that its input is stable with respect to the period of its own clock.
In general, this is true only for a synchronous circuit, in which the two modules are

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

29

driven by the same clock. In this section, we shall examine the asynchronous case,
in which the two clock inputs have di�erent periods.

Our treatment of this problem is based on Moore's model of asynchrony [4]. In
this model, the behavior of a signal is characterized abstractly by three quantities:
a base time, a period, and a bit vector (representing the values assumed on succes-
sive cycles). Moore postulates that the receiver's input vector is determined by a
function asynch, the arguments of which include the sender's output vector, the two
periods, and the two base times. In this section, we shall present Moore's function
asynch and establish the applicability of his model to certain circuits represented
in our language. In Section 5, we shall employ a theorem of Moore to show that
if the sender's and receiver's periods are known to be approximately equal, then
communication may be achieved by means of a well known protocol.

4.1 Smooth and Quasi-Smooth Waveforms

The communication protocol is motivated by the observation that if the time at
which the receiver samples its input may be approximated by the sender, then the
sender may successfully communicate a value by redundantly writing the value on
su�ciently many successive cycles to guarantee that it is the value read by the
receiver. For this purpose, the assumption that the sender's output waveform is
stable is too weak; the waveform must be known to be constant on each cycle
during some critical interval. With this requirement in mind, we de�ne a stable
waveform to be smooth if its setup time coincides with its period. Thus, w is a
smooth n-cycle waveform based at t0 with value list V = (v1 : : : vn) and period � if
for i = 1; : : : ; n, ŵ(t) = vi for all t 2 [t0 + (k � 1)�; t0 + k�).

A somewhat weaker notion of smoothness is needed to describe waveforms that
are constant over some but not all cycles. First, we de�ne a list V = (v1 : : : vn) to be
a generalized bit vector if each vi is either Boolean or the literal atom Q. In this case,
we shall call w a quasi-smooth n-cycle waveform based at t0 with value list V and
period � if for i = 1; : : : ; n, either vi = Q or ŵ(t) = vi for all t 2 [t0+(k�1)�; t0+k�).
(Thus, the value Q corresponds to cycles of unknown behavior.)

Our �rst objective is to derive a nontrivial representation of an output waveform
of a sequential device as a quasi-smooth waveform. For this purpose, we make the
following de�nition: If v is a Boolean atom and V is a bit vector, then smooth(v; V)
is the generalized bit vector V 0, where

(1) If V = NIL, then V 0 = NIL; otherwise:

(2) If car(V) = v, then V 0 = cons(v; smooth(v; cdr(V))); otherwise:

30

(3) V 0 = cons(Q; smooth(car(V); cdr(V))).

Thus, if v = v0 and V = (v1 : : : vn), then V 0 = (v01 : : : v0n), where for i = 1; : : : ; n,

v0i =

(
vi if vi = vi�1

Q if vi 6= vi�1:

Lemma 4.1 Let s = nth(j; O(M)) be a registered output of a sequential module
M . Let w = nth(j; outp(M; sim(M; p; tf))), where p is an admissible n-cycle input
packet for S based at t0 with value matrix V and period �, and tf � t0 + (n+ 1)�.

Let U = (sv(0; s;V;M) : : : sv(n; s;V;M)). Then w is an n-cycle quasi-smooth
waveform based at t0 + 2� with value list smooth(car(U); cdr(U)) and period �.

Proof: For 0 � k � n, let Uk = (sv(n � k; s;V;M) : : : sv(n; s;V;M)) and
Vk = smooth(car(Uk); cdr(Uk)). We shall prove, by induction on k, that w is a
k-cycle quasi-smooth waveform based at t0 + (n � k + 2)� with value list Vk and
period �.

The base case k = 0 holds vacuously. For k > 0, since cdr(Vk) = Vk�1, we need
only consider car(Vk) and the behavior of w on [t0+(n�k+2)�; t0+(n�k+3)�). If
car(Vk) = Q, there is nothing to prove. In the remaining case, car(Vk) = car(Uk) =
car(Uk�1), i.e., sv(n � k; s;V;M) = sv(n � k + 1; s;V;M), and the result follows
from Theorem 3.1. 2

4.2 Describing Output as Input

Next, for a given quasi-smooth waveform with period �s (representing that of the
sender's clock), we would like to derive an alternative representation as a quasi-
smooth waveform with a given period �r (that of the receiver's clock). Let w be
an n-cycle quasi-smooth waveform based at ts (a rising edge of the sender's clock)
with value list V = (v1 : : : vn) and period �s. Assume ts � tr < ts + �s (where
tr represents a rising edge of the receiver's clock). We shall construct a list of
values V 0 = warp(V; ts; tr; �s; �r) such that w is a quasi-smooth waveform based at
tr with value list V 0 and period �r. The de�nition of warp requires several auxiliary
functions.

Let t satisfy ts < t � ts + n�s. Choose k so that ts + (k � 1)�s < t � ts + k�s.
Then 1 � k � n. (k represents the number of cycles of the sender that intersect the
interval [tr; t).) We de�ne

sig(V; ts; t; �s) =

(
v1 if v1 = v2 = : : : = vk
Q if not:

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

31

Under the same constraints on t, choose ` so that ts + `�s � t < ts + (`+ 1)�s.
Then 0 � ` � n. (ts + `�s represents the maximum sender's rising edge that is not
exceeded by t.) We de�ne

t+s (V; ts; t; �s) = ts + `�s

and
lst+(V; ts; t; �s) = (v`+1 : : : vn):

Now we may de�ne V 0 = warp(V; ts; tr; �s; �r): If tr + �r > ts + n�s, then
V 0 = NIL; otherwise,

V 0 = cons(sig; warp(lst+; t+s ; tr + �r; �s; �r));

where sig = sig(V; ts; tr+�r; �s), lst
+ = lst+(V; ts; tr+�r; �s), and t

+
s = t+s (V; ts; tr+

�r; �s).

Lemma 4.2 Let w be a quasi-smooth n-cycle waveform based at ts with value list
V and period �s. Let �r > 0 and ts � tr < ts + �s. Let V 0 = warp(V; ts; tr; �s; �r)
and let n0 be the length of V 0. Then w is a quasi-smooth n0-cycle waveform based at
tr with value list V 0 and period �r.

Proof: We may assume tr + �r � ts + n�s, for otherwise, n0 = 0. Let V =
(v1 : : : vn) and let sig, lst+, and t+s be de�ned as in the de�nition of warp. By
induction, we may further assume that w is a quasi-smooth (n0� 1)-cycle waveform
based at tr + �r with value list cdr(V 0) = warp(lst+; t+s ; tr + �r; �s; �r) and period
�r. We need only show that either car(V 0) = sig = Q, or ŵ has the constant value
sig on the cycle [tr; tr + �r).

