
Chapter 1

MECHANICAL VERIFICATION

OF REGISTER-TRANSFER LOGIC:

A FLOATING-POINT MULTIPLIER

David M. Russino�

Arthur Flatau

Advanced Micro Devices, Inc.

Austin, TX

david.russino�@amd.com

arthur.atau@amd.com

Abstract We describe a mechanical proof system for designs represented in the
AMD1 RTL language, consisting of a translator to the ACL2 logical
programming language and a methodology for verifying properties of
the resulting programs using the ACL2 prover. As an illustration, we
present a proof of correctness of a simple oating-point multiplier.

Introduction

In order for a hardware design to be provably correct, it must be repre-
sented in a language that has an unambiguous semantic de�nition. Un-
fortunately, commercial hardware description languages such as VHDL
and Verilog, which are intended for a variety of purposes other than for-
mal veri�cation, are large, complicated, and poorly speci�ed. Attempts
to develop formal semantics for these languages [Gordon, 1995, Russi-
no�, 1995] have generally been limited to small, manageable subsets
that are inadequate for modeling real industrial designs. Consequently,
a \proof of correctness" of a real VHDL or Verilog design is generally
based on an alternative encoding of the underlying algorithm in some

1AMD, the AMD logo and combinations thereof, and AMD Athlon are trademarks of Ad-
vanced Micro Devices, Inc.

9

10 USING THE ACL2 THEOREM PROVER

simpler formal language. The utility of such a proof rests on the un-
proved assumption that the two implementations are equivalent.
As an alternative to these commercial languages, Advanced Micro

Devices, Inc. has adopted a special-purpose hardware language for the
design of the AMD AthlonTM processor and future AMD microproces-
sors. The language syntactically resembles Verilog, but is considerably
simpler. While Verilog includes extensive features to support the de-
sign and testing of a wide variety of digital systems at various levels of
abstraction, the AMD language is intended solely for modeling micro-
processor designs at the level of register-transfer logic (RTL). Moreover,
(although this was not a consideration in its design) our language was
constructed carefully enough to allow formal veri�cation as a realistic
objective.
The subject of this paper is a methodology for mechanical veri�cation

of real hardware designs written in the AMD RTL language, using the
ACL2 prover. The underlying theory of oating-point arithmetic and
its bit-level implementation, developed through the course of our prior
work on the veri�cation of oating-point algorithms, is embodied in an
ACL2 library, consisting of several books of de�nitions and lemmas,
which is available on the Web [Russino�, 1999b]. This library is briey
summarized below in Section 1.. Additional documentation may be
found in [Russino�, 1999a] and [Russino�, 1998],
In Section 2., we present a precise description of the RTL language,

including a rigorous de�nition of its semantics. This de�nition is the ba-
sis of a scheme for the automatic translation of RTL circuit descriptions
into the logic of ACL2. The circuits that are handled by this transla-
tor include all combinational circuits as well as an important class of
sequential circuits that may be characterized as pipelines. In particular,
our methods are well suited to the veri�cation of oating-point hardware
designs, and have been applied to several of the arithmetic operations of
the AMD Athlon processor, including an IEEE-compliant oating-point
adder. In Section 3., as an illustration, we describe a proof of correctness
of a simpli�ed version of the Athlon multiplier. The complete proof may
be found at the Web site that is associated with this book [Russino�,
1999c].

1. A LIBRARY OF FLOATING-POINT

ARITHMETIC

In this section, we list the basic de�nitions of our oating-point li-
brary [Russino�, 1999b], along with some of the lemmas that are rel-
evant to the proof described in Section 3.. In the mechanization of

Mechanical Veri�cation of a Floating-Point Multiplier 11

mathematical proofs of this sort, we have found that the most e�ective
approach is to begin with an informal but rigorous and detailed written
proof from which a formal ACL2 proof may be derived with minimal
e�ort. Accordingly, our presentation will generally rely on traditional
(informal) mathematical notation, rather than ACL2 syntax. The sets
of rational numbers, nonzero rationals, integers, natural numbers (non-
negative integers), and nonzero naturals will be denoted by Q , Q� , Z, N,
and N� , respectively. Function names will generally be printed in italics.
Every function that we mention corresponds to an ACL2 function sym-
bol, usually of the same name, which we denote in the typewriter font.
In most cases, the formal de�nition of this function may be routinely
derived from its informal speci�cation and is therefore left to the reader.
Similarly, every lemma that we state corresponds to a mechanically

veri�ed ACL2 formula. In most cases, we omit the formal version, but
include its name so that it may be easily located in the oating-point
library.
Two functions that are central to our theory are and cg. For all

x 2 Q , fl(x) and cg(x), abbreviated as bxc and dxe, respectively, are
the unique integers satisfying bxc � x < bxc+1 and dxe � x > dxe � 1.
The corresponding formal de�nitions are based on the ACL2 primitive
floor:

