
A Mathematial Approah to RTL Veri�ationDavid M. Russino�July 5, 2007IntrodutionTen years ago, in the wake of the Intel FDIV a�air, I was hired by Advaned Miro De-vies to verify the design of the oating-point unit of a hip that was later to be knownas the AMD Athlon Proessor. At that time, I knew very little about omputer arith-meti or any other aspet of hardware design or veri�ation. Moreover, as a theoretiianwith little experiene in the industrial setor, I was entering a new world with strangeustoms, language, and ulture. I ould only hope that I had something useful to o�eras the valorous mathematiian who would reate order out of haos. There would besome interesting times ahead.All that I brought with me to this new venture was some experiene in the appliationof mehanial theorem proving to problems in arithmeti as well as software veri�ation,and a general bakground in mathematis. So I had two questions to ponder as Iinvestigated the nature of the problem of hardware veri�ation. First, how similar is itto software veri�ation? That is, how relevant are the established methodologies andonventional wisdom of program veri�ation to the hardware problem? And seond, towhat extent is this a mathematial ativity? How relevant are the priniples and theulture of traditional mathematis? In short, what tools did I have for reating orderout of the haos of miroproessor design?In this paper, I will submit some observations derived from my experiene at AMDas I attempted to answer these questions, mainly in the limited ontext of arithmetiiruitry, and to desribe a veri�ation methodology that was developed in the proess.Finally, I will briey disuss prospets for extending this methodology to the broaderdomain of miroproessor design in general.First, a dislaimer: when I refer to \hardware veri�ation", I am speaking only ofmehanial theorem proving. I have nothing to say about model heking, stati analysis,symboli trajetory evaluation, et., simply beause of my profound ignorane in theseareas.The Relevane of Program Veri�ationWith regard to my �rst question, I was initially relieved to �nd that the designs to beveri�ed took the form of software models, oded in a hardware desription language thatbore some resemblane to the programming languages with whih I was familiar. So Ihad some hope that what little I knew about program veri�ation would be of some usehere. 1

Origins and Conventional WisdomMy introdution to this �eld ame in 1982 when I met Bob Boyer and J Moore at theUniversity of Texas. Their work, as they explained to me, was derived from that of JohnMCarthy in the early '60s, whih entered on the notion of operational semantis: thede�nition of a programming language by way of an abstrat interpreter. MCarthy, ofourse, introdued the funtional language LISP [21℄ as a vehile for veri�ation anda method that he alled reursion indution [23℄ for proving properties of LISP fun-tions. The Boyer-Moore prover, NQTHM, may be viewed as an implementation of thisapproah. The same is true of its suessor, ACL2 [2℄, whih is maintained by Mooreand Matt Kaufmann and is the tool that I use in my work. ACL2 is both a fun-tional programming language, essentially an appliative subset of Common LISP [31℄,and a �rst-order logi supported by a heuristi theorem prover based on mathematialindution.There are, of ourse, a variety of ompeting approahes to the veri�ation problem,but here I am less interested in their di�erenes than in the preepts that are sharedamong them. Here are several fators that are ommonly onsidered to be importantfor the suess of a formal program veri�ation e�ort, with regard to the problem, thesolution, and the underlying formalism:� A problem of limited size and omplexity;� A onise and unambiguous spei�ation of orretness;� Cooperative development of a program and its proof of orretness;� A simple and elegant programming solution;� A programming language with lear and simple semantis.So, an these requirements reasonably be applied to the problem of hardware veri�a-tion? For some of them, the question was easy to answer. A problem of limited size andomplexity? When I reeived my �rst assignment, a oating-point multiplier onsistingof half a megabyte of opaque RTL ode, I knew that my experiene verifying eight-lineprograms would be of little use to me here. On the other hand, however omplex the im-plementation of an arithmeti operation may be, its external behavior may be desribedquite onisely in abstrat arithmeti terms, as expressed by the IEEE Standard [17℄.This, I would say, is a ritial distinguishing feature of arithmeti iruitry that makesit espeially suitable for formal veri�ation.Regarding the ooperative derivation of program and proof, it is generally held thatin order to ensure that a program is suseptible to formal veri�ation, it should bedesigned with that goal in mind. As David Gries puts it:A program and its proof should be developed hand-in-hand, with the proofusually leading the way. [12, p. 164℄Some doubt was ast on this ideal during my �rst week on the job, when I was askedthis question by a oating-point designer:Do you think that we need some aademi to tell us how to design a multi-plier? [32℄ 2

