
A Mathemati
al Approa
h to RTL Veri�
ationDavid M. Russino�July 5, 2007Introdu
tionTen years ago, in the wake of the Intel FDIV a�air, I was hired by Advan
ed Mi
ro De-vi
es to verify the design of the 
oating-point unit of a 
hip that was later to be knownas the AMD Athlon Pro
essor. At that time, I knew very little about 
omputer arith-meti
 or any other aspe
t of hardware design or veri�
ation. Moreover, as a theoreti
ianwith little experien
e in the industrial se
tor, I was entering a new world with strange
ustoms, language, and 
ulture. I 
ould only hope that I had something useful to o�eras the valorous mathemati
ian who would 
reate order out of 
haos. There would besome interesting times ahead.All that I brought with me to this new venture was some experien
e in the appli
ationof me
hani
al theorem proving to problems in arithmeti
 as well as software veri�
ation,and a general ba
kground in mathemati
s. So I had two questions to ponder as Iinvestigated the nature of the problem of hardware veri�
ation. First, how similar is itto software veri�
ation? That is, how relevant are the established methodologies and
onventional wisdom of program veri�
ation to the hardware problem? And se
ond, towhat extent is this a mathemati
al a
tivity? How relevant are the prin
iples and the
ulture of traditional mathemati
s? In short, what tools did I have for 
reating orderout of the 
haos of mi
ropro
essor design?In this paper, I will submit some observations derived from my experien
e at AMDas I attempted to answer these questions, mainly in the limited 
ontext of arithmeti

ir
uitry, and to des
ribe a veri�
ation methodology that was developed in the pro
ess.Finally, I will brie
y dis
uss prospe
ts for extending this methodology to the broaderdomain of mi
ropro
essor design in general.First, a dis
laimer: when I refer to \hardware veri�
ation", I am speaking only ofme
hani
al theorem proving. I have nothing to say about model 
he
king, stati
 analysis,symboli
 traje
tory evaluation, et
., simply be
ause of my profound ignoran
e in theseareas.The Relevan
e of Program Veri�
ationWith regard to my �rst question, I was initially relieved to �nd that the designs to beveri�ed took the form of software models, 
oded in a hardware des
ription language thatbore some resemblan
e to the programming languages with whi
h I was familiar. So Ihad some hope that what little I knew about program veri�
ation would be of some usehere. 1



Origins and Conventional WisdomMy introdu
tion to this �eld 
ame in 1982 when I met Bob Boyer and J Moore at theUniversity of Texas. Their work, as they explained to me, was derived from that of JohnM
Carthy in the early '60s, whi
h 
entered on the notion of operational semanti
s: thede�nition of a programming language by way of an abstra
t interpreter. M
Carthy, of
ourse, introdu
ed the fun
tional language LISP [21℄ as a vehi
le for veri�
ation anda method that he 
alled re
ursion indu
tion [23℄ for proving properties of LISP fun
-tions. The Boyer-Moore prover, NQTHM, may be viewed as an implementation of thisapproa
h. The same is true of its su

essor, ACL2 [2℄, whi
h is maintained by Mooreand Matt Kaufmann and is the tool that I use in my work. ACL2 is both a fun
-tional programming language, essentially an appli
ative subset of Common LISP [31℄,and a �rst-order logi
 supported by a heuristi
 theorem prover based on mathemati
alindu
tion.There are, of 
ourse, a variety of 
ompeting approa
hes to the veri�
ation problem,but here I am less interested in their di�eren
es than in the pre
epts that are sharedamong them. Here are several fa
tors that are 
ommonly 
onsidered to be importantfor the su

ess of a formal program veri�
ation e�ort, with regard to the problem, thesolution, and the underlying formalism:� A problem of limited size and 
omplexity;� A 
on
ise and unambiguous spe
i�
ation of 
orre
tness;� Cooperative development of a program and its proof of 
orre
tness;� A simple and elegant programming solution;� A programming language with 
lear and simple semanti
s.So, 
an these requirements reasonably be applied to the problem of hardware veri�
a-tion? For some of them, the question was easy to answer. A problem of limited size and
omplexity? When I re
eived my �rst assignment, a 
oating-point multiplier 
onsistingof half a megabyte of opaque RTL 
ode, I knew that my experien
e verifying eight-lineprograms would be of little use to me here. On the other hand, however 
omplex the im-plementation of an arithmeti
 operation may be, its external behavior may be des
ribedquite 
on
isely in abstra
t arithmeti
 terms, as expressed by the IEEE Standard [17℄.This, I would say, is a 
riti
al distinguishing feature of arithmeti
 
ir
uitry that makesit espe
ially suitable for formal veri�
ation.Regarding the 
ooperative derivation of program and proof, it is generally held thatin order to ensure that a program is sus
eptible to formal veri�
ation, it should bedesigned with that goal in mind. As David Gries puts it:A program and its proof should be developed hand-in-hand, with the proofusually leading the way. [12, p. 164℄Some doubt was 
ast on this ideal during my �rst week on the job, when I was askedthis question by a 
oating-point designer:Do you think that we need some a
ademi
 to tell us how to design a multi-plier? [32℄ 2