(defun fl (x) (floor x 1))

(defun cg (x) (- (fl (- x))))

Exercise: Prove (with the ACL2 prover) that for all m 2 N and n 2 N� ,

b�(m+ 1)=nc = �bm=nc � 1:

Another important function is the integer remainder rem (correspond-
ing to the ACL2 primitive rem), which may be characterized as follows:

Lemma 1..1 (division) If m 2 N and n 2 N� , then

nbm=nc+ rem(m;n) = m:

The mechanically veri�ed version of this lemma is:

(defthm division

(implies (and (integerp m) (>= m 0)

(integerp n) (> n 0))

(equal (+ (* n (fl (/ m n)))

(rem m n))

m))).

12 USING THE ACL2 THEOREM PROVER

1.1 BIT VECTORS

We exploit the natural correspondence between the bit vectors of
length n and the natural numbers in the range 0 � x < 2n. Thus,
for all x; k 2 N, we de�ne

bitn(x; k) = rem(bx=2kc; 2);

representing the kth bit of the bit vector x. We also de�ne, for all
x; i; j 2 N, where i � j,

bits(x; i; j) = brem(x; 2i+1)=2jc;

which extracts a �eld of bits from x, from the ith down through the
jth. Following the standard notation of hardware description languages
(see Section 2.), we shall abbreviate bitn(x; k) as x[k], and bits(x; i; j)
as x[i : j].
The ACL2 formalization of both of these de�nitions is straightforward.

However, instead of basing our de�nition of the ACL2 function bitn

directly on the above, we make use of the primitive logbitp, for the
sake of execution e�ciency:

(defun bitn (x n) (if (logbitp n x) 1 0)).

After deriving the desired relation from the formal de�nition, the de�-
nition may be disabled:

(defthm bitn-def

(implies (and (integerp x) (>= x 0)

(integerp k) (>= k 0))

(= (bitn x k)

(rem (fl (/ x (expt 2 k))) 2)))

:rule-classes ()

:hints :::)
(in-theory (disable bitn))

Among the library lemmas pertaining to bitn and bits, we shall require
the following:

Lemma 1..2 (bit-expo-a) For all x; n 2 N, if x < 2n, then x[n] = 0;

Lemma 1..3 (bit-expo-b) For all x; n; k 2 N, if k < n and 2n� 2k �
x < 2n, then x[k] = 1.

Lemma 1..4 (bit+a) For all x; n 2 N, (x+ 2n)[n] 6= x[n].

Mechanical Veri�cation of a Floating-Point Multiplier 13

Lemma 1..5 (bits-bitn) For all x 2 N and n 2 N� , x[n : 0] = 0 ,
x[n] = x[n� 1 : 0] = 0:

Lemma 1..6 (bit-bits-b) For all x; i; j; k 2 N, if i � j + k, then
x[i : j][k] = x[k + j];

Lemma 1..7 (bit-bits-c) For all x; i; j; k; ` 2 N, if i � j + k, then
x[i : j][k : `] = x[k + j : `+ j].

We have three binary logical operations on bit vectors, for which we
again use abbreviations motivated by RTL notation: logand(x; y) =
x & y, logior(x; y) = x | y, and logxor(x; y) = x ^ y. These functions
are most naturally de�ned recursively, e.g.,

x & y =

8<
:

0 if x = 0
2(bx=2c & by=2c) + 1 if x and y are both odd
2(bx=2c & by=2c) otherwise:

However, since the functions logand, etc., are already implemented as
ACL2 primitives, we once again derive the desired equations as conse-
quences of the relevant axioms. For example:

(defthm logand-def

(implies (and (integerp x) (>= x 0)

(integerp y) (>= y 0))

(= (logand x y)

(+ (* 2 (logand (fl (/ x 2)) (fl (/ y 2))))

(logand (rem x 2) (rem y 2)))))

:rule-classes ()

:hints : : :).