Suppose sig 6= Q. Choose k so that ts+(k�1)�s < tr+�r � ts+k�s. According
to the de�nition of sig, sig = v1 = v2 = : : : = vk, and hence, ŵ(t) = sig for all
t 2 [ts; ts + k�s) � [tr; tr + �r). 2

4.3 Eliminating Metastability

Lemmas 4.1 and 4.2 together provide a representation of a registered output wave-
form from the sender as a quasi-smooth waveform with respect to the receiver's
clock. In order to achieve communication, we shall design a clocked state-holding
device, called a d-latch, that converts a quasi-smooth input to a stable output. In
our asynchronous circuit, this device will share the receiver's clock, and its output
will be connected to the receiver's input.

32

The d-latch will consist of an inverter and three nand gates. Its functionality will
depend on the relative delays of these components. Thus, along with our standard
gates not1 and nand2, both of which have delay 2000, we shall require the following
faster nand gate, fnand2:

(BEHAV (A B) ((NAND2 A B)) (1000) (INERTIAL))

We de�ne dlatch to be the following module, which is diagrammed in Fig. 5:

(STRUCT (CLK D) (S2)

(not1 nand2 nand2 fnand2)

((CLK) (CLK D) (S1 S3) (S0 S2))

((S0) (S1) (S2) (S3)))

Unlike all other circuits that we have encountered, the speci�ed behavior of dlatch
will also depend on the unique character of inertial delay. In particular, we shall
need the following result:

Lemma 4.3 Let M be a behavioral module with nth(j; O(M)) = s, nth(j;D(M)) =
d, and nth(j; P (M)) = INERTIAL. Let p be an input packet for M , let v be the
combinational value of s w.r.t. p̂(t0), and let w = nth(j; sim(M; p; t0).

(a) If ŵ(t0) = v, then w = hist(w; t0);
(a) If ŵ(t0) 6= v, then w = cons((v; t1); hist(w; t0)), where t0 < t1 � t0 + d.

Proof: By Lemma 2.10 and the de�nition of exec, w = inertial(w; v; t0; t0 + d).
The lemma follows from the de�nition of inertial. 2

The behavioral speci�cation of dlatch is an instance of the following, with d0 =
d1 = d2 = 2000 and d3 = 1000.

Lemma 4.4 Let G0 be the inverter

(BEHAV (A) (NOT1 A) (d0) (INERTIAL))

and for i = 1; 2; 3, let Gi be the nand gate

(BEHAV (A B) (NAND2 A B) (di) (INERTIAL)),

where d1 � d0 and d0+d3 < d1+d2. Let D = d0+d1+d2+d3. Let L be the module

(STRUCT (CLK) (D)

(G0 G1 G2 G3)

((CLK) (CLK D) (S1 S3) (S2 S0))

((S0) (S1) (S2) (S3))).

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

33

Let p = (wCLK wD) be an input packet for L, and assume that

ŵCLK(t) =

(
T for all t 2 [t+; t�)
F for all t 2 [t�; tf);

where t� > t+ +D and tf > t� +D. Let ((w0) (w1) (w2) (w3)) = sim(L; p; tf).
Then ŵ2 has a constant value v on [t� + D; tf). If ŵD has a constant value u on
[t+; tf), then u = v.

Proof: For each t 2 N, let Bt = ((w0;t) (w1;t) (w2;t) (w3;t)) = sim(L; p; t). Then
for i = 0; : : : ; 3, wi = wi;tf . Let t0 = t� + d0. For each t � t0, the following results
may be derived from Lemmas 3.1 and 2.9:

(a) ŵ0;t has the constant value F on [t+ + d0; t0);
(b) ŵ3;t has the constant value T on [t+ + d0 + d3; t0 + d3);
(c) ŵ0;t has the constant value T on [t0; tf + d0);
(d) ŵ1;t has the constant value T on [t� + d1; tf + d1).

In particular, for each t � t0, ŵ0;t and ŵ1;t are both constant on [t0; tf).
By Lemma 2.9, (w2;t) = sim(G2; (w1;tw3;t); t) and (w3;t) = sim(G3; (w0;tw2;t); t).

We shall apply Lemma 4.3 to both G2 and G3.
We shall show that for some t1 2 [t0; t� +D) and some v 2 B, ŵ2;t1(t1) = v and

ŵ3;t1(t1) = not1(v). Let w2;t0(t0) = v2 and w3;t0(t0) = v3. We consider the following
cases:

Case 1: v3 = not1(v2). In this case, we take t1 = t0 and v = v2.
Case 2: v3 = v2. By Lemma 4.3(b), w2;t0 = cons((not1(v2); t2); hist(w2;t0 ; t0)),

where t0 < t2 � t0 + d2, and w3;t0 = cons((not1(v2); tt); hist(w3;t0 ; t0)), where t0 <
t3 � t0 + d3.

Subcase 2a: t3 < t2. Here, tnext(t0; p; Bt0 ; L) = t3. By Lemma 2.7,ŵ2;t3(t3) =
ŵ2;t0(t3) = v2 and ŵ3;t3(t3) = ŵ3;t0(t3) = not1(v2). Thus, we have t1 = t3 and v = v2.

Subcase 2b: t2 < t3. In this case, tnext(t0; p; Bt0 ; L) = t3, and we have ŵ2;t2(t2) =
ŵ2;t0(t2) = not1(v2) and ŵ3;t2(t2) = ŵ3;t0(t2) = v2. In this case, t1 = t2 and v =
not1(v2).

Subcase 2c: t2 = t3. We have ŵ2;t2(t2) = ŵ3;t2(t2) = not1(v2). By Lemma 4.3(b),
w2;t2 = cons((v2; t2+ d2); w2;t0), and w3;t2 = cons((v2; t2+ d3); w3;t0). It follows from
our hypotheses that d3 < d2. Hence, ŵ2;t2+d3(t2 + d3) = not1(v2) and ŵ3;t2+d3(t2 +
d3) = v2. Thus, t1 = t2 + d3 and v = not1(v2).

Now, by Lemma 4.3(a), ŵ2;t1 = hist(ŵ2;t1 ; t1) and ŵ3;t1 = hist(ŵ3;t1 ; t1). Hence,
tnext(t1; p; Bt1; L) � tf . It follows that for any t0 2 [t1; tf), Bt0 = Bt1 , and in
particular, w2;tf (t

0) = w2;t0(t
0) = w2;t1(t

0) = v. Thus, w2;tf has the constant value v
on [t1; tf) � [t� +D; tf).

