
A Mechanical Proof of the

Chinese Remainder Theorem

David M. Russino�

August 28, 2000

Since antiquity, the Chinese Remainder Theorem (CRT) has been regarded
as one of the jewels of mathematics. An elegant result of considerable intrinsic
mathematical interest, it has continually found new applications in a variety of
disciplines, most notably in cryptology, information theory, and computing[4].
One recent example of a novel application is a veri�cation system for a translator
of safety-critical railroad software, implemented in ACL2 by P. Bertoli and
P. Traverso [1], the correctness of which depends on CRT. That project provided
an opportunity for the author to contribute to the solution of a problem of
practical signi�cance through an exercise that would otherwise have been a
mere diversion. This note summarizes the results of this exercise: an ACL2
formalization and mechanical proof of CRT.

Let m1; : : : ;mk be pairwise relatively prime moduli and let a1; : : : ; ak be
arbitrary integers. The theorem guarantees the existence of an integer x that
simultaneously satis�es the congruences x � ai (mod mi), i = 1; : : : ; k.

The usual proof of CRT proceeds as follows: For i = 1; : : : ; k, let

Mi =

kY

j=1

j 6=i

mj :

Then mi and Mi are relatively prime, and hence we can �nd integers ri and si
such that rimi + siMi = 1. Thus,

siMi = 1� rimi � 1 (mod mi)

and for each j 6= i,

siMi � 0 (mod mj):

Let x =
Pk

i=1 aisiMi. Then for i = 1; : : : ; k,

x = aisiMi +

kX

j=1

j 6=i

aisiMi � ai � 1 + 0 � ai (mod mi):2

1



Although the constructive nature of this proof suggests its suitability for
formalization in the ACL2 logic, it implicitly appeals to a number of somewhat
nontrivial number-theoretic results that would require some e�ort to prove for-
mally. For example, the traditional proof of the proposition that an integer that
is relatively prime to each of a set of integers must also be relatively prime to
their product depends on Euclid's Theorem, which states that if a prime p di-
vides a product ab, then pmust divide either a or b. This theorem, among others
that would facilitate the formalization of the above proof, is included in a fairly
extensive library of elementary number theory[3, 5, 6] that was developed with
the Nqthm prover[2], from which ACL2 has descended. None of this, however,
has yet been ported to ACL2. In the interest of expediency, therefore, our �rst
objective was to design a proof of CRT that proceeds from �rst principles as
directly as possible. An outline of this proof and its formalization is presented
below.

We shall be concerned with natural numbers and lists of natural numbers,
for which we de�ne the following recognizers:

(defun natp (n)

(and (integerp n) (>= n 0)))

(defun natp-all (l)

(if (endp l)

t

(and (natp (car l))

(natp-all (cdr l))))).

Our formulation of CRT begins with a recursive algorithmic de�nition of the
greatest common divisor (g.c.d.):

(defun g-c-d (x y)

(declare (xargs :measure (nfix (+ x y))))

(if (zp x)

y

(if (zp y)

x

(if (<= x y)

(g-c-d x (- y x))

(g-c-d (- x y) y))))).

Two naturals are relatively prime if their g.c.d. is 1:

(defun rel-prime (x y)

(= (g-c-d x y) 1))

Next, we de�ne the notion of a set of pairwise relatively prime moduli:

(defun rel-prime-all (x l)

(if (endp l)

t

(and (rel-prime x (car l))

2



(rel-prime-all x (cdr l)))))

(defun rel-prime-moduli (l)

(if (endp l)

t

(and (integerp (car l))

(>= (car l) 2)

(rel-prime-all (car l) (cdr l))

(rel-prime-moduli (cdr l))))).

x and y are congruent modulo m if they leave the same remainder upon division
by m:

(defun congruent (x y m)

(= (rem x m) (rem y m))).

Given a list of naturals and a list of moduli of the same length, the following
predicate determines whether a natural x is congruent to each member of the
�rst list modulo the corresponding member of the second:

(defun congruent-all (x a m)

(if (endp m)

t

(and (congruent x (car a) (car m))

(congruent-all x (cdr a) (cdr m))))).

CRT may now be stated as follows:

(defthm chinese-remainder-theorem

(implies (and (natp-all a)

(rel-prime-moduli m)

(= (len a) (len m)))

(and (natp (crt-witness a m))

(congruent-all (crt-witness a m) a m)))).

Note that this formulation requires an explicit solution, given by the func-
tion crt-witness. The de�nition of this function will be based on a function
one-mod of two arguments: a natural x and a list of naturals `. If each member
of ` is relatively prime to x, then one-mod will return a natural that is congruent
to 1 modulo x and congruent to 0 modulo each member of `. Once this function
is de�ned, the de�nition of crt-witness will be straightforward.

Sixty-�ve lemmas are used to lead the ACL2 prover to a proof of this the-
orem. Only the main lemmas will be listed here. These are taken directly
from the �le of events that generated the proof, except that keyword arguments
(:hints and :rule-classes) are omitted.

Our �rst lemma states that the g.c.d. of x and y can be expressed as a linear
combination rx+ sy. We �rst de�ne mutually recursive functions that compute
the coe�cients r and s, following the scheme of the de�nition of g-c-d. The
lemma can then be stated constructively and proved automatically.