It was true that I had some history in aademia, but I felt that I had paid my debt tosoiety and deserved a fresh start. But so muh for the vision of veri�er and designerstrolling hand in hand. Fortunately, this turned out to be an extreme position|theengineers I've worked with been have generally been very ooperative and have taughtme quite a bit. But even after ten years, design and veri�ation remain very distintativities. I am still utterly unquali�ed to write RTL ode, just as those who do havelittle understanding of my work, and it would be absurd for me to suggest that theyalter their pratie in any way to suit me.Consideration of the remaining two items on the list pointed to some interestingdi�erenes between software and hardware.On Simple and Elegant SolutionsAs Dijkstra observed, the suseptibility of a program to formal veri�ation \is not purelya funtion of [its℄ external spei�ation and behavior, but depends ritially on its inter-nal struture." [7, p. 5℄ I am partiularly fond of Tony Hoare's version of this observation:There are two ways of onstruting a software design. One way is to makeit so simple that there are obviously no de�ienies, and the other way is tomake it so ompliated that there are no obvious de�ienies. [16, p. 155℄Clearly, elegane is a good thing. But how does it relate to more pratial onsiderations?Robert Tarjan, an expert in the design and analysis of algorithms, says:Elegant algorithms are easy to program orretly, as well as being eÆ-ient. [33℄Daniel Kohansky, in his book The Philosophial Programmer, agrees:Even so prosai an ativity as digging a dith is improved by attention toaesthetis; a dith dug in a straight line is both more appealing and moreuseful than one that zigzags at random . . . [19, pp. 10{11℄This is ertainly an appealing notion, and a view that I had always shared, but inhardware, it seems that the dithes to be veri�ed are usually intended for irrigation aswell as drainage, and that their designs are further ompliated by issues of erosion andthe like.Dijkstra, who stressed the importane of elegane in programming as muh as anyone,understood that it is a luxury that is a�orded by inreasingly powerful hardware, whih,as he put it, \has mitigated the urgeny of eÆieny requirements." [7, p. 5℄ So thereis a sharp distintion here between software and hardware: the onerns of usabilityand maintenane ditate that software be intelletually manageable, i.e., simple andelegant; the burden of eÆieny must then be assumed by the underlying hardware, forwhih these issues are less ritial. That is, while maintenane may be a onsiderationin hardware design|a omponent of a proessor design may be modi�ed for reuse ina later model|this is always outweighed by the importane of eÆieny. Moreover,at least in my experiene, it is rarely the ase that the simplest iruit design is themost eÆient one. This seems to be largely a onsequene of the inherent parallelism ofomputer hardware.As an illustration of this phenomenon, onsider the design of a oating-point adder.The natural approah to this problem|the linear dith|is a simple algorithm that is3

readily understood and implemented and may be exeuted, under the onstraints ofontemporary tehnology, in six lok yles, orresponding to the following six steps:?Compare Exponents?Right Shift?Add/Subtrat?Detet Canellation?Left Shift?Assemble Result?But sine the operation ours so frequently, in order to redue its lateny, a real adder(e.g., [28℄) is a muh more omplex iruit involving two parallel data paths:?Predit Leading 1 ?Compare Exponents?Left Shift ?Right Shift��	Selet Path? ��	��R Add/Subtrat?Assemble Result?On one path, during the �rst two yles, the exponents are ompared and inputs arealigned aordingly in preparation for the operation; on the other, under the assump-tion that anellation will our through subtration, the index of the leading one of thedi�erene is predited and the normalizing shift is performed in advane. Meanwhile,the exponent omparison determines whih path is to be fed into the adder. Of ourse,this design requires onsiderably more hardware, is highly prone to error, and is diÆultto analyze, but it runs in four yles. This is typial of arithmeti iruitry, and theexplanation is lear, although I still have trouble grasping this simple fat: gates areheap and yles are expensive.
4

On Simple Program SemantisDijkstra asked:Are you quite sure that all those bells and whistles, all those wonderfulfailities of your so-alled `powerful' programming languages belong to thesolution set rather than to the problem set? [9, p. xiv℄And I am onvined that this has been the primary obstale to the goal of progressingfrom toy veri�ation problems to real software: the languages in whih real programsare oded are too messy to support lear semanti models. Programmers love thosebells and whistles and language designers are eager to supply them. And hardwaredesription languages are unexeptional in this regard.Then why has hardware veri�ation, and theorem proving in partiular, enjoyedany suess at all? One reason is motivation: hardware errors are diÆult to orretafter the fat. Another is the modularity that is imposed by timing onsiderations. AsJohn Harrison has put it, timing onstraints prelude \spaghetti hardware". [14, p. 1℄But the real story|and for me, this was the biggest surprise of the entire experiene|is that oding guidelines are e�etively enfored to limit RTL design to a very smalland manageable subset of Verilog. The main reason for this, I believe, onstitutesa fundamental distintion between hardware and software development. A softwaredeveloper does not have a omplete expliit understanding of the language in whih heis programming; he relies on the experimental use of a ompiler to expose his errors.But the behavior of a ompiled Verilog program is an unreliable model of a iruit. Thereal \ompiler" of an RTL design is the proess of implementation in silion, whih isof ourse unavailable for testing during the design proess. Consequently, in pratie,strit oding guidelines are required to ensure preditable behavior. The result is alanguage with a yle-based semanti model that is simple enough to be amenable toformal analysis.A program in this language onsists of a set of signal de�nitions. For our purpose,a signal is either a wire or a register, as distinguished syntatially by the \=" and \<="symbols, respetively:r_o = esub ? {1'b0, r[70:1℄} :{r[69:0℄, r[0℄};sum[70:0℄ <= r[70:0℄ ^ a[70:0℄ ^ b[70:0℄;Eah signal assumes a value on eah yle of an exeution. The value of a wire on a givenyle is omputed aording to its de�ning equation from the values of other signals onthe same yle; the value of a register is determined by values on the preeding yle.The simpliity of this struture allows us to translate RTL designs mehanially intothe ACL2 logi in a fairly straightforward way. The primitive RTL operations orrespondnaturally to ACL2 funtions, either built-in or simply de�ned, and eah signal generatesone of a set of mutually reursive ACL2 funtions, eah taking a single argument n,representing the number of yles that have elapsed during the ourse of an exeution:(defun r_o (n)(if (not (= (esub n) 0))(bits (r n) 70 1) 5