It was true that I had some history in a
ademia, but I felt that I had paid my debt toso
iety and deserved a fresh start. But so mu
h for the vision of veri�er and designerstrolling hand in hand. Fortunately, this turned out to be an extreme position|theengineers I've worked with been have generally been very 
ooperative and have taughtme quite a bit. But even after ten years, design and veri�
ation remain very distin
ta
tivities. I am still utterly unquali�ed to write RTL 
ode, just as those who do havelittle understanding of my work, and it would be absurd for me to suggest that theyalter their pra
ti
e in any way to suit me.Consideration of the remaining two items on the list pointed to some interestingdi�eren
es between software and hardware.On Simple and Elegant SolutionsAs Dijkstra observed, the sus
eptibility of a program to formal veri�
ation \is not purelya fun
tion of [its℄ external spe
i�
ation and behavior, but depends 
riti
ally on its inter-nal stru
ture." [7, p. 5℄ I am parti
ularly fond of Tony Hoare's version of this observation:There are two ways of 
onstru
ting a software design. One way is to makeit so simple that there are obviously no de�
ien
ies, and the other way is tomake it so 
ompli
ated that there are no obvious de�
ien
ies. [16, p. 155℄Clearly, elegan
e is a good thing. But how does it relate to more pra
ti
al 
onsiderations?Robert Tarjan, an expert in the design and analysis of algorithms, says:Elegant algorithms are easy to program 
orre
tly, as well as being eÆ-
ient. [33℄Daniel Kohansky, in his book The Philosophi
al Programmer, agrees:Even so prosai
 an a
tivity as digging a dit
h is improved by attention toaestheti
s; a dit
h dug in a straight line is both more appealing and moreuseful than one that zigzags at random . . . [19, pp. 10{11℄This is 
ertainly an appealing notion, and a view that I had always shared, but inhardware, it seems that the dit
hes to be veri�ed are usually intended for irrigation aswell as drainage, and that their designs are further 
ompli
ated by issues of erosion andthe like.Dijkstra, who stressed the importan
e of elegan
e in programming as mu
h as anyone,understood that it is a luxury that is a�orded by in
reasingly powerful hardware, whi
h,as he put it, \has mitigated the urgen
y of eÆ
ien
y requirements." [7, p. 5℄ So thereis a sharp distin
tion here between software and hardware: the 
on
erns of usabilityand maintenan
e di
tate that software be intelle
tually manageable, i.e., simple andelegant; the burden of eÆ
ien
y must then be assumed by the underlying hardware, forwhi
h these issues are less 
riti
al. That is, while maintenan
e may be a 
onsiderationin hardware design|a 
omponent of a pro
essor design may be modi�ed for reuse ina later model|this is always outweighed by the importan
e of eÆ
ien
y. Moreover,at least in my experien
e, it is rarely the 
ase that the simplest 
ir
uit design is themost eÆ
ient one. This seems to be largely a 
onsequen
e of the inherent parallelism of
omputer hardware.As an illustration of this phenomenon, 
onsider the design of a 
oating-point adder.The natural approa
h to this problem|the linear dit
h|is a simple algorithm that is3



readily understood and implemented and may be exe
uted, under the 
onstraints of
ontemporary te
hnology, in six 
lo
k 
y
les, 
orresponding to the following six steps:?Compare Exponents?Right Shift?Add/Subtra
t?Dete
t Can
ellation?Left Shift?Assemble Result?But sin
e the operation o

urs so frequently, in order to redu
e its laten
y, a real adder(e.g., [28℄) is a mu
h more 
omplex 
ir
uit involving two parallel data paths:?Predi
t Leading 1 ?Compare Exponents?Left Shift ?Right Shift��	Sele
t Path? ��	��R Add/Subtra
t?Assemble Result?On one path, during the �rst two 
y
les, the exponents are 
ompared and inputs arealigned a

ordingly in preparation for the operation; on the other, under the assump-tion that 
an
ellation will o

ur through subtra
tion, the index of the leading one of thedi�eren
e is predi
ted and the normalizing shift is performed in advan
e. Meanwhile,the exponent 
omparison determines whi
h path is to be fed into the adder. Of 
ourse,this design requires 
onsiderably more hardware, is highly prone to error, and is diÆ
ultto analyze, but it runs in four 
y
les. This is typi
al of arithmeti
 
ir
uitry, and theexplanation is 
lear, although I still have trouble grasping this simple fa
t: gates are
heap and 
y
les are expensive.
4



On Simple Program Semanti
sDijkstra asked:Are you quite sure that all those bells and whistles, all those wonderfulfa
ilities of your so-
alled `powerful' programming languages belong to thesolution set rather than to the problem set? [9, p. xiv℄And I am 
onvin
ed that this has been the primary obsta
le to the goal of progressingfrom toy veri�
ation problems to real software: the languages in whi
h real programsare 
oded are too messy to support 
lear semanti
 models. Programmers love thosebells and whistles and language designers are eager to supply them. And hardwaredes
ription languages are unex
eptional in this regard.Then why has hardware veri�
ation, and theorem proving in parti
ular, enjoyedany su

