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Informal Statement

Theorem Let m1; : : : ;mk 2 N be pairwise relatively

prime moduli and let a1; : : : ; ak 2 N . There exists x 2 N

such that

x � a1 (mod m1)

x � a2 (mod m2)
...

x � ak (mod mk):

If x0 satis�es the same congruences, then

x0 � x (mod m1m2 � � �mk):
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ACL2 Formalization

(defun g-c-d (x y)

(declare (xargs :measure (nfix (+ x y))))

(if (zp x)

y

(if (zp y)

x

(if (<= x y)

(g-c-d x (- y x))

(g-c-d (- x y) y)))))

(defun rel-prime (x y)

(= (g-c-d x y) 1))

(defun congruent (x y m)

(= (rem x m) (rem y m)))

(defun congruent-all (x a m)

(if (endp m)

t

(and (congruent x (car a) (car m))

(congruent-all x (cdr a) (cdr m)))))

(defthm chinese-remainder-theorem

(implies (and (natp-all a)

(rel-prime-moduli m)

(= (len a) (len m)))

(and (natp (crt-witness a m))

(congruent-all (crt-witness a m) a m))))
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Informal Proof

Lemma 1 If x; y 2 N are relatively prime, then there

exists s 2 Z such that sy � 1 (mod x).

Lemma 2 If x; y; z 2 N and x is relatively prime to both

y and z, then x is relatively prime to yz.

Proof of CRT: Let M = m1m2 � � �mk. For i = 1; : : : ; k, let

Mi = M=mi and �nd si such that siMi � 1 (mod mi). Let

x = a1s1M1 + a2s2M2 + � � � + akskMk:

Then

x � aisiMi � ai (mod mi):
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Example

Suppose we have 10000 � N � 50000 and

N � 6 (mod 25)

N � 13 (mod 36)

N � 28 (mod 49)

Then we may solve for N as follows:

M = 25 � 36 � 49 = 44100

M1 = 36 � 49 = 1764

M2 = 25 � 49 = 1225

M3 = 25 � 36 = 900

1764s1 � 1 (mod 25) , 14s1 � 1 (mod 25), s1 � 9 (mod 25)

1225s2 � 1 (mod 36) , s2 � 1 (mod 36)

900s3 � 1 (mod 49) , 18s3 � 1 (mod 49), s3 � 30 (mod 49)

a1 = 6, a2 = 13, a3 = 28

x = a1M1s1 + a2M2s2 + a3M3s3

= 6 � 1764 � 9 + 13 � 1225 � 1 + 28 � 900 � 30

= 867281

� 29281 (mod 44100)

N = 29281
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Proof of Lemma 1

Lemma 1 If x; y 2 N are relatively prime, then there

exists s 2 Z such that sy � 1 (mod x).

This is a special case of the following:

For all x; y 2 N , there exist r; s 2 Z such that

rx + sy = gcd(x; y).

The proof is by induction on x + y:

(1) If x = 0, then r = 0 and s = 1.

(2) If y = 0, then r = 1 and s = 0.

(3) If 0 < x � y, then �nd r0 and s0 such that

r0x + s0(y � x) = gcd(x; y � x) = gcd(x; y)

and let r = r0 � s0 and s = s0. Then

rx + sy = (r0 � s0)x + s0y = r0x + s0(y � x) = gcd(x; y):

(4) If 0 < y < x, then �nd r0 and s0 such that

r0(x� y) + s0y = gcd(x� y; y) = gcd(x; y)

and let r = r0 and s = s0 � r0.
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Formal Proof

(mutual-recursion

(defun r (x y)

(declare (xargs :measure (nfix (+ x y))))

(if (zp x)

0

(if (zp y)

1

(if (<= x y)

(- (r x (- y x)) (s x (- y x)))

(r (- x y) y)))))

(defun s (x y)

(declare (xargs :measure (nfix (+ x y))))

(if (zp x)

1

(if (zp y)

0

(if (<= x y)

(s x (- y x))

(- (s (- x y) y) (r (- x y) y))))))

)

(defthm r-s-lemma

(implies (and (natp x)

(natp y))

(= (+ (* (r x y) x)

(* (s x y) y))

(g-c-d x y))))
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Proof of Lemma 2

Lemma 2 If x; y; z 2 N and x is relatively prime to both

y and z, then x is relatively prime to yz.

This is a consequence of the following basic properties of gcd

and primes:

(1) gcd(x; y) divides both x and y.

(2) If d divides both x and y, then d divides gcd(x; y).

(3) If x > 1, then some prime divides x.

(4) If a prime p divides ab, then p divides either a or b.

It would take some work to prove these in ACL2. Fortunately,

there is a more direct route to CRT.
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Alternate Approach

Lemma 3 Let x; y1; y2; : : : ; yk 2 N and p = y1 � � � yk. If

x is relatively prime to each yi, then there exist c; d 2 Z

such that cx + dp = 1.

Proof: Let p0 = y1 � � � yk�1. Assume that

rx + syk = 1

and, by induction, that

c0x + d0p0 = 1:

Then

(sd0)p = (syk)(d
0p0)

= (1� rx)(1� c0x)

= 1� (r + c0 � rc0x)x:

Thus, if c = r + c0 � rc0x and d = sd0, then

cx + dp = 1:
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Formal Proof

(defun c (x l)

(if (endp l)

0

(- (+ (r x (car l))

(c x (cdr l)))

(* (r x (car l))

(c x (cdr l))

x))))

(defun d (x l)

(if (endp l)

1

(* (s x (car l))

(d x (cdr l)))))

(defthm c-d-lemma

(implies (and (natp x)

(natp-all l)

(rel-prime-all x l))

(= (+ (* (c x l) x)

(* (d x l) (prod l)))

1)))
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De�nition of crt-witness

(defun one-mod (x l)

(* (d x l)

(prod l)

(d x l)

(prod l)))

(defthm rem-one-mod-1

(implies (and (natp x)

(> x 1)

(natp-all l)

(rel-prime-all x l))

(= (rem (one-mod x l) x) 1)))

(defthm rem-one-mod-0

(implies (and (natp x)

(> x 1)

(rel-prime-moduli l)

(rel-prime-all x l)

(member y l))

(= (rem (one-mod x l) y) 0)))

(defun crt1 (a m l)

(if (endp a)

0

(+ (* (car a) (one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))))

(defun crt-witness (a m) (crt1 a m m))
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The Main Lemma

We prove the following generalization of CRT:

(defthm crt1-lemma

(implies (and (natp-all a)

(rel-prime-moduli l)

(sublistp m l)

(= (len a) (len m)))

(congruent-all (crt1 a m l) a m)))

The proof is by induction, as suggested by the de�nition:

(defun crt1 (a m l)

(if (endp a)

0

(+ (* (car a) (one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))))

In the inductive case, the conclusion of the lemma expands
as follows:

(and (congruent (+ (* (car a)

(one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))

(car a)

(car m))

(congruent-all (+ (* (car a)

(one-mod (car m) (remove (car m) l)))

(crt1 (cdr a) (cdr m) l))

(cdr a)

(cdr m))).
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The Final Result

CRT is derived as an instance of crt1-lemma:

(defthm crt1-lemma

(implies (and (natp-all a)

(rel-prime-moduli l)

(sublistp m l)

(= (len a) (len m)))

(congruent-all (crt1 a m l) a m)))

(defthm chinese-remainder-theorem

(implies (and (natp-all a)

(rel-prime-moduli m)

(= (len a) (len m)))

(and (natp (crt-witness a m))

(congruent-all (crt a m) a m))))
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