(at (bits (r n) 69 0) (bitn (r n) 0) 1)))(defun sum (n)(if (zp n)(reset 'sum 71)(logxor (logxor (bits (r (1- n)) 70 0)(bits (a (1- n)) 70 0))(bits (b (1- n)) 70 0))))Along with this formal model, we also enode a statement of orretness in the samelogi, essentially a formalization of IEEE-ompliane, relating these signal funtions tohigh-level arithmeti onepts. Thus, we have a omplete formal representation of theproblem, on whih the power of the ACL2 prover may be brought to bear.The Relevane of Traditional MathematisI'd like to turn now to the proess of proof and the question of the relevane of traditionalmathematis.Early Resistane to Computer-Assisted ProofI �rst beame aware of the use of omputing in support of mathematial proof as agraduate student in the '70s when I heard that the four olor onjeture had been provedwith the aid of a omputer [1℄. This was a novel development at the time and was metwith some unertainty in the mathematial ommunity. Here is an exerpt from a paperby Daniel Cohen, a mathematiian who had himself worked on the four-olor problem,delivered at a onferene on The Mathematial Revolution Inspired by Computers: [5,p. 327℄In 1976, Appel and Haken announed that they had solved the Four ColourProblem by a omputer examination of nearly two thousand ases . . . Further-more, the proedure employed by the mahine to analyze eah ase of ne-essity involved billions of logial inferenes; this means that even though ahuman an dupliate by hand any small subset of the mahine's deliberationsthere is not even a remote hane that, in an entire lifetime, a human ouldtrae the program's run on even one ase . . . [5, p. 327℄Cohen's remarks were something other than an expression of reverene for the power ofthe modern eletroni omputer. He ontinues:. . . Convitions derived in this manner might be valid but they are not math-ematis. Suh a result is still unproven, and should be so onsidered. . . . Thereal thrill of mathematis is to show as a feat of pure reasoning, it an beunderstood that four olours suÆe. Admitting the shenanigans of Appeland Haken to the ranks of mathematis would only leave us intelletuallyunful�lled. [5, p. 328℄This view was not unommon at the time. In fat, this paper was written as reentlyas 1991. I �nd it amusing to observe that if my work is at all interesting, it is only6

beause of the use that I've made of omputing in support of my results, all of whih arerelatively trivial and of little interest in themselves. Here, on the other hand, is a proofof a very deep result that was ondemned for preisely the same reason. Are the goals ofindustrial hardware veri�ation so very di�erent from those of traditional mathematis?Or have attitudes hanged so radially in sixteen years? Well, our goals are somewhatdi�erent, and attitudes have indeed shifted, but of ourse what has really hanged is thetehnology of mehanial theorem proving.Modern Theorem Proving: ACL2Moving ahead a few years to 2005, we �nd a report of a new proof in MathematialAssoiation of Ameria Online, under the headline, \Last Doubts Removed About theProof of the Four Color Theorem" [8℄. But in fat, this was yet another omputer-assisted proof. It was developed by Georges Gonthiers of Mirosoft Researh, who usedthe Coq proof assistant [6℄ to formalize a variant of the Appel-Haken argument, inludingboth its manual and mehanial omponents, as well as all of the topology and graphtheory needed for a omprehensive proof from �rst priniples. As noted in the MAAreport:What makes the new result partiularly signi�ant from a reliability point ofview is that the proof assistant Gonthiers employed, alled Coq, is a widely-used general purpose utility, whih an be veri�ed experimentally, unlikethe speial-purpose programs used in the earlier proofs of the Four ColorTheorem.The point is that a modern theorem proving tool suh as Coq, ACL2, HOL [15℄, orPVS [26℄ is trustworthy beause it has been widely tested in a variety of domains bya ommunity of users over a period of perhaps several deades. Suh a tool is alsomore transparent and easily understood than the programmed proofs of earlier days.But is reliability the only issue here? What did Daniel Cohen mean by the remark,\Convitions derived in this manner might be valid but they are not mathematis."?I'd like to return to that question after taking a look at the theorem prover of my hoie,ACL2.It is diÆult to say very muh that is meaningful about the relative merits of di�erentprovers. Most omparisons are quite subjetive, very muh like religious preferenes. (Anotable exeption is Freek Wiedijk's study [35℄.) With regard to ACL2, some of usappreiate the simpliity of its syntax (e.g., [10, 22℄), while others are troubled by all ofthose parentheses (e.g., [11, Setion 4℄ and [34℄). But there seems to be a onsensus ona number of points:� Unlike Coq, ACL2 is intended primarily for omputer system veri�ation ratherthan mathematis, although I'm not sure of the signi�ane of this statement. Iasked Bob Boyer to omment on this; his observation was that the atom bomb wasnot intended primarily for digging dithes. (This will be my �nal dith metaphor.)� ACL2 is eÆiently exeutable, sine it may be ompiled and exeuted as CommonLISP.� It provides a relatively high degree of automation, mainly through a system ofpowerful indution heuristis, onditional rewriting, and integrated deision pro-7