ess at all? One reason is motivation: hardware errors are diÆ
ult to 
orre
tafter the fa
t. Another is the modularity that is imposed by timing 
onsiderations. AsJohn Harrison has put it, timing 
onstraints pre
lude \spaghetti hardware". [14, p. 1℄But the real story|and for me, this was the biggest surprise of the entire experien
e|is that 
oding guidelines are e�e
tively enfor
ed to limit RTL design to a very smalland manageable subset of Verilog. The main reason for this, I believe, 
onstitutesa fundamental distin
tion between hardware and software development. A softwaredeveloper does not have a 
omplete expli
it understanding of the language in whi
h heis programming; he relies on the experimental use of a 
ompiler to expose his errors.But the behavior of a 
ompiled Verilog program is an unreliable model of a 
ir
uit. Thereal \
ompiler" of an RTL design is the pro
ess of implementation in sili
on, whi
h isof 
ourse unavailable for testing during the design pro
ess. Consequently, in pra
ti
e,stri
t 
oding guidelines are required to ensure predi
table behavior. The result is alanguage with a 
y
le-based semanti
 model that is simple enough to be amenable toformal analysis.A program in this language 
onsists of a set of signal de�nitions. For our purpose,a signal is either a wire or a register, as distinguished synta
ti
ally by the \=" and \<="symbols, respe
tively:r
_
o = esub ? {1'b0, r
[70:1℄} :{r
[69:0℄, r
[0℄};sum[70:0℄ <= r
[70:0℄ ^ a[70:0℄ ^ b[70:0℄;Ea
h signal assumes a value on ea
h 
y
le of an exe
ution. The value of a wire on a given
y
le is 
omputed a

ording to its de�ning equation from the values of other signals onthe same 
y
le; the value of a register is determined by values on the pre
eding 
y
le.The simpli
ity of this stru
ture allows us to translate RTL designs me
hani
ally intothe ACL2 logi
 in a fairly straightforward way. The primitive RTL operations 
orrespondnaturally to ACL2 fun
tions, either built-in or simply de�ned, and ea
h signal generatesone of a set of mutually re
ursive ACL2 fun
tions, ea
h taking a single argument n,representing the number of 
y
les that have elapsed during the 
ourse of an exe
ution:(defun r
_
o (n)(if (not (= (esub n) 0))(bits (r
 n) 70 1) 5



(
at (bits (r
 n) 69 0) (bitn (r
 n) 0) 1)))(defun sum (n)(if (zp n)(reset 'sum 71)(logxor (logxor (bits (r
 (1- n)) 70 0)(bits (a (1- n)) 70 0))(bits (b (1- n)) 70 0))))Along with this formal model, we also en
ode a statement of 
orre
tness in the samelogi
, essentially a formalization of IEEE-
omplian
e, relating these signal fun
tions tohigh-level arithmeti
 
on
epts. Thus, we have a 
omplete formal representation of theproblem, on whi
h the power of the ACL2 prover may be brought to bear.The Relevan
e of Traditional Mathemati
sI'd like to turn now to the pro
ess of proof and the question of the relevan
e of traditionalmathemati
s.Early Resistan
e to Computer-Assisted ProofI �rst be
ame aware of the use of 
omputing in support of mathemati
al proof as agraduate student in the '70s when I heard that the four 
olor 
onje
ture had been provedwith the aid of a 
omputer [1℄. This was a novel development at the time and was metwith some un
ertainty in the mathemati
al 
ommunity. Here is an ex
erpt from a paperby Daniel Cohen, a mathemati
ian who had himself worked on the four-
olor problem,delivered at a 
onferen
e on The Mathemati
al Revolution Inspired by Computers: [5,p. 327℄In 1976, Appel and Haken announ
ed that they had solved the Four ColourProblem by a 
omputer examination of nearly two thousand 
ases . . . Further-more, the pro
edure employed by the ma
hine to analyze ea
h 
ase of ne-
essity involved billions of logi
al inferen
es; this means that even though ahuman 
an dupli
ate by hand any small subset of the ma
hine's deliberationsthere is not even a remote 
han
e that, in an entire lifetime, a human 
ouldtra
e the program's run on even one 
ase . . . [5, p. 327℄Cohen's remarks were something other than an expression of reveren
e for the power ofthe modern ele
troni
 
omputer. He 
ontinues:. . . Convi
tions derived in this manner might be valid but they are not math-emati
s. Su
h a result is still unproven, and should be so 
onsidered. . . . Thereal thrill of mathemati
s is to show as a feat of pure reasoning, it 
an beunderstood that four 
olours suÆ
e. Admitting the shenanigans of Appeland Haken to the ranks of mathemati
s would only leave us intelle
tuallyunful�lled. [5, p. 328℄This view was not un
ommon at the time. In fa
t, this paper was written as re
entlyas 1991. I �nd it amusing to observe that if my work is at all interesting, it is only6