34

S0

S1
S2

S3

CLK

D

D

CLK

S2
D7
D6
D5
D4
D3
D2
D1
D0

SEND

CLK
RST

SOUT
D7
D6
D5
D4
D3
D2
D1
D0

DONE

RST

CLK

SIN
I7
I6
I5
I4
I3
I2
I1
I0

CLKS

RSTS

CLKR

RSTR

SOUT
LOUT

O7
O6
O5
O4
O3
O2
O1
O0

SEND DONE

dlatchsndr rcvr

Figure 5: (a) dlatch (b) bpm

Finally, suppose that ŵD has a constant value u on [t+; tf). Then ŵ1(t) =
not1(u) for t 2 [t+ + d1; t� + d1). Since ŵ3(t) = T on [t+ + d0 + d3; t0 + d3), the
combinational value corresponding to S2 is u on the intersection of these intervals,
[max(t+ + d1; t+ + d0 + d3); min(t� + d1; t0 + d3)). Thus, by Lemma 3.1, ŵ2(t) = u

for t 2 [max(t+ + d1 + d2; t+ + d0 + d3 + d2); min(t� + d1 + d2; t0 + d3 + d2)). In
particular, ŵ2(t) = u for t 2 [t0; t0 + d3 + d2). Thus, v2 = u. Moreover, Subcases 2b
and 2c, in which ŵ assumes the value not1(v2) at some point in this interval, are
eliminated. In the remaining cases, v = v2 = u. 2

In order to avail ourselves of the results of [4], we must restate Lemma 4.4 in
terms of Moore's function det. If V is a generalized bit vector and oracle is a bit
vector, then det(V; oracle) is the bit vector V 0, de�ned as follows:

(1) If V = NIL, then V 0 = NIL; otherwise:

(2) If car(V) 2 B, then V 0 = cons(car(V); det(cdr(V); oracle)); otherwise:

(3) If oracle = NIL, then V 0 = cons(T ; det(cdr(V); oracle)); otherwise:

(4) V 0 = cons(car(oracle); det(cdr(V); cdr(oracle))).

Lemma 4.5 Let p = (wCLK wD) be an input packet for dlatch, where wCLK is an
n-cycle pulse based at t0 with high h > 7000, low ` > 7000, and period � = h+`, and
wD is a quasi-smooth n-cycle waveform based at t0 with value list V and period �.
Let ((w0) (w1) (w2) (w3)) = sim(dlatch; p; tf), where tf � t0 + n�. Then for some
bit vector oracle, w2 is a stable n-cycle waveform based at t0 with setup ` � 7000,
value list det(V; oracle), and period �.

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

35

Proof: We induct on n. For n = 0, the statement is vacuous. For n > 0, we
may assume that w2 is a stable (n � 1)-cycle waveform based at t0 + � with setup
` � 7000, value list det(cdr(V); oracle0), and period �. By Lemma 4.4, ŵ2 has a
constant value v on [t0 + h + 7000; t0 + �) = [t0 + � � (` � 7000); t0 + �), and if
car(V) 6= Q, then car(V) = v. If car(V) = Q, then let oracle = cons(v; oracle0);
otherwise, let oracle = oracle0. In either case, w2 is a stable n-cycle waveform based
at t0 with setup `� 7000, value list det(V; oracle), and period �. 2

4.4 The Main Theorem

In Section 5, we shall apply the results of this section to a circuit bpm, consisting
of two sequential submodules, sndr and rcvr, and a dlatch: According to the
de�nitions that we shall present later, sndr has 9 data inputs and one registered
output, SOUT, while rcvr has one data input, SIN, and 9 outputs. The circuit bpm,
which is diagrammed in Fig. 5, is de�ned as follows:

(STRUCT

(CLKS RSTS CLKR RSTR SEND I0 I1 I2 I3 I4 I5 I6 I7)

(DONE O0 O1 O2 O3 O4 O5 O6 O7)

(sndr dlatch rcvr)

((CLKS RSTS SEND I0 I1 I2 I3 I4 I5 I6 I7) (CLKR SOUT) (CLKR RSTS LOUT))

((SOUT) (LOUT) (DONE O0 O1 O2 O3 O4 O5 O6 O7)))

The following theorem summarizes our results on asynchrony, as they pertain to
the module bpm. The theorem refers to Moore's function asynch, which is de�ned as
follows: Let V and oracle be bit vectors and let ts; tr; �s; �r 2 N such that �s > 0,
�r > 0, and ts � tr < ts + �s. Then

asynch(V; ts; tr; �s; �r; oracle) = det(warp(smooth(T ; V); ts; tr; �s; �r); oracle):

Theorem 4.1 Let p = (wCLKSwRSTSwCLKRwRSTRwSENDw0 : : : w7) be an input packet
for bpm, where

(a) (wCLKSwRSTSwSENDw0 : : : w7) is an admissible ns-cycle input packet for sndr
based at bs with value matrix V and period �s;

(b) wCLKR is an admissible (nr + 2)-cycle pulse for rcvr based at br with high
h > 7000, low ` > 7000 + setup(SIN; rcvr), and period �r = h+ `;

(c) wRSTR is an admissible (nr + 1)-cycle reset waveform for rcvr based at br
with period �r.

Let tr = br + �r. Assume that bs + 2�s � tr � bs + (ns + 2)�s � tr + nr�r.
Choose j so that bs + j�s � tr < bs + (j + 1)�s and let ts = bs + j�s. Assume
sv(j � 2; SOUT;V; sndr) = T .

36

Let U = (sv(j � 1; SOUT;V; sndr) : : : sv(ns; SOUT;V; sndr)). Let wLOUT be the
waveform for LOUT determined by sim(bpm; p; tf), where tf � tr + nr�r. Then for
some bit vector oracle, (wCLKR wRSTR wLOUT) is an admissible input packet for rcvr

based at br with value matrix (asynch(U; ts; tr; �s; �r; oracle)) and period �r.

Proof: Let wSOUT be the waveform for SOUT determined by sim(bpm; p; tf). Ac-
cording to Lemma 4.1, wSOUT is a quasi-smooth waveform based at ts with value
list smooth(T ; U) and period �s. It follows from Lemma 4.2 that wSOUT is also a
quasi-smooth waveform based at tr with value list warp(smooth(T ; U); ts; tr; �s; �r)
and period �r. Finally, by Lemma 4.5, wLOUT is a stable waveform based at tr with
setup `� 7000 > setup(SIN; rcvr), value list

det(warp(smooth(T ; U); ts; tr; �s; �r); oracle) = asynch(U; ts; tr; �s; �r; oracle));

for some oracle, and period �r. 2

5 Biphase Mark

Moore's formulation [4] of the biphase mark protocol is based on two functions,
send and recv, which represent the computations performed by the sender and the
receiver, respectively. After presenting the de�nitions of these functions, we shall
implement them in the design of the sequential modules sndr and rcvr. Then,
using a theorem of Moore in combination with results of Section 4, we shall show
that the circuit bpm achieves communication between these modules.