The following library lemmas are cited in the proof of Section 3.:

Lemma 1..8 (bit-dist-a) For all x; y; n 2 N,

(x & y)[n] = x[n] & y[n]:

Lemma 1..9 (bit-dist-b) For all x; y; n 2 N,

(x | y)[n] = x[n] | y[n]:

Lemma 1..10 (and-dist-a) For all x; y; n 2 N, x & y � x.

Lemma 1..11 (and-dist-c) For all x; y; n 2 N,

rem(x & y; 2n) = rem(x; 2n) & y:

14 USING THE ACL2 THEOREM PROVER

Lemma 1..12 (and-dist-d) For all x; y; n 2 N, if x < 2n, then

x & y = x & rem(y; 2n):

Lemma 1..13 (or-dist-a) For all x; y; n 2 N, if x < 2n and y < 2n,
then x | y < 2n.

Lemma 1..14 (or-dist-d) For all x; y; n 2 N,

rem(x | y; 2n) = rem(x; 2n) | rem(y; 2n):

1.2 FLOATING-POINT REPRESENTATION

Floating point representation is based on the observation that every
nonzero rational x admits a unique factorization,

x = sgn(x)sig(x)2expo(x);

where sgn(x) 2 f1;�1g (the sign of x), 1 � sig(x) < 2 (the signi�cand
of x), and expo(x) 2 Z (the exponent of x).
The recursive de�nition of expo requires an explicitly supplied mea-

sure:

(defun expo-measure (x)

(cond ((not (rationalp x)) 0)

((< x 0) '(2 . 0))

((< x 1) '(1 . 0))

(t (fl x))))

(defun expo (x)

(declare (xargs :measure (expo-measure x)))

(cond ((or (not (rationalp x)) (= x 0)) ())

((< x 0) (expo (- x)))

((< x 1) (- (expo (/ x))))

((< x 2) 0)

(t (1+ (expo (/ x 2))))))

The de�nitions of sgn and sig are then straightforward:

(defun sgn (x) (if (< x 0) -1 +1))

(defun sig (x) (* (abs x) (expt 2 (- (expo x))))).

The following properties are immediate consequences of the de�nitions:

Lemma 1..15 (fp-rep) For all x 2 Q� , x = sgn(x)sig(x)2expo(x).

Lemma 1..16 (expo-lower-bound) For all x 2 Q� , jxj � 2expo(x).

Mechanical Veri�cation of a Floating-Point Multiplier 15

Lemma 1..17 (expo-upper-bound) For all x 2 Q� , jxj < 2expo(x)+1.

Lemma 1..18 (fp-rep-unique) If x; y 2 Q� , 1 � y < 2, n 2 Z, and
jxj = 2ny; then y = sig(x) and n = expo(x).

Lemma 1..19 (sig-expo-shift) If x 2 Q� , n 2 Z, and y = 2nx, then
sig(y) = sig(x) and expo(y) = n+ expo(x).

A oating point representation of x is a bit vector consisting of three
�elds, corresponding to sgn(x), sig(x), and expo(x). A oating point
format is a pair of positive integers � = (�; �), representing the number
of bits allocated to sig(x) and expo(x), respectively. If z 2 N, then the
sign, exponent, and signi�cand �elds of z with respect to � are

sgnf (z; �) = z[� + �];

expf (z; �) = z[� + �� 1 : �];

and

sigf (z; �) = z[� � 1 : 0];

respectively. If sigf (z; �)[� � 1] = 1, then z is a normal �-encoding.
The number x represented by a normal �-encoding z, where � =

(�; �), is given by sgn(x) = (�1)sgnf (z;�), sig(x) = 21��sigf (z; �), and
expo(x) = expf(z; �)� (2��1 � 1). Thus, we de�ne

decode(z; �) = (�1)sgnf (z;�) � sigf (z; �) � 2expf (z;�)�2��1��+2:

Note that the exponent �eld is biased in order to provide for an exponent
range 1� 2��1 � expo(x) � 2��1.
Let x 2 Q� and n 2 N� . Then the predicate exactp(x; n) is true,

and we shall say that x is n-exact, if sig(x)2n�1 2 Z. The predicate
repp(x; �) is true if x is �-exact and �2��1 + 1 � expo(x) � 2��1. It is
clear that the latter condition holds i� x is representable with respect
to �, i.e., for some z 2 N, x = decode(z; �). We also have the following
characterization of n-exact naturals:

Lemma 1..20 (exact-bits-a-b) Let x; n; k 2 N� , 2n�1 � x < 2n.
and k < n. Then 2k divides x i� x is (n� k)-exact.