be
ause of the use that I've made of 
omputing in support of my results, all of whi
h arerelatively trivial and of little interest in themselves. Here, on the other hand, is a proofof a very deep result that was 
ondemned for pre
isely the same reason. Are the goals ofindustrial hardware veri�
ation so very di�erent from those of traditional mathemati
s?Or have attitudes 
hanged so radi
ally in sixteen years? Well, our goals are somewhatdi�erent, and attitudes have indeed shifted, but of 
ourse what has really 
hanged is thete
hnology of me
hani
al theorem proving.Modern Theorem Proving: ACL2Moving ahead a few years to 2005, we �nd a report of a new proof in Mathemati
alAsso
iation of Ameri
a Online, under the headline, \Last Doubts Removed About theProof of the Four Color Theorem" [8℄. But in fa
t, this was yet another 
omputer-assisted proof. It was developed by Georges Gonthiers of Mi
rosoft Resear
h, who usedthe Coq proof assistant [6℄ to formalize a variant of the Appel-Haken argument, in
ludingboth its manual and me
hani
al 
omponents, as well as all of the topology and graphtheory needed for a 
omprehensive proof from �rst prin
iples. As noted in the MAAreport:What makes the new result parti
ularly signi�
ant from a reliability point ofview is that the proof assistant Gonthiers employed, 
alled Coq, is a widely-used general purpose utility, whi
h 
an be veri�ed experimentally, unlikethe spe
ial-purpose programs used in the earlier proofs of the Four ColorTheorem.The point is that a modern theorem proving tool su
h as Coq, ACL2, HOL [15℄, orPVS [26℄ is trustworthy be
ause it has been widely tested in a variety of domains bya 
ommunity of users over a period of perhaps several de
ades. Su
h a tool is alsomore transparent and easily understood than the programmed proofs of earlier days.But is reliability the only issue here? What did Daniel Cohen mean by the remark,\Convi
tions derived in this manner might be valid but they are not mathemati
s."?I'd like to return to that question after taking a look at the theorem prover of my 
hoi
e,ACL2.It is diÆ
ult to say very mu
h that is meaningful about the relative merits of di�erentprovers. Most 
omparisons are quite subje
tive, very mu
h like religious preferen
es. (Anotable ex
eption is Freek Wiedijk's study [35℄.) With regard to ACL2, some of usappre
iate the simpli
ity of its syntax (e.g., [10, 22℄), while others are troubled by all ofthose parentheses (e.g., [11, Se
tion 4℄ and [34℄). But there seems to be a 
onsensus ona number of points:� Unlike Coq, ACL2 is intended primarily for 
omputer system veri�
ation ratherthan mathemati
s, although I'm not sure of the signi�
an
e of this statement. Iasked Bob Boyer to 
omment on this; his observation was that the atom bomb wasnot intended primarily for digging dit
hes. (This will be my �nal dit
h metaphor.)� ACL2 is eÆ
iently exe
utable, sin
e it may be 
ompiled and exe
uted as CommonLISP.� It provides a relatively high degree of automation, mainly through a system ofpowerful indu
tion heuristi
s, 
onditional rewriting, and integrated de
ision pro-7




edures. I would note, however, that the term automated theorem prover is mis-leading: any nontrivial proof involves 
onsiderable intera
tion with the user, whousually begins with a fairly 
omplete proof in mind, whi
h he uses to guide theprover intera
tively through a long sequen
e of lemmas and hints.� The underlying logi
 is relatively \weak", i.e., la
king in expressiveness. For ex-ample, it provides little support for existential quanti�
ation, and none for quan-ti�
ation over relations, sets, or fun
tions.These last two points 
onstitute a trade-o�: limiting the logi
 fa
ilitates automati
analysis. Personally, I've never found the la
k of expressiveness of ACL2 to be a seriousdrawba
k. O

asionally, some thought is required to �nd a way to say what I want tosay, but that's a pri
e I'm willing to pay in order to be relieved of some of the details of aproof. Other opinions may di�er; I seem to have a natural tenden
y to think re
ursivelyand indu
tively. And, I might add parentheti
ally, parentheti
ally.Illustration: A Test for PrimalityHere is a small example of an ACL2 program, a 
hara
terization of prime numbers.(See [29℄ for an ACL2 proof s
ript that in
ludes all of the results listed in this se
tion,
ulminating in a formalization of Gauss's Law of Quadrati
 Re
ipro
ity.) The predi
ateprimep tests for primality using a fun
tion least-divisor, whi
h re
ursively sear
hesfor a divisor of n by dividing n by su

essively larger integers, starting at a designatedvalue k, until it �nds an integer quotient:(defun least-divisor (k n)(if (and (integerp n)(integerp k)(< 1 k)(<= k n))(if (divides k n)k(least-divisor (1+ k) n))nil))(defun primep (n)(and (integerp n)(= (least-divisor 2 n) n)))This is a 
ase where one would naturally like to use existential quanti�
ation, but isfor
ed by the ACL2 logi
 to use re
ursion instead, and the result is a spe
i�
ation that
an be 
ompiled and exe
uted.For example, 
ombining this predi
ate with the primitive ACL2 exponentiation fun
-tion, we have a simple pro
edure for 
lassifying Mersenne primes, i.e., identifying thoseprimes p for whi
h 2p � 1 is also a prime.The Mersenne number 223�1, whi
h happens to be divisible by 47 (as �rst observedby Fermat in 1640), is disposed of in a fra
tion of a se
ond on my workstation:(defthm mersenne-23(not (primep (- (expt 2 23) 1))))8