edures. I would note, however, that the term automated theorem prover is mis-leading: any nontrivial proof involves onsiderable interation with the user, whousually begins with a fairly omplete proof in mind, whih he uses to guide theprover interatively through a long sequene of lemmas and hints.� The underlying logi is relatively \weak", i.e., laking in expressiveness. For ex-ample, it provides little support for existential quanti�ation, and none for quan-ti�ation over relations, sets, or funtions.These last two points onstitute a trade-o�: limiting the logi failitates automatianalysis. Personally, I've never found the lak of expressiveness of ACL2 to be a seriousdrawbak. Oasionally, some thought is required to �nd a way to say what I want tosay, but that's a prie I'm willing to pay in order to be relieved of some of the details of aproof. Other opinions may di�er; I seem to have a natural tendeny to think reursivelyand indutively. And, I might add parenthetially, parenthetially.Illustration: A Test for PrimalityHere is a small example of an ACL2 program, a haraterization of prime numbers.(See [29℄ for an ACL2 proof sript that inludes all of the results listed in this setion,ulminating in a formalization of Gauss's Law of Quadrati Reiproity.) The prediateprimep tests for primality using a funtion least-divisor, whih reursively searhesfor a divisor of n by dividing n by suessively larger integers, starting at a designatedvalue k, until it �nds an integer quotient:(defun least-divisor (k n)(if (and (integerp n)(integerp k)(< 1 k)(<= k n))(if (divides k n)k(least-divisor (1+ k) n))nil))(defun primep (n)(and (integerp n)(= (least-divisor 2 n) n)))This is a ase where one would naturally like to use existential quanti�ation, but isfored by the ACL2 logi to use reursion instead, and the result is a spei�ation thatan be ompiled and exeuted.For example, ombining this prediate with the primitive ACL2 exponentiation fun-tion, we have a simple proedure for lassifying Mersenne primes, i.e., identifying thoseprimes p for whih 2p � 1 is also a prime.The Mersenne number 223�1, whih happens to be divisible by 47 (as �rst observedby Fermat in 1640), is disposed of in a fration of a seond on my workstation:(defthm mersenne-23(not (primep (- (expt 2 23) 1))))8

[Time: .02 seonds℄The ase p = 31 (whih was settled by Euler in 1772) takes about an hour:(defthm mersenne-31(primep (- (expt 2 31) 1)))[Time: 65 minutes℄Here is a Mersenne number, generated by a six-digit prime, that takes a ouple of hoursto fator:(defthm mersenne-999671(not (primep (- (expt 2 999671) 1))))[Time: 165 minutes℄Obviously, this method requires no speial expertise on the part of the user. I amon�dent that I ould train a team of the meanest of engineers to administer it awlessly.In a sense, it is ompletely general, but it su�ers from pratial limitations. Given thatit took an hour to prove the primality of 231� 1, we an estimate that the next smallestMersenne prime, whih happens to orrespond to p = 61, would take about a billionhours. And the Mersenne number generated by an 8-digit exponent is already too largeeven to be represented in the memory of my mahine:(defthm mersenne-19876271(not (primep (- (expt 2 19876271) 1))))[Error: Attempt to reate an integer that is too large to represent.℄The most obvious optimization is based on the simple observation that if n has aproper divisor, then it has one that does not exeed pn. Thus, we de�ne an alternativeto the funtion least-divisor that stops at pn, and establish a rewrite rule:(defun least-divisor-fast (k n)(if (and (integerp n)(integerp k)(< 1 k)(<= k n))(if (> (* k k) n)n(if (divides k n)k(least-divisor-fast (1+ k) n)))nil))(defthm least-divisor-rewrite(equal (least-divisor 2 n)(least-divisor-fast 2 n)))9

One we arrange for this theorem (whih was proved quite easily by means of ACL2'sindution heuristis) to be applied in the omputation of primep, the ase p = 31 takesa fration of a seond, and p = 61 ompletes in under an hour:(defthm mersenne-31-revisited(primep (- (expt 2 31) 1)))[Time: .05 seonds℄(defthm mersenne-61(primep (- (expt 2 61) 1))[Time: 54 minutes℄However, this optimization an't get us any further than this, and it is of no help inhandling the omposite ase. At some point, in order to ontinue to make progress, weeventually must abandon algorithmi methods and resort to real theorem proving. Forexample, several of the ases that we've onsidered an be handled e�etively by a nietheorem of Euler involving quadrati residues (see Theorem 103 of [13℄). This exeriserequires a little number theory, but I hope it will help illustrate the ACL2 experiene.If p is an odd prime, then an integer a is said to be a quadrati residue modulo p ifthere exists an integer x suh that x2 is ongruent to a mod p. It may be shown thatthis property is equivalent to the onditiona(p�1)=2 � 1 (mod p):(This ongruene is known as Euler's Criterion.) In partiular, it turns out that 2 is aquadrati residue mod p i� p � �1 (mod 8). (This result is alled the Seond Supplementto the Law of Quadrati Reiproity.)Now we an easily prove the following:Theorem If p = 4k + 3 and q = 2p+ 1 are both prime, then qj2p � 1.Proof: Sine q = 2(4k+3)+1 = 8k+7 � �1 (mod 8), we know that 2 is a quadratiresidue mod q, and therefore, by Euler's Criterion,2p = 2(q�1)=2 � 1 (mod q);or equivalently, 2p � 1 is divisible by q. 2Getting bak to the Mersenne prime problem, what this result tells us is that underthe stated hypothesis, 2p � 1 is not a prime. Here is an ACL2 formulation of thisstatement:(defthm euler-orollary(implies (and (primep p)(= (mod p 4) 3)(> p 3)(primep (1+ (* 2 p))))(not (primep (- (expt 2 p) 1)))))10