5.1 Sending

The function send returns a bit vector that represents an encoding of a given input
bit vector msg. Each bit of msg is encoded as a bit vector called a cell, computed
as the value of cell(x; n; k; b), where b is the bit of msg to be encoded, x is the �nal
bit of the preceding cell, and n and k are parameters of the protocol. A cell consists
of two subcells, each of which is a uniform bit vector: a mark subcell of length n,
followed by a code subcell of length k. The mark subcell is intended as a signal to
the receiver that a new cell has been entered: each of its bits is not1(x). The code
subcell is the region in which the receiver is expected to look for information from
which it will derive the value b of the encoded bit: if b = T , then each bit of this
subcell is x; if b = F , each bit is not1(x).

The de�nition of cell requires three auxiliary functions. First, the subcells are
constructed by the function listn: for any n 2 N and any x, listn(n; x) is the uniform

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

37

vector (x : : : x) of length n. Next, the two subcells are combined by the function app:
for any two lists L = (a1 : : : an) andM = (b1 : : : bm), app(L;M) = (a1 : : : anb1 : : : bm).
Finally, the bit occurring in the code subcell is determined by the Boolean function
equal, where equal(x; y) = T i� x = y, i.e., equal(x; y) = not1(xor2(x; y)).

Now, we may de�ne

cell(x; n; k; b) = app(listn(n; not1(x)); listn(k; equal(x; b)));

and cells(x; n; k;msg) is de�ned as

(1) NIL, if msg = NIL;

(2) app(cell(x; n; k; car(msg)); cells(equal(x; car(msg)); n; k; cdr(msg))), ifmsg 6=
NIL.

The protocol includes the convention that the value T is transmitted until the
encoded message is sent. Thus, the encoded bit vector constructed by send includes
\pads" consisting arbitrarily many copies of T on both sides of the cells. The
arguments of send include the lengths p1 and p2 of these pads:

send(msg; p1; n; k; p2) = app(listn(p1; T); app(cells(T ; n; k;msg); listn(p2; T))):

5.2 Receiving

Next, we de�ne recv(i; x; j; L)1, which may be shown, under suitable assumptions,
to be the inverse of send. This function recovers a bit of the encoded message from
each cell by �rst detecting the beginning of the mark subcell, and then reading
and decoding a bit at a predetermined location within the cell, which has been
calculated to lie within the code subcell. Its arguments are interpreted as follows:
i is the number of bits of the original message yet to be recovered, x is the last bit
to have been read (from the preceding cell), j is the location within the cell of the
bit to be read, and L is the remaining input stream.

The beginning of a new cell is detected by the function scan(x; L), which suc-
cessively removes bits from the beginning of the list L until a value di�erent from x

is found. The recursive de�nition follows:

(1) If L = NIL, then scan(x; L) = NIL; otherwise:

(2) If car(L) = x, then scan(x; L) = scan(x; cdr(L)); otherwise:

1For technical reasons, we shall slightly modify Moore's original de�nition of this function. Our

modi�cation does not a�ect the validity of any of his results.

38

(3) scan(x; L) = L.

We shall require one other auxiliary function: If n 2 N and L is a list, then
cdrn(n; L) is de�ned to be

(1) L, if n = 0;

(2) cdrn(n� 1; cdr(L)), if n > 0.

Finally, we de�ne recv(i; x; j; L) to be the bit vector msg, where

(1) If i = 0, then msg = NIL; otherwise:

(2) Let S = scan(x; L). If length(S) � k, then msg = NIL; otherwise:

(3) Let b = nth(k + 1; S) and L0 = cdrn(k + 1; S). If b = x, then
msg = cons(T ; recv(i� 1; b; j; L0); otherwise:

(4) msg = cons(F ; recv(i� 1; b; j; L0).

5.3 Moore's Theorem

Moore has proved a statement of correctness of the protocol for certain values of the
parameters. The lengths of the mark and code subcells generated by send are taken
to be n = 5 and k = 13, respectively. The index of the bit read by recv following
the detection of an edge is j = 10, i.e., the eleventh bit after the edge is sampled.
The theorem also depends on an assumption concerning the proximity of the two
clock periods:

Theorem 5.1 (Moore) Let �s > 0, �r > 0, and 17�r � 18�s � 19�r. Let ts �
tr < ts+�s. Let msg be a bit vector of length k. Then for any bit vector oracle and
any numbers p1 and p2,

recv(k; T ; 10; asynch(send(msg; p1; 5; 13; p2); ts; tr; �s; �r; oracle)) = msg:

We shall apply Moore's theorem to the speci�cation of the circuit bpm. The
sequential submodules sndr and rcvr of bpm remain to be de�ned. As we present
the de�nitions of the these modules and their components, which are diagrammed
in Figs. 6{10, we shall derive characterizations of their behavior that are analogous
to Propositions 3.1 and 3.2. The proofs of these results are based on straightforward
calculations and have all been mechanically checked. Therefore, the details of these
proofs are omitted here.

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

39

5.4 Basic Components

The message that is transmitted from sndr to rcvr will consist of eight bits. It is
stored (by both sndr and rcvr) in a shift register, shift8, which is constructed
from eight copies of the following 3-port cell, port3:

(STRUCT

(CLK RST SHIFT SIN LOAD DIN)

(Q)

(edff nand2 nand2 or2 nand2)

((CLK RST S3 S4) (DIN LOAD) (SIN SHIFT) (LOAD SHIFT) (S1 S2))

((Q QN) (S1) (S2) (S3) (S4)))

The behavior of port3 may be derived easily from that of edff (Proposition 3.1):

Proposition 5.1 Let � and V = (shift sin load din) be a state and a data vector
for port3. Assume that shift and load are not both T . Then

nv(Q; V;�; port3) = �;

next(V;�; port3) =

8><
>:

sin if shift = T and load = F
din if shift = F and load = T
� if shift = F and load = F :

The register shift8 is de�ned as follows:

(STRUCT

(CLK RST LOAD SHIFT SIN D0 D1 D2 D3 D4 D5 D6 D7)

(Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7)

(port3 port3 port3 port3 port3 port3 port3 port3)

((CLK RST SHIFT SIN LOAD D0)

(CLK RST SHIFT Q0 LOAD D1)

(CLK RST SHIFT Q1 LOAD D2)

(CLK RST SHIFT Q2 LOAD D3)

(CLK RST SHIFT Q3 LOAD D4)

(CLK RST SHIFT Q4 LOAD D5)

(CLK RST SHIFT Q5 LOAD D6)

(CLK RST SHIFT Q6 LOAD D7))

((Q0) (Q1) (Q2) (Q3) (Q4) (Q5) (Q6) (Q7)))

40

RST

QD

QN
EN
CLK

DIN
LOAD

SIN

SHIFT

CLK

RST

Q

S1

S2

S3

S4

port3(a)

DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q
DIN
SIN
SHIFT
LOAD
CLK

RST

Q

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

D7
D6
D5
D4
D3
D2
D1
D0

SIN

CLK
RST

SHIFT
LOAD

Figure 6: (b) shift8

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

41

Proposition 5.2 Let � = (�0 : : : �7) and V = (load shift sin d0 : : : d7) be a state
and a data vector for shift8. Assume that shift and load are not both T . Then

nv(Qi; V;�; shift8) = �i; i = 0; : : : ; 7;

next(V;�; shift8) =

8><
>:

(sin �0 : : : �6) if shift = T and load = F
(d0 : : : d7) if shift = F and load = T
� if shift = F and load = F :

In order to describe the shifting operation that is performed by shift8, we de�ne,
for any b 2 B and any bit vector V ,

shift(b; V) =

(
NIL if V = NIL

cons(b; shift(car(V); cdr(V))) if V 6= NIL:

Thus, shift(sin; (�0 : : : �7)) = (sin �0 : : : �6).
In addition to dff and edff, we shall require two other versions of the ip-op.

The �rst of these, cdff, has an input CLR, which may be used to override the other
data input D and reinitialize the state:

(STRUCT

(CLK RST CLR D)

(Q QN)

(dff not1 nand2)

((CLK RST DCN) (CLR) (D CN))

((Q QN) (CN) (DCN)))

Proposition 5.3 Let � and V = (clr d) be a state and a data vector for cdff.
Then

nv(Q; V;�; cdff) = � and nv(QN; V;�; cdff) = not1(�);

next(V;�; cdff) =

(
F if clr = T
d if clr = F :

The second, cedff, is a combination of edff and cdff:

(STRUCT

(CLK RST CLR EN D)

(Q QN)

(dff not1 not1 nand3 nand3 nand2)

((CLK RST S5) (EN) (CLR) (Q S1 S2) (D S2 EN) (S3 S4))

((Q QN) (S1) (S2) (S3) (S4) (S5)))

42

RST
QN

QD

CLK

D

CLR

CLK

RST

Q

QN
CN

DCN

RST
QN

QD

CLK
D

EN

CLR

CLK
RST

Q

QN

S2

S1 S3

S4

S5

Figure 7: (a) cdff (b) cedff

Proposition 5.4 Let � and V = (clr en d) be a state and a data vector for cedff.
Then

nv(Q; V;�; cedff) = � and nv(QN; V;�; cedff) = not1(�);

next(V;�; cedff) =

8><
>:
F if clr = T
d if clr = F and en = T
� if clr = F and en = F :

Using cedff, we construct the following 5-bit counter, count5:

(STRUCT

(CLK RST CLR EN)

(Q0 Q1 Q2 Q3 Q4)

(cedff cedff cedff cedff cedff

and2 and2 and2 xor2 xor2 xor2 xor2)

((CLK RST CLR EN QN0)

(CLK RST CLR EN X1)

(CLK RST CLR EN X2)

(CLK RST CLR EN X3)

(CLK RST CLR EN X4)

(Q0 Q1) (A1 Q2) (A2 Q3) (Q0 Q1) (Q2 A1) (Q3 A2) (Q4 A3))

((Q0 QN0) (Q1 QN1) (Q2 QN2) (Q3 QN3) (Q4 QN4)

(A1) (A2) (A3) (X1) (X2) (X3) (X4)))

Proposition 5.5 Let � = (�0 : : : �4) and V = (clr en) be a state and a data vector
for count5. Then

nv(Qi; V;�; count5) = �i; i = 0; : : : ; 4;

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

43

RST

D

QN
EN
CLK

CLR
Q

RST

D

QN
EN
CLK

CLR
Q

RST

D

QN
EN
CLK

CLR
Q

RST

D

QN
EN
CLK

CLR
Q

RST

D

QN
EN
CLK

CLR
Q

A3

A2

A1

X1

X2

X3

X4

CLR

EN
CLK

RST

Q0

Q1

Q2

Q3

Q4

B0

C0

B1
C1

B2

C3
B3

B4
C4

C2 MATCH

S1

S2

S3

S4

S5

Figure 8: (a) count5 (b) comp5

next(V;�; count5) =

8><
>:

listn(5;F) if clr = T
inc(cnt) if clr = F and en = T
� if clr = F and en = F :

For convenience in representing states of both count3 and count5, we de�ne, for
k 2 N and n 2 N,

bvk(n) =

(
listn(k;F) if n = 0
inc(bvk(n� 1)) if n > 0:

Thus, bvk(n) is the k-bit vector that represents the number n.
We shall also require a combinational module, the following 5-bit comparator

comp5:

(STRUCT

(C0 B0 C1 B1 C2 B2 C3 B3 C4 B4)

(MATCH)

(xor2 xor2 xor2 xor2 xor2 nor5)

((C0 B0) (C1 B1) (C2 B2) (C3 B3) (C4 B4) (S1 S2 S3 S4 S5))

((S1) (S2) (S3) (S4) (S5) (MATCH)))

44

This module simply determines whether two given 5-bit vectors are equal, i.e.,

cv(MATCH; (c0 b0 c1 b1 : : : c4 b4); comp5) =

(
T if (c0 : : : c4) = (b0 : : : b4)
F if not.

5.5 The Sender

The action of sndr is controlled by the submodule scount, which is de�ned as
follows:

(STRUCT

(CLK RST STOP BIT)

(MARK CODE)

(cdff count5 or2 or2 t0 f0 comp5 comp5)

((CLK RST STOP S1) (CLK RST S2 Q) (BIT Q) (STOP BIT) () ()

(F Q0 F Q1 T Q2 F Q3 F Q4) (T Q0 F Q1 F Q2 F Q3 T Q4))

((Q QN) (Q0 Q1 Q2 Q3 Q4) (S1) (S2) (T) (F) (MARK) (CODE)))

A state of scount is a list (on cnt) of two components, corresponding to the two
sequential submodules, cdff and count5. As long as both data inputs are F , the
value of on remains constant. While on = T , cnt is incremented repreatedly; while
on = F , cnt remains unchanged. If either input is T , then on is set accordingly and
cnt is reset to bv5(0). The output values are both determined by cnt:

Proposition 5.6 Let � = (on cnt) and V = (stop bit) be a state and a data vector
for scount. Then

nv(MARK; V;�; scount) =

(
T if cnt = bv5(4)
F if cnt 6= bv5(4);

nv(CODE; V;�; scount) =

(
T if cnt = bv5(17)
F if cnt 6= bv5(17);

next(V;�; scount) =

8>>><
>>>:

(F bv5(0)) if stop = T
(T bv5(0)) if stop = F and bit = T
(T inc(cnt)) if stop = bit = F and on = T
(F cnt) if stop = bit = F and on = F :