[Time: .02 se
onds℄The 
ase p = 31 (whi
h was settled by Euler in 1772) takes about an hour:(defthm mersenne-31(primep (- (expt 2 31) 1)))[Time: 65 minutes℄Here is a Mersenne number, generated by a six-digit prime, that takes a 
ouple of hoursto fa
tor:(defthm mersenne-999671(not (primep (- (expt 2 999671) 1))))[Time: 165 minutes℄Obviously, this method requires no spe
ial expertise on the part of the user. I am
on�dent that I 
ould train a team of the meanest of engineers to administer it 
awlessly.In a sense, it is 
ompletely general, but it su�ers from pra
ti
al limitations. Given thatit took an hour to prove the primality of 231� 1, we 
an estimate that the next smallestMersenne prime, whi
h happens to 
orrespond to p = 61, would take about a billionhours. And the Mersenne number generated by an 8-digit exponent is already too largeeven to be represented in the memory of my ma
hine:(defthm mersenne-19876271(not (primep (- (expt 2 19876271) 1))))[Error: Attempt to 
reate an integer that is too large to represent.℄The most obvious optimization is based on the simple observation that if n has aproper divisor, then it has one that does not ex
eed pn. Thus, we de�ne an alternativeto the fun
tion least-divisor that stops at pn, and establish a rewrite rule:(defun least-divisor-fast (k n)(if (and (integerp n)(integerp k)(< 1 k)(<= k n))(if (> (* k k) n)n(if (divides k n)k(least-divisor-fast (1+ k) n)))nil))(defthm least-divisor-rewrite(equal (least-divisor 2 n)(least-divisor-fast 2 n)))9



On
e we arrange for this theorem (whi
h was proved quite easily by means of ACL2'sindu
tion heuristi
s) to be applied in the 
omputation of primep, the 
ase p = 31 takesa fra
tion of a se
ond, and p = 61 
ompletes in under an hour:(defthm mersenne-31-revisited(primep (- (expt 2 31) 1)))[Time: .05 se
onds℄(defthm mersenne-61(primep (- (expt 2 61) 1))[Time: 54 minutes℄However, this optimization 
an't get us any further than this, and it is of no help inhandling the 
omposite 
ase. At some point, in order to 
ontinue to make progress, weeventually must abandon algorithmi
 methods and resort to real theorem proving. Forexample, several of the 
ases that we've 
onsidered 
an be handled e�e
tively by a ni
etheorem of Euler involving quadrati
 residues (see Theorem 103 of [13℄). This exer
iserequires a little number theory, but I hope it will help illustrate the ACL2 experien
e.If p is an odd prime, then an integer a is said to be a quadrati
 residue modulo p ifthere exists an integer x su
h that x2 is 
ongruent to a mod p. It may be shown thatthis property is equivalent to the 
onditiona(p�1)=2 � 1 (mod p):(This 
ongruen
e is known as Euler's Criterion.) In parti
ular, it turns out that 2 is aquadrati
 residue mod p i� p � �1 (mod 8). (This result is 
alled the Se
ond Supplementto the Law of Quadrati
 Re
ipro
ity.)Now we 
an easily prove the following:Theorem If p = 4k + 3 and q = 2p+ 1 are both prime, then qj2p � 1.Proof: Sin
e q = 2(4k+3)+1 = 8k+7 � �1 (mod 8), we know that 2 is a quadrati
residue mod q, and therefore, by Euler's Criterion,2p = 2(q�1)=2 � 1 (mod q);or equivalently, 2p � 1 is divisible by q. 2Getting ba
k to the Mersenne prime problem, what this result tells us is that underthe stated hypothesis, 2p � 1 is not a prime. Here is an ACL2 formulation of thisstatement:(defthm euler-
orollary(implies (and (primep p)(= (mod p 4) 3)(> p 3)(primep (1+ (* 2 p))))(not (primep (- (expt 2 p) 1)))))10



In order to generate its proof from s
rat
h, over 100 lemmas were fed to the prover,along with generous hints, but that's the nature of \automated" theorem proving. It'salso worth noting that through an oversight, my original formulation did not in
lude thehypothesis that p > 3. It was only by examining the output of a failed proof attemptthat I realized that when p = 3, while 2p � 1 (i.e., 7) is indeed divisible by 2p+ 1, it isin fa
t equal to 2p+ 1 and is thus nonetheless a prime.We now have new proofs of two of our earlier results, requiring pra
ti
ally no 
om-putation, as the 
ases 23 and 999,671 both 
onform to the hypotheses of our theorem:(defthm mersenne-23-revisited(not (primep (- (expt 2 23) 1))))[Time: .01 se
onds℄(defthm mersenne-999671-revisited(not (primep (- (expt 2 999671) 1))))[Time: .01 se
onds℄So what? We haven't proved anything new. But I 
laim that some proofs are betterthan others, and these last two are the only proofs we've seen that I'm really happy with,be
ause not only have they been 
he
ked by ACL2, but I 
an understand them and 
he
kthem by hand as well. Now, not only am I 
on�dent that there are no errors hidden inmy proof (and Euler may share in this reassuran
e), but I a
tually know why 223 � 1is divisible by 47. In other words, I've used formal methods to support mathemati
alrigor, rather than to repla
e it. Moreover, I have dis
overed a method that I 
an use in
ases that I was previously unable to handle, su
h as this one:(defthm mersenne-19876271(not (primep (- (expt 2 19876271) 1))))[Time: 47 se
onds℄The Value of Mathemati
al ProofNow returning to Cohen's obje
tion to 
omputer-assisted proof, I think that his mainpoint was that a proof should serve purposes other than merely to establish the 
orre
t-ness of a result. What then are the goals of mathemati
al proof?There is, of 
ourse, the 
yni
al view. Another item from the folklore of topologyis the story of the knot theorist who presented a new result before a learned so
ietyand was asked about the real signi�
an
e of his proof: \Your work is very beautiful,but what good is it?" \Well," he replied, \I write papers about knot theory; they getpublished, and I get promoted." [3, p. 164℄No doubt, there is some truth in this story. But I believe there are better answersto the question. Aside from the obvious one, that we prove theorems in order to knowthey are true, at least two others are suggested by our exer
ise in number theory:� Expli
ation of underlying prin
iples: we rely on a proof to tell us why a resultis true, to provide 
lues as to how it might be generalized, and to in
rease ourunderstanding in order to make things easier in the future. Gauss published eight11