In order to generate its proof from srath, over 100 lemmas were fed to the prover,along with generous hints, but that's the nature of \automated" theorem proving. It'salso worth noting that through an oversight, my original formulation did not inlude thehypothesis that p > 3. It was only by examining the output of a failed proof attemptthat I realized that when p = 3, while 2p � 1 (i.e., 7) is indeed divisible by 2p+ 1, it isin fat equal to 2p+ 1 and is thus nonetheless a prime.We now have new proofs of two of our earlier results, requiring pratially no om-putation, as the ases 23 and 999,671 both onform to the hypotheses of our theorem:(defthm mersenne-23-revisited(not (primep (- (expt 2 23) 1))))[Time: .01 seonds℄(defthm mersenne-999671-revisited(not (primep (- (expt 2 999671) 1))))[Time: .01 seonds℄So what? We haven't proved anything new. But I laim that some proofs are betterthan others, and these last two are the only proofs we've seen that I'm really happy with,beause not only have they been heked by ACL2, but I an understand them and hekthem by hand as well. Now, not only am I on�dent that there are no errors hidden inmy proof (and Euler may share in this reassurane), but I atually know why 223 � 1is divisible by 47. In other words, I've used formal methods to support mathematialrigor, rather than to replae it. Moreover, I have disovered a method that I an use inases that I was previously unable to handle, suh as this one:(defthm mersenne-19876271(not (primep (- (expt 2 19876271) 1))))[Time: 47 seonds℄The Value of Mathematial ProofNow returning to Cohen's objetion to omputer-assisted proof, I think that his mainpoint was that a proof should serve purposes other than merely to establish the orret-ness of a result. What then are the goals of mathematial proof?There is, of ourse, the ynial view. Another item from the folklore of topologyis the story of the knot theorist who presented a new result before a learned soietyand was asked about the real signi�ane of his proof: \Your work is very beautiful,but what good is it?" \Well," he replied, \I write papers about knot theory; they getpublished, and I get promoted." [3, p. 164℄No doubt, there is some truth in this story. But I believe there are better answersto the question. Aside from the obvious one, that we prove theorems in order to knowthey are true, at least two others are suggested by our exerise in number theory:� Expliation of underlying priniples: we rely on a proof to tell us why a resultis true, to provide lues as to how it might be generalized, and to inrease ourunderstanding in order to make things easier in the future. Gauss published eight11

distint proofs of the law of quadrati reiproity between 1796 and 1818, notbeause he remained unonvined of the truth of the proposition, but rather, Isuspet, beause he was dissatis�ed with the depth of understanding that wasprovided by the existing proofs. The way he put it was that he was looking for aproof that ould be generalized to higher-order reiproity laws. [18, p. 815℄� Re�nement of hypotheses: often it is not until we explore the proof of a statementthat we see that a required hypothesis has been omitted or that a superuousone has been inluded. And mehanial provers, I �nd, are espeially useful inexposing errors of that sort.I would argue that all of these observations are just as valid in the ontext of industrialhardware veri�ation as they are in pure mathematis. The primary onlusion of myinvestigation is that while ommon sense suggests that there are lessons to be derivedfrom several deades of researh in program veri�ation, there is even more reason notto ignore the wisdom of several millennia of mathematis. So I would like to lookmore losely at the goals listed above and disuss how they an be addressed by formalhardware veri�ation.On Establishing Con�dene in CorretnessWith regard to on�dene in orretness, I have tried to produe proofs that are bothhuman-readable and mahine-heked, as I do not believe that mehanial theorem prov-ing negates the value of the soial review proess. The ase of the Athlon oating-pointadder was typial, and it is one for whih I happen to have some relevant statistishandy, whih may be of interest. This is the ourse that I followed:� First, I learned what I ould about the algorithms, studied the RTL, developed astatement of orretness, and wrote out a rigorous detailed proof, whih �lled 33pages and onsumed 4 weeks of my time.� The RTL module, onsisting of 86 KB of soure ode, was mehanially translated,generating 219 KB of ACL2 ode.� For 8 weeks, I sat with ACL2 and my hand-written proof and transformed it intoACL2 lemmas, line by line, until the formal proof was omplete. The result was aproof sript onsisting of about 2200 lemmas.� The proess of mehanization exposed one fatal bug in the RTL, whih was easily�xed, along with several minor errors in my hand-written proof.Eighteen months later, that 33-page proof was published in its entirety [28℄. (By then,my management was willing to onede that the ompetition had learned how to buildtheir own adder.) I mention this beause I often read reports of orretness proofs thatsound interesting but are nowhere to be found. This is espeially frustrating when the(neo-Pythagorean?) author favorably ompares his own seret proof to my publishedone. So as long as I am presuming to tell you what I like or don't like about mathematialproofs, let me add that if we an't see a proof, then we are deprived of muh of itspotential value.But the best way for me to inspire on�dene on the part of my ustomers is to showthem that the proof proess exposes bugs that would otherwise have gone undeteted|bugs in algorithms, in implementations, and in interfaes. To give an idea of the sort12