3



(mutual-recursion

(defun r (x y)

(declare (xargs :measure (nfix (+ x y))))

(if (zp x)

0

(if (zp y)

1

(if (<= x y)

(- (r x (- y x)) (s x (- y x)))

(r (- x y) y)))))

(defun s (x y)

(declare (xargs :measure (nfix (+ x y))))

(if (zp x)

1

(if (zp y)

0

(if (<= x y)

(s x (- y x))

(- (s (- x y) y) (r (- x y) y))))))

)

(defthm r-s-lemma

(implies (and (natp x)

(natp y))

(= (+ (* (r x y) x)

(* (s x y) y))

(g-c-d x y))))

More generally, if x is relatively prime to each member of a list `, and p is the
product of the members of `, then we can �nd c and d such that cx + dp = 1.
The reason for this, of course, is that x and p are relatively prime, which follows
from Euclid's Theorem and the divisibility properties of the g.c.d. Rather than
to prove all of this, however, we take a more direct route to the desired result.

Let ` = (y . `0) and let p0 be the product of the members of `0. Using
induction, suppose we have r, s, c0, and d0 such that

rx + sy = c0x+ d0p0 = 1:

We must �nd c and d such that

cx+ dp = 1;

where p = yp0. But since

(sd0)p = (sy)(d0p0) = (1� rx)(1 � c0x) = 1� (r + c0 � rc0x)x;

we have the solution

c = r + c0 � rc0x

4



and

d = sd0:

This leads to the following de�nitions and lemma:

(defun c (x l)

(if (endp l)

0

(- (+ (r x (car l))

(c x (cdr l)))

(* (r x (car l))

(c x (cdr l))

x))))

(defun d (x l)

(if (endp l)

1

(* (s x (car l))

(d x (cdr l)))))

(defun prod (l)

(if (endp l)

1

(* (car l) (prod (cdr l)))))

(defthm c-d-lemma

(implies (and (natp x)

(natp-all l)

(rel-prime-all x l))

(= (+ (* (c x l) x)

(* (d x l) (prod l)))

1)))

Now, if x and the members of ` form a set of pairwise relatively prime moduli,
then we can construct a natural that is congruent to 1 modulo x and congruent
to 0 modulo each member of `, namely,

(dp)2 = (1� cx)2:

Thus, the formal proof proceeds as follows:

(defun one-mod (x l) (* (d x l) (prod l) (d x l) (prod l)))

(defthm rem-one-mod-1

(implies (and (natp x)

(> x 1)

(natp-all l)

(rel-prime-all x l))

(= (rem (one-mod x l) x) 1)))

5



(defthm rem-one-mod-0

(implies (and (natp x)

(> x 1)

(rel-prime-moduli l)

(rel-prime-all x l)

(member y l))

(= (rem (one-mod x l) y) 0)))

The de�nition of the CRT witness function is now straightforward, but requires
an auxiliary recursive de�nition:

(defun crt1 (a m l)

(if (endp a)

0

(+ (* (car a) (one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))))

(defun crt-witness (a m) (crt1 a m m))

Thus, in the computation of crt-witness, each member of a is multiplied by
a number that is congruent to 1 modulo the corresponding member of m and
congruent to 0 modulo every other member of m, and the sum of these products
is returned. It is clear that this value satis�es CRT; the only remaining trick
required to complete the proof is to formulate an appropriate induction-loading
generalization of the theorem:

(defthm crt1-lemma

(implies (and (natp-all a)

(rel-prime-moduli m)

(= (len a) (len m))

(rel-prime-moduli l)

(sublistp m l))

(congruent-all (crt1 a m l) a m))).

The proof of this lemma is based on rem-one-mod-1 and rem-one-mod-0, and
uses the induction scheme suggested by the de�nitions of congruent-all and
crt1. Note that when these two de�nitions are expanded in the inductive case,
the conclusion of the lemma becomes

(and (congruent (+ (* (car a)

(one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))

(car a)

(car m))

(congruent-all (+ (* (car a)

(one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))

(cdr a)

(cdr m))).

6



An auxiliary lemma states that (crt1 a m l) has remainder 0 modulo each
member of ` that does not belong to m. This, together with one-mod-1, may
be used to establish the �rst conjunct of the above goal. Using one-mod-0, we
may reduce the second conjunct to

(congruent-all (crt1 (cdr a) (cdr m) l)

(cdr a)

(cdr m))),

which then follows by induction.
Finally, CRT is easily derived from the last lemma, simply by substituting

m for `:

(defthm chinese-remainder-theorem

(implies (and (natp-all a)

(rel-prime-moduli m)

(= (len a) (len m)))

(and (natp (crt-witness a m))

(congruent-all (crt a m) a m))))

References

[1] P. Bertoli and P. Traverso, \Design Veri�cation of a Safety-Critical Embed-
ded Veri�er", in M. Kaufmann, P. Manolios, and J Moore, eds., Computer-

Aided Reasoning: ACL2 Case Studies, Kluwer Academic Press, 2000.

[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, 1979.

[3] R. S. Boyer and J S. Moore. \Proof Checking the RSA Public Key Encryp-
tion Algorithm", American Mathematical Monthly 91:3 (1984), 181-189.

[4] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem: Applications

in Computing, Coding, Cryptography, World Scienti�c Publishing Co., 1996.

[5] D. M. Russino�, \An Experiment with the Boyer-Moore Theorem Prover:
A Proof of Wilson's Theorem", Journal of Automated Reasoning 1:2 (1985),
121-139.

[6] D. M. Russino�, \A Mechanical Proof of Quadratic Reciprocity", Journal
of Automated Reasoning 8:1 (1992), 3-21.

7