distin
t proofs of the law of quadrati
 re
ipro
ity between 1796 and 1818, notbe
ause he remained un
onvin
ed of the truth of the proposition, but rather, Isuspe
t, be
ause he was dissatis�ed with the depth of understanding that wasprovided by the existing proofs. The way he put it was that he was looking for aproof that 
ould be generalized to higher-order re
ipro
ity laws. [18, p. 815℄� Re�nement of hypotheses: often it is not until we explore the proof of a statementthat we see that a required hypothesis has been omitted or that a super
uousone has been in
luded. And me
hani
al provers, I �nd, are espe
ially useful inexposing errors of that sort.I would argue that all of these observations are just as valid in the 
ontext of industrialhardware veri�
ation as they are in pure mathemati
s. The primary 
on
lusion of myinvestigation is that while 
ommon sense suggests that there are lessons to be derivedfrom several de
ades of resear
h in program veri�
ation, there is even more reason notto ignore the wisdom of several millennia of mathemati
s. So I would like to lookmore 
losely at the goals listed above and dis
uss how they 
an be addressed by formalhardware veri�
ation.On Establishing Con�den
e in Corre
tnessWith regard to 
on�den
e in 
orre
tness, I have tried to produ
e proofs that are bothhuman-readable and ma
hine-
he
ked, as I do not believe that me
hani
al theorem prov-ing negates the value of the so
ial review pro
ess. The 
ase of the Athlon 
oating-pointadder was typi
al, and it is one for whi
h I happen to have some relevant statisti
shandy, whi
h may be of interest. This is the 
ourse that I followed:� First, I learned what I 
ould about the algorithms, studied the RTL, developed astatement of 
orre
tness, and wrote out a rigorous detailed proof, whi
h �lled 33pages and 
onsumed 4 weeks of my time.� The RTL module, 
onsisting of 86 KB of sour
e 
ode, was me
hani
ally translated,generating 219 KB of ACL2 
ode.� For 8 weeks, I sat with ACL2 and my hand-written proof and transformed it intoACL2 lemmas, line by line, until the formal proof was 
omplete. The result was aproof s
ript 
onsisting of about 2200 lemmas.� The pro
ess of me
hanization exposed one fatal bug in the RTL, whi
h was easily�xed, along with several minor errors in my hand-written proof.Eighteen months later, that 33-page proof was published in its entirety [28℄. (By then,my management was willing to 
on
ede that the 
ompetition had learned how to buildtheir own adder.) I mention this be
ause I often read reports of 
orre
tness proofs thatsound interesting but are nowhere to be found. This is espe
ially frustrating when the(neo-Pythagorean?) author favorably 
ompares his own se
ret proof to my publishedone. So as long as I am presuming to tell you what I like or don't like about mathemati
alproofs, let me add that if we 
an't see a proof, then we are deprived of mu
h of itspotential value.But the best way for me to inspire 
on�den
e on the part of my 
ustomers is to showthem that the proof pro
ess exposes bugs that would otherwise have gone undete
ted|bugs in algorithms, in implementations, and in interfa
es. To give an idea of the sort12



of bug that might survive traditional testing, here is one that I found in a square rootalgorithm [27℄, whi
h pro
eeded as follows:� A 64-bit approximation q of px is derived, a

urate to 38 bits.� A 64-bit 
orre
tion term 
 is added to q: q+ 
 is an underestimate of px, a

urateto 74 bits, and 0 < 
 < 2�38q.� q + 
 is rounded to 64 bits in both dire
tions to produ
e r1 and r2.In most 
ases, a

ording to the rounding mode to be applied, either r1 or r2 is returnedas the �nal result. In the 
ase of rounding toward +1, if (q + 
) � r1 is not too big,then r2 is returned.All of this sounds reasonable, and it was not until I attemped to 
he
k my proof withACL2 (whi
h I sometimes think of as an unimaginative but unerring 
olleague peeringover my shoulder) that I noti
ed the underlying assumption that r1 and r2 are distin
t,whi
h is not the 
ase if q + 
 happens to be a 64-bit number itself. This seems unlikely,and it is, be
ause we are adding two 64-bit numbers that are misaligned by 38 bits, so inorder for the sum to be 64-exa
t, the lower 38 bits of the smaller number would have tobe 0. But I 
ould not think of any reason to pre
lude this possibility, and neither 
ouldthe designer. In fa
t, if we make the naive assumption that in this 
ontext, any given38-bit sequen
e is as likely to o

ur as any other, then we may expe
t this situation toarise in one test out of every 238, whi
h is about a quarter of a trillion. This numberis in a range that makes it unlikely that the bug would be found in testing, but ratherlikely that it would o

ur during the life of a 
ommer
ial pro
essor.By the way, this bug was 
orre
ted before the part was taped out, but not withoutsome vigorous dis
ussion. When one is a