The de�nition of sndr is as follows:

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

45

C0
C1
C2
C3
C4
MATCH

B0
B1
B2
B3
B4

C0
C1
C2
C3
C4
MATCH

B0
B1
B2
B3
B4

CLK
RST
EN
CLR

Q2

Q0
Q1

Q3
Q4

RST

D

CLK
CLR

QN

Q

+

+
BIT

STOP

RST
CLK

CODE

MARK

S1

S2

Q

Q0
Q1
Q2
Q3
Q4

D7
D6
D5
D4
D3
D2
D1
D0

Q2
Q3
Q4
Q5
Q6
Q7

Q1
Q0

RST

SIN
LOAD
SHIFT
CLK

EN
CLK
RST

Q1
Q2

Q0

RST

QD

QN
EN
CLK

BIT
STOP
CLK
RST

MARK

CODE

I6
I7

I5
I4
I3
I2
I1
I0

SEND

CLK

RST

SOUT

MARK

CODE

C0
C1
C2

A4

O3
A2

Q7

O2

Figure 9: (a) scount (b) sndr

(STRUCT

(CLK RST SEND I0 I1 I2 I3 I4 I5 I6 I7)

(SOUT)

(scount shift8 count3 edff or2 and2 and4 or3 f0)

((CLK RST A4 O2) (CLK RST SEND CODE F I0 I1 I2 I3 I4 I5 I6 I7)

(CLK RST MARK) (CLK RST O3 SOUT) (CODE SEND) (Q7 MARK)

(MARK C0 C1 C2) (A2 SEND CODE) ())

((MARK CODE) (Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7) (C0 C1 C2)

(Q SOUT) (O2) (A2) (A4) (O3) (F)))

This module has two modes of operation. In one mode, it waits dormantly for
the SEND input to become T . When this occurs, the current values of the other eight
data inputs are loaded into the shift register, the state of the ip-op edff (which
determines the output value) changes, and the controller scount begins counting.
This mode is described by the following:

Proposition 5.7 Let V = (s d0 : : : d7) be a data vector for sndr, and let � =
(�1 �2 �3 �4) be a state of sndr, where �1 = (on cnt). Assume that on = F and
cnt = bv5(0). Let �

0 = next(V;�; sndr).

(a) If s = T , then �0 = ((T bv5(0)) (d0 : : : d7) �3 not1(�4));
(b) If s = F , then �0 = �.

In the other mode of operation, the register contents are encoded and transmit-
ted. Each register bit is encoded as a cell consisting of a 5-bit mark subcell and a

46

13-bit code subcell, as measured by scount. The number of cells that have been
transmitted is recorded as the contents of count3. At the end of each mark subcell,
this number is incremented. At the end of each code subcell, the scount counter is
reset and the register contents are shifted:

Proposition 5.8 Let V = (s d0 : : : d7) be a data vector for sndr, and let � =
(�1 �2 �3 �4) be a state of sndr, where �1 = (on cnt) and �2 = (q0 : : : q7). Assume
that s = F and on = T . Let �0 = next(V;�; sndr).

(a) If cnt = bv5(4) and �3 = bv3(7), then �0 = ((F bv5(0))�2 inc(�3)xor2(q7; �4));
(b) If cnt = bv5(4) and �3 6= bv3(7), then �0 = ((T bv5(5))�2 inc(�3)xor2(q7; �4));
(c) If cnt = bv5(17), then �0 = ((T bv5(0)) shift(F ; �2) �3 not1(�4));
(d) If cnt 6= bv5(4) and cnt 6= bv5(17), then �0 = ((T inc(cnt)) �2 �3 �4):

Our main theorem on sndr is the following speci�cation:

Proposition 5.9 Let V = (VSEND VI0 : : : VI7) be a list of bit vectors, each of length
n � 144. Let m = n� 144. Assume that for j = 1; : : : ; n,

nth(j; VSEND) =

(
T if j = m

F if j 6= m:

For i = 0; : : : ; 7, let di = nth(m; VIi). For j = 1; : : : ; n, let svj = sv(j; SOUT;V; sndr).
Then (sv1 : : : svn) = send((d7 : : : d0); m; 5; 13; 0).

Proof: Let �j = state(j;V; sndr), j = 0; : : : ; n. By Proposition 5.7(b), for
j = 0; : : : ; m,

�j = �0(sndr) = ((F bv5(0)) listn(8;F) bv3(0) F)

and hence (sv1 : : : svm) = listn(m; T). It remains to show that (svm+1 : : : svn) =
cells(T ; 5; 13; (d7 : : : d0)).

By Proposition 5.7(a),

�m+1 = ((T bv5(0)) (d0 : : : d7) bv3(0) T):

We shall show that for all k, 0 � k � 7, if

�m+1+18k = ((T bv5(0)) app(listn(k;F); (d0 : : : d7�k)) bv3(k) x);

then
(svm+1+18k : : : svn) = cells(x; 5; 13; (d7�k : : : d0)):

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

47

The proposition will follow from this result upon setting k = 0.
The proof is by induction on 7 � k. In the base case, k = 7, our assumption is

that

�m+1+18k = �m+127 = ((T bv5(0)) app(listn(7;F); (d0)) bv3(7) x):

By Proposition 5.8(d), for ` = 0; : : : ; 4,

�m+127+` = ((T bv5(`)) app(listn(7;F); (d0)) bv3(7) x);

and by Proposition 5.8(a),

�m+127+5 = �m+132 = ((F bv5(0)) app(listn(7;F); (d0)) bv3(0) xor2(d0; x)):

By Proposition 5.7(b), �m+132+` = �m+132 for ` = 0; : : : ; 12. It follows that

(svm+127 : : : svn) = app(listn(5; not1(x)); listn(13; equal(d0; x)))

= cell(x; 5; 13; d0)

= cells(x; 5; 13; (d0)):

In the inductive case, k < 7, we again have, for ` = 0; : : : ; 4,

�m+1+18k+` = ((T bv5(`)) app(listn(k;F); (d0 : : : d7�k)) bv3(k) x)

by Proposition 5.8(d). By Proposition 5.8(b) and (d), for ` = 5; : : : ; 17,

�m+1+18k+` = ((T bv5(`)) app(listn(k;F); (d0 : : : d7�k)) bv3(k + 1) xor2(d7�k; x)):

Thus, (svm+1+18k : : : svm+1+18k+17) is

app(listn(5; not1(x)); listn(13; equal(d7�k; x))) = cell(x; 5; 13; d7�k):

By Proposition 5.8(c), �m+1+18(k+1) is

((T bv5(0)) app(listn(k + 1;F); (d0 : : : d7�(k+1))) bv3(k + 1) equal(d7�k; x)):