of bug that might survive traditional testing, here is one that I found in a square rootalgorithm [27℄, whih proeeded as follows:� A 64-bit approximation q of px is derived, aurate to 38 bits.� A 64-bit orretion term is added to q: q+ is an underestimate of px, aurateto 74 bits, and 0 < < 2�38q.� q + is rounded to 64 bits in both diretions to produe r1 and r2.In most ases, aording to the rounding mode to be applied, either r1 or r2 is returnedas the �nal result. In the ase of rounding toward +1, if (q +) � r1 is not too big,then r2 is returned.All of this sounds reasonable, and it was not until I attemped to hek my proof withACL2 (whih I sometimes think of as an unimaginative but unerring olleague peeringover my shoulder) that I notied the underlying assumption that r1 and r2 are distint,whih is not the ase if q + happens to be a 64-bit number itself. This seems unlikely,and it is, beause we are adding two 64-bit numbers that are misaligned by 38 bits, so inorder for the sum to be 64-exat, the lower 38 bits of the smaller number would have tobe 0. But I ould not think of any reason to prelude this possibility, and neither ouldthe designer. In fat, if we make the naive assumption that in this ontext, any given38-bit sequene is as likely to our as any other, then we may expet this situation toarise in one test out of every 238, whih is about a quarter of a trillion. This numberis in a range that makes it unlikely that the bug would be found in testing, but ratherlikely that it would our during the life of a ommerial proessor.By the way, this bug was orreted before the part was taped out, but not withoutsome vigorous disussion. When one is austomed to �nding bugs only through test-ing, one might reasonably expet any bug report to be aompanied by a test failure.Unfortunately, that is not always easy to ahieve. This was not the only oasion onwhih I was asked the question, \If you know what a bad result looks like, why an'tyou just work bakwards through the algorithm to ompute inputs that produe suh aresult?" My answer is to observe that the algorithm onsists of a sequene of perhapsa dozen multipliations interspersed with various other operations, and that there is awidely used algorithm|namely, RSA publi key enryption [4℄| that is based on thepratial impossibility of \working bakwards" through even a single multipliation. Ihave enjoyed varying degrees of suess with this argument.On the Expliation of Underlying Priniples: Siene vs. ArtWith respet to the explanatory value of a proof and the guidane that it provides inapplying underlying priniples, I believe that there is an important ontribution to bemade by formal veri�ation to the art of iruit design. I say \art" beause I believethat this �eld in its urrent state is not so muh siene, whih depends on the expliitknowledge and onsious appliation of priniples, as art, whih depends on traditionalrules and skill aquired by pratie.I have seen omplex logi ripped out of one design and inserted into another, with aninomplete understanding of why it worked in the �rst plae, and then tested to ensurethat it still does. There is a good deal of knowledge that is shared impliitly by designengineers but not written anywhere. There are textbooks on the subjet [20, 25℄, butthese are more onerned with the appliation of partiular tehniques than with their13

theoretial underpinnings. These tehniques are usually justi�ed by means of examplesrather than proofs, just as their implementations are validated by testing.When I �rst observed these praties, I was reminded of something that I had en-ountered in my reading:It laks so ompletely all plan and system that it is peuliar that so manymen ould have studied it. The worst is, it has never been treated stringently.There are very few theorems . . . whih have been demonstrated in a logiallytenable manner. Everywhere one �nds this miserable way of onluding fromthe spei� to the general . . . [18, p. 947℄This is from a letter written in 1826 by Niels Abel on the state of the alulus at thattime, whih had muh in ommon with the present situation. This was a relativelynew area of mathematial endeavor, laking a solid foundation. Rigorous analysis hadbeen replaed by appeal to geometri intuition and diagrammed examples, resulting inunertainty and error. But it also produed results of tremendous pratial signi�ane,so that it was tempting to overlook these de�ienies.In the end, of ourse, nineteenth entury analysis was redeemed by a rigorous formu-lation derived solely from basi arithmeti priniples, and I believe that a similar remedyis alled for here: a uni�ed arithmeti theory of register-transfer logi and oating-pointarithmeti. This has been one of my objetives almost from the beginning. Over theourse of developing various orretness proofs, I have tried to identify those results thatpertain to the general theory and olleted them in a library that is now a part of theACL2 standard release [2℄. It urrently inludes about 600 lemmas pertaining to bitvetors and logial operations, oating-point formats and rounding, and speial-purposetehniques for eÆient implementation of elementary operations. I have also written ahypertext doument that is both an exposition of the theory and a user's manual for thelibrary [30℄. Naturally, the library makes my job muh easier, sine it allows me to reuseresults from one projet to the next. It has also found some use by ACL2 users outsideof AMD. But there remains the real hallenge of onvining engineers of the value ofsuh a rigorous approah and integrating it into the design proess.On the Re�nement of Hypotheses: Interfae Spei�ationsThis brings me to my last point on the value of proof: the re�nement of hypotheses.In the ontext of RTL veri�ation, this usually means preise spei�ation of interfaeonstraints, and is partiularly important beause this is probably the most ommonsoure of errors in RTL designs. When I examine a new RTL module, the piee of thepuzzle that is invariably the most elusive is the interfae. There is rarely any usefuldoumentation to be found in the ode or elsewhere. In fat, ooperation betweenmodules ommonly depends on informal oral agreements between RTL writers, whihare highly prone to misunderstanding.Of ourse, a formal proof of orretness of a module requires a formal spei�ationof its external behavior, omprising all input and output onstraints. At �rst, it seemednatural to me to write this spei�ation diretly in ACL2, based on information that Igathered from the designer. Then I would go over it with him, trying to explain whatI had written, until he told me that he thought I had it right. This proess did exposesome bugs, but it was unsatisfying. I needed a formal language that was aessible toengineers. After some experimenting, it was lear that I had to �nd a way to write these14