ustomed to �nding bugs only through test-ing, one might reasonably expe
t any bug report to be a

ompanied by a test failure.Unfortunately, that is not always easy to a
hieve. This was not the only o

asion onwhi
h I was asked the question, \If you know what a bad result looks like, why 
an'tyou just work ba
kwards through the algorithm to 
ompute inputs that produ
e su
h aresult?" My answer is to observe that the algorithm 
onsists of a sequen
e of perhapsa dozen multipli
ations interspersed with various other operations, and that there is awidely used algorithm|namely, RSA publi
 key en
ryption [4℄| that is based on thepra
ti
al impossibility of \working ba
kwards" through even a single multipli
ation. Ihave enjoyed varying degrees of su

ess with this argument.On the Expli
ation of Underlying Prin
iples: S
ien
e vs. ArtWith respe
t to the explanatory value of a proof and the guidan
e that it provides inapplying underlying prin
iples, I believe that there is an important 
ontribution to bemade by formal veri�
ation to the art of 
ir
uit design. I say \art" be
ause I believethat this �eld in its 
urrent state is not so mu
h s
ien
e, whi
h depends on the expli
itknowledge and 
ons
ious appli
ation of prin
iples, as art, whi
h depends on traditionalrules and skill a
quired by pra
ti
e.I have seen 
omplex logi
 ripped out of one design and inserted into another, with anin
omplete understanding of why it worked in the �rst pla
e, and then tested to ensurethat it still does. There is a good deal of knowledge that is shared impli
itly by designengineers but not written anywhere. There are textbooks on the subje
t [20, 25℄, butthese are more 
on
erned with the appli
ation of parti
ular te
hniques than with their13



theoreti
al underpinnings. These te
hniques are usually justi�ed by means of examplesrather than proofs, just as their implementations are validated by testing.When I �rst observed these pra
ti
es, I was reminded of something that I had en-
ountered in my reading:It la
ks so 
ompletely all plan and system that it is pe
uliar that so manymen 
ould have studied it. The worst is, it has never been treated stringently.There are very few theorems . . . whi
h have been demonstrated in a logi
allytenable manner. Everywhere one �nds this miserable way of 
on
luding fromthe spe
i�
 to the general . . . [18, p. 947℄This is from a letter written in 1826 by Niels Abel on the state of the 
al
ulus at thattime, whi
h had mu
h in 
ommon with the present situation. This was a relativelynew area of mathemati
al endeavor, la
king a solid foundation. Rigorous analysis hadbeen repla
ed by appeal to geometri
 intuition and diagrammed examples, resulting inun
ertainty and error. But it also produ
ed results of tremendous pra
ti
al signi�
an
e,so that it was tempting to overlook these de�
ien
ies.In the end, of 
ourse, nineteenth 
entury analysis was redeemed by a rigorous formu-lation derived solely from basi
 arithmeti
 prin
iples, and I believe that a similar remedyis 
alled for here: a uni�ed arithmeti
 theory of register-transfer logi
 and 
oating-pointarithmeti
. This has been one of my obje
tives almost from the beginning. Over the
ourse of developing various 
orre
tness proofs, I have tried to identify those results thatpertain to the general theory and 
olle
ted them in a library that is now a part of theACL2 standard release [2℄. It 
urrently in
ludes about 600 lemmas pertaining to bitve
tors and logi
al operations, 
oating-point formats and rounding, and spe
ial-purposete
hniques for eÆ
ient implementation of elementary operations. I have also written ahypertext do
ument that is both an exposition of the theory and a user's manual for thelibrary [30℄. Naturally, the library makes my job mu
h easier, sin
e it allows me to reuseresults from one proje
t to the next. It has also found some use by ACL2 users outsideof AMD. But there remains the real 
hallenge of 
onvin
ing engineers of the value ofsu
h a rigorous approa
h and integrating it into the design pro
ess.On the Re�nement of Hypotheses: Interfa
e Spe
i�
ationsThis brings me to my last point on the value of proof: the re�nement of hypotheses.In the 
ontext of RTL veri�
ation, this usually means pre
ise spe
i�
ation of interfa
e
onstraints, and is parti
ularly important be
ause this is probably the most 
ommonsour
e of errors in RTL designs. When I examine a new RTL module, the pie
e of thepuzzle that is invariably the most elusive is the interfa
e. There is rarely any usefuldo
umentation to be found in the 
ode or elsewhere. In fa
t, 
ooperation betweenmodules 
ommonly depends on informal oral agreements between RTL writers, whi
hare highly prone to misunderstanding.Of 
ourse, a formal proof of 
orre
tness of a module requires a formal spe
i�
ationof its external behavior, 
omprising all input and output 
onstraints. At �rst, it seemednatural to me to write this spe
i�
ation dire
tly in ACL2, based on information that Igathered from the designer. Then I would go over it with him, trying to explain whatI had written, until he told me that he thought I had it right. This pro
ess did exposesome bugs, but it was unsatisfying. I needed a formal language that was a

essible toengineers. After some experimenting, it was 
lear that I had to �nd a way to write these14