It follows from our inductive hypothesis that

(svm+1+18(k+1) : : : svn) = cells(equal(d7�k; x); 5; 13; (d7�(k+1) : : : d0));

and hence (svm+1+18k : : : svn) is

app(cell(x; 5; 13; d7�k); cells(equal(d7�k; x); 5; 13; (d7�(k+1) : : : d0))
= cells(x; 5; 13; (d7�k : : : d0)):2

48

5.6 The Receiver

Its action of the receiver is controlled by a submodule, rcount, which is de�ned as
follows:

(STRUCT

(CLK RST STOP START)

(BIT)

(cdff count5 or2 t0 f0 comp5)

((CLK RST STOP S1) (CLK RST STOP Q) (START Q)

() () (T Q0 F Q1 F Q2 T Q3 F Q4))

((Q QN) (Q0 Q1 Q2 Q3 Q4) (S1) (T) (F) (BIT)))

The functionality of rcount is similar to that of scount. A state is again a
list (on cnt) of two components, corresponding to the two sequential submodules,
cdff and count5. As long as both data inputs are F , the value of on remains
constant. While on = T , cnt is incremented repreatedly; while on = F , cnt remains
unchanged. If STOP is T , then on and cnt are reset to F and bv5(0); otherwise, if
START is T , then on is set to T . The output value is determined by comparing cnt
with bv5(9):

Proposition 5.10 Let � = (on cnt) and V = (stop start) be a state and a data
vector for rcount. Then

nv(BIT; V;�; rcount) =

(
T if cnt = bv5(9)
F if cnt 6= bv5(9);

next(V;�; rcount) =

8>>>>>><
>>>>>>:

(F bv5(0)) if stop = T
(T inc(cnt)) if stop = F and start = on = T
(T cnt) if stop = F and start = T and on = F
(T inc(cnt)) if stop = F and start = F and on = T
(T cnt) if stop = start = on = F :

The de�nition of rcvr is as follows:

(STRUCT

(CLK RST SIN)

(O0 O1 O2 O3 O4 O5 O6 O7 DONE)

(rcount edff count3 shift8 dff not1 not1 xor2 and4 f0)

((CLK RST BIT N2) (CLK RST BIT N1)

(CLK RST BIT) (CLK RST F BIT X F F F F F F F F)

(CLK RST A) (SIN) (X) (SIN Q) (Q0 Q1 Q2 BIT) ())

((BIT) (Q QN) (Q0 Q1 Q2) (O0 O1 O2 O3 O4 O5 O6 O7)

(DONE DONEN) (N1) (N2) (X) (A) (F)))

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

49

C0
C1
C2
C3
C4
MATCH

B0
B1
B2
B3
B4

CLK
RST
EN
CLR

Q2

Q0
Q1

Q3
Q4

RST

D

CLK
CLR

QN

Q
+

RST
CLK

S1
Q

STOP

START

BIT

Q0
Q1
Q2
Q3
Q4

RST
QN

QD

CLK

EN

CLK

RST

Q1
Q0

Q2
STOP

START
CLK

RST

BIT

RST

QD

QN
EN
CLK

D6
D7

D5
D4
D3
D2
D1
D0
SIN
LOAD
SHIFT
CLK
RST

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

SIN

CLK

RST

O7
O6
O5
O4
O3
O2
O1
O0

DONE
A

BIT

N1
X

N2
Q2
Q1
Q0

Q

Figure 10: (a) rcount (b) rcvr

Like sndr, rcvr has two modes of operation. In the �rst mode, it waits for an
edge, i.e., a change in input. This is detected by comparing the input with the state
of the ip-op edff, which is the negation of the most recently read value. In this
mode, the controller rcount is turned o�. When an edge is detected, rcount is
turned on and its counter is reset:

Proposition 5.11 Let V = (sin) be a data vector for rcvr, and let � = (�1�2�3�4�5)
be a state of rcvr, where �1 = (on cnt). Assume that on = F , cnt = bv5(0), and
�5 = F . Let �0 = next(V;�; rcvr).

(a) If sin = �2, then �0 = ((T bv5(0)) �2 �3 �4 F);
(b) If sin 6= �2, then �0 = �.

In its second mode, the receiver counts until it reaches the input bit to be
sampled. At this point, the appropriate value is shifted into the register shift8,
the bit counter count3 is incremented, the current input value is stored in edff,
and rcount is turned o�. When the eighth bit has been computed, the state of dff
is altered to indicate termination:

Proposition 5.12 Let V = (sin) be a data vector for rcvr, and let � = (�1�2�3�4�5)
be a state of rcvr, where �1 = (on cnt). Assume that on = T and �5 = F . Let
�0 = next(V;�; rcvr).

(a) If cnt = bv5(9) and �3 = bv3(7), then

�0 = ((F bv5(0)) not1(sin) bv3(0)) shift(xor2(�2; sin); �4) T);

50

(b) If cnt = bv5(9) and �3 6= bv3(7), then

�0 = ((F bv5(0)) not1(sin) inc(�3) shift(xor2(�2; sin); �4) F);

(c) If cnt 6= bv5(9), then �0 = ((T inc(cnt)) �2 �3 �4 F).

The speci�cation of rcvr is given by the following lemma. For its proof, we
require the following de�nition: If L and M are two bit vectors, then

push(L;M) =

(
M if L = NIL

push(cdr(L); shift(car(L);M)) if L 6= NIL:

Thus, if L = (x1 : : : x`) and M = (y1 : : : ym), where ` � m, then

push(L;M) = (x` : : : x1 y1 : : : ym�`):

Proposition 5.13 Let V = (V), where V is a bit vector of length n. Assume that
length(recv(8; T ; 10; V)) = 8. Then for some m, 1 � m � n,

sv(j; DONE;V; rcvr) =

(
T if j = m

F if j < m:

For i = 1; : : : ; 7, let di = sv(m; Oi;V; rcvr). Then (d7 : : : d0) = recv(8; T ; 10; V).