spei�ations in their native language. I had resisted this onlusion beause Verilogis not an ideal spei�ation language, but I found that with a few minor extensions, itserved the purpose. The most important of these are:� A rational data type, to allow high-level spei�ations of arithmeti operations;� A faility for assertions representing both safety and liveness onstraints on inputsand outputs.Both of these extensions were readily implemented in both the Verilog ompiler and theACL2 translator. The result is a sort of pidgin Verilog that allows me to ommuniatemore e�etively with engineers. As a bonus, a spei�ation written in this languagemay be integrated into the simulation environment and exeuted with the RTL for thepurpose of testing. But one again, the real value of this approah will be measured byits ultimate impat on the design proess.Future DiretionsWhere are we today and where do we go from here? There is no doubt that the methodol-ogy that I've desribed has gained general aeptane by oating-point designers withinAMD. New designs are now routinely and thoroughly veri�ed. Reently, I attended ameeting to disuss plans for a new FPU that was onsidered to be innovative and there-fore somewhat risky. I was shoked when the manager of the projet, when asked howhe would proeed if there were no resoures available for theorem-proving veri�ation,said that if this were the ase, then he would revert to a more onservative design.But why has our formal veri�ation e�ort been limited to theorem proving to theexlusion of model heking, et? When I ask the question, I'm told that it is a matterof resoures: to assign anyone to a new area would be to detrat from an existing projetthat is already onsidered to be essential to the veri�ation proess. But this is hangingas well, as an investigation into ommerial model heking tools and other automatimethods is underway.In order to make all of this possible, we have inreased our staÆng. Until reently, Ihave been responsible for nearly all theorem proving at AMD, although I have had help,espeially with development of the RTL library, from Eri Smith as a summer internand oasionally from Matt Kaufmann. But in the past year, we have hired three peoplewith expertise in this area. As a result, I am now enjoying more freedom to investigatenew appliations.Spei�ation and Veri�ation of Control LogiAs an experiment, I wrote a spei�ation for a bus interfae unit and veri�ed someinvariane properties. I was not surprised to �nd that, in ontrast to arithmeti designs,the main hallenge of this projet was in the level of detail of the interfae and theinternal struture of the module rather than the omplexity of operations.The spei�ation had to aount for elaborate interfaes with internal data andinstrution ahes and an external memory ontroller. Read and write requests arereeived from the ahes, along with probes from the system, in response to whihvarious transations are initiated by the bus unit. Formulating the onstraints on thesetransations requires a omplete abstrat model of internal state: various bu�ers, an15

L2 ahe, outstanding requests, et. As a bene�t, we disovered that exeuting thismodel in RTL simulation exposed bugs that were less likely to be found by traditionalhekers, whih are more losely tied to the RTL. I also found that this proess requiresmore ooperation between spei�ation and design than does oating-point analysis.One that is ahieved, I believe that this is an area in whih formal methods will havea major impat.A Formal X86 ModelMy urrent fous is a formal model of the x86 instrution set arhiteture, whih I amdeveloping in ollaboration with my olleagues Bill Bevier and Larry Smith. We havetwo initial appliations in mind, neither of whih involves theorem proving: simulationand doumentation.The model is oded in a simple formal language alled XFL that we have designed forthis purpose. XFL is semantially embedded in C++, the language of AMD's simulationsoftware. This allows our instrution set model to serve as the ore of our simulationenvironment. The same model also forms the foundation of a formally based on-lineprogramming manual. The goals are software that is robust and maintainable anddoumentation that is aurate and unambiguous. The idea is to ahieve these goalsthrough a uni�ed model, the reliability of whih is ensured by reiproal validation.That is, sine a bug in the simulator is also a bug in the doumentation, every bug hasexposure on several fronts, whih inreases the likelihood of detetion.Future Diretions in Formal Veri�ationEah of these last two projets plays a role in our longer-term plans for formal veri�a-tion. Here is my diagram for the future:Formal ISA Model
OS Veri�ation Miro-arhiteturalVeri�ation Blok Spei�ationBlok Veri�ation

Fully Veri�ed Proessor? ��R ?�����AAAU
�����

The formal instrution set model has potential appliations in both software and hard-ware veri�ation. On the one hand, software vendors have an interest in verifying prop-erties of operating systems, espeially seurity, for whih suh a model is a prerequisite.On the hardware side, imagine that we have an ACL2 spei�ation for eah blok ofan RTL proessor design. We also have a translator from XFL to ACL2, whih allowsus to apply the ACL2 prover to the problem of miro-arhitetural veri�ation, i.e.,proving that the bloks �t together e�etively to implement the instrution set. Onewe also prove that eah blok satis�es its spei�ation, we have ahieved the ultimategoal of a fully veri�ed proessor. All of this, of ourse, rests on my ambition to live aninordinately long and mentally ompetent life.16