spe
i�
ations in their native language. I had resisted this 
on
lusion be
ause Verilogis not an ideal spe
i�
ation language, but I found that with a few minor extensions, itserved the purpose. The most important of these are:� A rational data type, to allow high-level spe
i�
ations of arithmeti
 operations;� A fa
ility for assertions representing both safety and liveness 
onstraints on inputsand outputs.Both of these extensions were readily implemented in both the Verilog 
ompiler and theACL2 translator. The result is a sort of pidgin Verilog that allows me to 
ommuni
atemore e�e
tively with engineers. As a bonus, a spe
i�
ation written in this languagemay be integrated into the simulation environment and exe
uted with the RTL for thepurpose of testing. But on
e again, the real value of this approa
h will be measured byits ultimate impa
t on the design pro
ess.Future Dire
tionsWhere are we today and where do we go from here? There is no doubt that the methodol-ogy that I've des
ribed has gained general a

eptan
e by 
oating-point designers withinAMD. New designs are now routinely and thoroughly veri�ed. Re
ently, I attended ameeting to dis
uss plans for a new FPU that was 
onsidered to be innovative and there-fore somewhat risky. I was sho
ked when the manager of the proje
t, when asked howhe would pro
eed if there were no resour
es available for theorem-proving veri�
ation,said that if this were the 
ase, then he would revert to a more 
onservative design.But why has our formal veri�
ation e�ort been limited to theorem proving to theex
lusion of model 
he
king, et
? When I ask the question, I'm told that it is a matterof resour
es: to assign anyone to a new area would be to detra
t from an existing proje
tthat is already 
onsidered to be essential to the veri�
ation pro
ess. But this is 
hangingas well, as an investigation into 
ommer
ial model 
he
king tools and other automati
methods is underway.In order to make all of this possible, we have in
reased our staÆng. Until re
ently, Ihave been responsible for nearly all theorem proving at AMD, although I have had help,espe
ially with development of the RTL library, from Eri
 Smith as a summer internand o

asionally from Matt Kaufmann. But in the past year, we have hired three peoplewith expertise in this area. As a result, I am now enjoying more freedom to investigatenew appli
ations.Spe
i�
ation and Veri�
ation of Control Logi
As an experiment, I wrote a spe
i�
ation for a bus interfa
e unit and veri�ed someinvarian
e properties. I was not surprised to �nd that, in 
ontrast to arithmeti
 designs,the main 
hallenge of this proje
t was in the level of detail of the interfa
e and theinternal stru
ture of the module rather than the 
omplexity of operations.The spe
i�
ation had to a

ount for elaborate interfa
es with internal data andinstru
tion 
a
hes and an external memory 
ontroller. Read and write requests arere
eived from the 
a
hes, along with probes from the system, in response to whi
hvarious transa
tions are initiated by the bus unit. Formulating the 
onstraints on thesetransa
tions requires a 
omplete abstra
t model of internal state: various bu�ers, an15



L2 
a
he, outstanding requests, et
. As a bene�t, we dis
overed that exe
uting thismodel in RTL simulation exposed bugs that were less likely to be found by traditional
he
kers, whi
h are more 
losely tied to the RTL. I also found that this pro
ess requiresmore 
ooperation between spe
i�
ation and design than does 
oating-point analysis.On
e that is a
hieved, I believe that this is an area in whi
h formal methods will havea major impa
t.A Formal X86 ModelMy 
urrent fo
us is a formal model of the x86 instru
tion set ar
hite
ture, whi
h I amdeveloping in 
ollaboration with my 
olleagues Bill Bevier and Larry Smith. We havetwo initial appli
ations in mind, neither of whi
h involves theorem proving: simulationand do
umentation.The model is 
oded in a simple formal language 
alled XFL that we have designed forthis purpose. XFL is semanti
ally embedded in C++, the language of AMD's simulationsoftware. This allows our instru
tion set model to serve as the 
ore of our simulationenvironment. The same model also forms the foundation of a formally based on-lineprogramming manual. The goals are software that is robust and maintainable anddo
umentation that is a

urate and unambiguous. The idea is to a
hieve these goalsthrough a uni�ed model, the reliability of whi
h is ensured by re
ipro
al validation.That is, sin
e a bug in the simulator is also a bug in the do
umentation, every bug hasexposure on several fronts, whi
h in
reases the likelihood of dete
tion.Future Dire
tions in Formal Veri�
ationEa
h of these last two proje
ts plays a role in our longer-term plans for formal veri�
a-tion. Here is my diagram for the future:Formal ISA Model
OS Veri�
ation Mi
ro-ar
hite
turalVeri�
ation Blo
k Spe
i�
ationBlo
k Veri�
ation

Fully Veri�ed Pro
essor? ��R ?�����AAAU
�����

The formal instru
tion set model has potential appli
ations in both software and hard-ware veri�
ation. On the one hand, software vendors have an interest in verifying prop-erties of operating systems, espe
ially se
urity, for whi
h su
h a model is a prerequisite.On the hardware side, imagine that we have an ACL2 spe
i�
ation for ea
h blo
k ofan RTL pro
essor design. We also have a translator from XFL to ACL2, whi
h allowsus to apply the ACL2 prover to the problem of mi
ro-ar
hite
tural veri�
ation, i.e.,proving that the blo
ks �t together e�e
tively to implement the instru
tion set. On
ewe also prove that ea
h blo
k satis�es its spe
i�
ation, we have a
hieved the ultimategoal of a fully veri�ed pro
essor. All of this, of 
ourse, rests on my ambition to live aninordinately long and mentally 
ompetent life.16
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