Proof: Let V = (v1 : : : vn). For j = 0; : : : ; n, let Vj = (vj+1 : : : vn) and

�j = state(j;V; rcvr) = ((onj cntj) flgj bitsj regj donej):

We shall prove the following generalization of the desired result:
Suppose that for some j, onj = F , cntj = bv5(0), donei = F for all i � j, and

length(recv(8� b; not1(flgj); 10; Vj)) = 8� b;

where bitsj = bv3(b). Then for some m > j, donei = F for all i < m, donem = T ,
and

regm = push(recv(8� b; not1(flgj); 10; Vj); regj):

The proposition will then follow from the case j = 0.
First note that according to our assumption, recv(8 � b; not1(flgj); 10; Vj) 6=

NIL, and hence, scan(not1(flgj); Vj) = Vk for some k, j � k < n � 10. Thus,
vi = not1(flgj) for i = j + 1; : : : ; k, and vk+1 = flgj. From the de�nition of recv,
we have

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

51

recv(8� b; not1(flgj); 10; Vj) = cons(xor2(flgj; vk+11); recv(7� k; vk+11; 10; Vk+11));

and hence,
length(recv(7� b; vk+11; 10; Vk+11)) = 7� b:

By Proposition 5.11, �i = �j for i = j; : : : ; k, and

�k+1 = ((T bv5(0)) flgj bitsj regj F):

By Proposition 5.12(c), for i = 0; : : : ; 9,

�k+1+i = ((T bv5(i)) flgj bitsj regj F):

The proof is by induction on 7 � b. Consider �rst the base case, b = 7. By
Proposition 5.12(a),

�k+11 = ((F bv5(0)) not1(vk+11) bv3(0) shift(xor2(flgj; vk+11); regj) T):

Here, the result holds for m = k + 11, since

push(recv(8� b; not1(flgj); 10; Vj); regj) = push((xor2(flgj; vk+11)); regj)

= shift(xor2(flgj; vk+11); regj):

Now suppose that b < 7, and assume that the claim holds with b replaced with b+1.
By Proposition 5.12(a),

�k+11 = ((F bv5(0)) not1(vk+11) bv3(b+ 1) shift(xor2(flgj; vk+11); regj) F):

We may conclude that for some m > k + 11, donei = F for all i < m, donem = T ,
and

regm = push(recv(7� b; vk+11; 10; Vk+11); shift(xor2(flgj; vk+11); regj))

= push(cons(xor2(flgj; vk+11); recv(7� b; vk+11; 10; Vk+11)); regj)

= push(recv(8� b; not1(flgj); 10; Vj); regj):2

5.7 The Main Theorem

Finally, we present our main result concerning the circuit bpm. We assume that the
two clock input waveforms are admissible pulses for sndr and rcvr, respectively,
with periods that conform to the constraints imposed by Moore's theorem, and that

52

the other inputs are well-behaved with respect to the clocks, as required by Theo-
rem 3.1. We also assume that the SEND input has the value T on exactly one cycle,
during which an 8-bit message is read from the other data inputs. This message
is then encoded and transmitted by sndr, and received, decoded, and output by
rcvr. As stated in the theorem, the completion of this process is signalled by the
output DONE: when its value �rst becomes T , the other outputs display the decoded
message.

Theorem 5.2 Let pin = (wCLKSwRSTSwCLKRwRSTRwSENDw0 : : : w7) be an input packet
for bpm, where

(a) (CLKSwRSTSwSENDw0 : : : w7) is an admissible ns-cycle input packet for sndr
based at bs with value matrix Vs = (VSEND VI0 : : : VI7) and period �s;

(b) wCLKR is an admissible (nr + 2)-cycle pulse for rcvr based at br with high
h > 7000, low ` > 7000 + setup(SIN; rcvr), and period �r = h+ `;

(c) wRSTR is an admissible (nr + 1)-cycle reset waveform for rcvr based at br
with period �r.

Assume 17�r � 18�s � 19�r. Suppose that for some ms, 1 � ms � ns � 144,

nth(j; VSEND) =

(
T if j = ms

F if j 6= ms; 1 � j � ns;

For i = 0; : : : ; 7, let di = nth(ms; VIi). Let tr = br + �r. Assume that bs + 2�s �
tr � bs + (ms + 2)�s and bs + (ns + 2)�s � tr + nr�r.

Let pout = outp(bpm; sim(bpm; pin; tf)), where tf � tr + nr�r. Then pout is a
stable nr-cycle packet based at tr + �r with value matrix Vr and period �r, for some
Vr = (VDONE VO0 : : : VO7). For some mr, 1 � mr � nr,

nth(j; VDONE) =

(
T if j = mr

F if j 6= mr; 1 � j � nr;

and for i = 0; : : : ; 7, nth(mr; VOi) = di.

Proof: We may assume, without loss of generality, that ns = ms + 144. For
j = 0; : : : ; ns, let svj = sv(j; SOUT;Vs; sndr). By Proposition 5.9,

(sv1 : : : svns) = send((d7 : : : d0); ms; 5; 13; 0):

Since sv0 = T , we have svj = T for all j � ms.
Fix j so that bs + j�s � tr < bs + (j + 1)�s and let ts = bs + j�s. Then

2 � j � ms + 2, and hence svj�2 = T . Let

S = (svj�1 : : : svns) = send((d7 : : : d0); ms � j + 2; 5; 13; 0)

Speci�cation and Veri�cation of VHDL Models

Technical Report #99

53

and let wLOUT be the waveform for LOUT determined by sim(bpm; p; tf). By Theo-
rem 4.1, (wCLKRwRSTRwLOUT) is an admissible input packet for rcvr based at br with
value matrix (A) and period �r, where A = asynch(U; ts; tr; �s; �r; oracle) for some
bit vector oracle.

Let Vr = (VDONE VO0 : : : VO7), where

VDONE = (sv(1; DONE; (A); rcvr) : : : sv(nr; DONE; (A); rcvr))

and for i = 0; : : : ; 7,

VOi = (sv(1; Oi; (A); rcvr) : : : sv(nr; Oi; (A); rcvr)):

By Theorem 3.1, pout is a stable nr-cycle packet based at br +�r+�r = tr +�r with
value matrix Vr and period �r.

According to Moore's Theorem, recv(8; T ; 10; A) = (d7 : : : d0). But then, by
Proposition 5.13, there exists mr such that 1 � mr � nr,

nth(j; VDONE) =

(
T if j = mr

F if j 6= mr; 1 � j � nr;

and
(nth(mr; VO7) : : : nth(mr; VO0)) = (d7 : : : d0):

Thus, for i = 0; : : : ; 7, nth(mr; VOi) = di. 2

References

[1] Boyer, R. S. and Moore, J S., A Computational Logic Handbook, Academic Press,
Boston, 1988.

[2] Institute of Electrical and Electronic Engineers, Draft Standard VHDL Language
Reference Manual, 1993.

[3] Kaufmann, M., A Translator from an HDL of David Russino� to VHDL, Internal
Note 278, Computational Logic, Inc., July 1993.

[4] Moore, J S., \A Formal model of asynchronous communication and its use in
mechanically verifying a biphase mark protocol", Formal Aspects of Computing
6, no. 1 (1994):60-91.

[5] Roden, M. S., Digital Communication Systems Design, Prentice-Hall, 1988.

54

[6] Russino�, D. M., A Formalization of a Subset of VHDL, Technical Report 98,
Computational Logic, Inc., April, 1994.

[7] Taub, H. and Schilling, D., Digital Integrated Electronics, McGraw-Hill, New
York, 1977.