Referenes[1℄ Appel, K., and W. Haken, \Every planar map is four olorable", Illinois J. Math.21 (1977), 429-567.[2℄ ACL2 Web site, http://www.s.utexas.edu/users/moore/al2/.[3℄ Barnette, David, Map oloring, polyhedra, and the four-olor problem, MathematialAssoiation of Ameria, 1983.[4℄ Boyer, Robert S., and J Strother Moore, \Proof Cheking the RSA Publi KeyEnryption Algorithm", Amerian Mathematial Monthly, vol. 91, no. 3, 1984.[5℄ Cohen, Daniel, \The Superuous Paradigm", in The Mathematial Revolution In-spired by Computing. Oxford University Press, 1991.[6℄ Coq Web page, http://oq.inria.fr/.[7℄ Dahl, O.-J, E.W. Dijkstra, and C.A.R. Hoare, Strutured Programming, AademiPress, 1972.[8℄ Devlin, Keith, \Last doubts removed about the proof of the Four Color Theorem",MAA Online, January, 2005,http://www.maa.org/devlin/devlin_01_05.html.[9℄ Dijkstra, Edsger W., A Disipline of Programming, Prentie-Hall, 1976.[10℄ Dupilka, Chris E., \Formal Methods in the Movies",http://jaguar.it.miami.edu/~hris/formal_methods_in_the_movies/~ApoalypseNow.html.[11℄ Gray, David E., \Quadrati Reiproity in Isabelle",http://pressureooker.phil.mu.edu/Aademi/Papers/quadRes.htm.[12℄ Gries, David, The Siene of Programming, Springer-Verlag, New York, 1981.[13℄ Hardy, G.H., and E.M. Wright, An Introdution to the Theory of Numbers, OxfordUniversity Press, London, 1938.[14℄ Harrison, John, \Floating-Point Veri�ation", Proeddings of FM2005: Interna-tional Symposium of Formal Methods Europe, Springer-Verlag, 2006.[15℄ HOL Web page, http://hol.soureforge.net/#papers.[16℄ Hoare, C.A.R., \The Emperor's Old Clothes", in ACM Turing Award Letures: TheFirst Twenty Years, ACM Press, New York, 1987.[17℄ Institute of Eletrial and Eletroni Engineers, \IEEE Standard for Binary Float-ing Point Arithmeti", Std. 754-1985, New York, NY, 1985.[18℄ Kline, Morris, Mathematial Thought from Anient to Modern Times, Oxford Uni-versity Press, New York, 1972.[19℄ Kohansky, Daniel, The Philosophial Programmer: Reetions on the Moth in theMahine, St. Martins Press, 1998. 17

[20℄ Koren, Israel, Computer Arithmeti Algorithms, 2nd Edition, A.K. Peters, Natik,MA, 2002.[21℄ Levin, Mihael I., LISP 1.5 Programmer's Manual, MIT Press, 1962.[22℄ Liberman, Mark, \Emotional Code", Language Log, August 5, 2007,http://itre.is.upenn.edu/~myl/languagelog/arhives/004789.html.[23℄ MCarthy, John M., \A Basis for a Mathematial Theory of Computation", Com-puter Programming and Formal Systems, edited by P. Bra�ort and D. Hirshberg,N. Holland Press, 1963.[24℄ NQTHM Web site, http://www.s.utexas.edu/users/boyer/ftp/nqthm/.[25℄ Omondi, A.R., Computer Arithmeti Systems: Algorithms, Arhiteture and Im-plementation, Prentie Hall, 1994.[26℄ PVS Web page, http://pvs.sl.sri.om/.[27℄ Russino�, David M., \A Mehanially Cheked Proof of IEEE Compliane of theAMD-K5 Floating Point Square Root Miroode", Formal Methods in System De-sign, 1998.http://www.russinoff.om/papers/fsqrt.html.[28℄ Russino�, David M., \A Case Study in Formal Veri�ation of Register-Trasfer Logi:The Floating-Point Adder of the AMD Athlon Proessor", Invited paper, FormalMethods in Computer-Aided Design, Springer LNCS 1954, November, 2000.http://www.russinoff.om/papers/fsqrt.html.[29℄ Russino�, David M., \An ACL2 Proof of Quadrati Reiproity",http://www.russinoff.om/qr/.[30℄ Russino�, David M., \A Formal Theory of Register-Transfer Logi and ComputerArithmeti",http://www.russinoff.om/libman/.[31℄ Steele, G.L., Jr., Common Lisp The Language, 2nd edition, Digital Press, 1990.[32℄ Stiles, David, Private ommuniation, April, 1997.[33℄ Tarjan, Robert, Hewlett-Pakard News interview, Otober, 2004.http://www.hpl.hp.om/news/2004/ot_de/tarjan.html.[34℄ Wheeler, David A., \Readable s-expressions and sweet-expressions: Getting thein�x �x and fewer parentheses in Lisp-like languages",http://www.dwheeler.om/blog/2006/06/17/.[35℄ Wiedijk, Freek (ed.), The Seventeen Provers of the World, Springer LNAI 3600,Berlin, 2006.
18