Another useful lemma characterizes the \successor" of an n-exact
number:

16 USING THE ACL2 THEOREM PROVER

Lemma 1..21 (fp+1) Let x; y 2 Q� and n 2 N� . If y > x > 0 and x
and y are both n-exact, then y � x+ 2expo(x)+1�n.

Exercise: Prove that if x is k-exact and x2 is 2n-exact, then x is n-
exact. (Note: the hypothesis that x is k-exact may be replaced with the
weaker assumption that x is rational, but the ACL2 proof then becomes
more complicated.)

The IEEE standard supports three formats, (24; 7), (53; 10), (64; 15),
which correspond to single, double, and extended precision, respectively.
In the discussion of our oating-point multipler, oating point numbers
will always be represented in the extended precision format, E = (64; 15).
We shall abbreviate decode(z; E) as ẑ:

(defun extfmt () '(64 15))

(defun hat (z) (decode z (extfmt)))

1.3 ROUNDING

A rounding mode is a function M that computes an n-exact number
M(x; n) corresponding to an arbitrary rational x and a degree of preci-
sion n 2 N� . The most basic rounding mode, truncation (round toward
0), is de�ned by

trunc(x; n) = sgn(x)b2n�1sig(x)c2expo(x)�n+1:

Thus, trunc(x; n) is the n-exact number y satifying jyj � jxj that is
closest to x. Similarly, rounding away from 0 is given by

away(x; n) = sgn(x)d2n�1sig(x)e2expo(x)�n+1;

and three other modes are de�ned simply in terms of those two: inf(x; n)
(round toward1), minf(x; n) (round toward�1), and near(x; n) (round
to the nearest n-exact number, with ambiguities resolved by selecting
(n� 1)-exact values).
The modes that are supported by the IEEE standard are trunc, near,

inf , and minf . We shall refer to these as IEEE rounding modes.

(defun ieee-mode-p (mode)

(member mode '(trunc inf minf near)))

If M is any rounding mode, � 2 N� , and x 2 Q , then we de�ne

rnd(x;M; �) =M(x; �):

(defun rnd (x mode n)

Mechanical Veri�cation of a Floating-Point Multiplier 17

(case mode

(trunc (trunc x n))

(inf (inf x n))

(minf (minf x n))

(near (near x n))))

Lemma 1..22 (rnd-shift) If x 2 Q , n 2 N� , and k 2 Z, then for any
IEEE rounding mode M,

rnd(2kx;M; n) = 2krnd(x;M; n):

Lemma 1..23 (rnd-flip) If x 2 Q and n 2 N� , then for any IEEE
rounding mode M,

rnd(�x;M; n) = �rnd(x;M0; n);

where

M0 =

8<
:

minf; if M = inf
inf; if M = minf
M; if M = trunc or M = near:

The following three lemmas justify the implementation of rounding
that is employed in the AMD Athlon oating-point unit:

Lemma 1..24 (bits-trunc) Let x;m; n; k 2 N. If 0 < k < n � m and
2n�1 � x < 2n, then

trunc(x; k) = x & (2m � 2n�k):

Lemma 1..25 (away-imp) Let x 2 Q , x > 0, m 2 N� , and n 2 N� . If
x is m-exact and m � n, then

away(x; n) = trunc(x+ 2expo(x)+1(2�n � 2�m); n):

Lemma 1..26 (near-trunc) Let n 2 Z, n > 1, and x 2 Q , x > 0. If
x is (n+ 1)-exact but not n-exact, then

near(x; n) = trunc(x+ 2expo(x)�n; n� 1);

otherwise,

near(x; n) = trunc(x+ 2expo(x)�n; n):

18 USING THE ACL2 THEOREM PROVER

2. THE RTL LANGUAGE

In this section, we present a precise syntactic and semantic de�nition
of the AMD RTL language. We also identify a class of programs that
admit a particularly simple semantic description. For these programs,
called simple pipelines, the value of each output may be computed in a
natural way as a function of the inputs.
One advantage of using our own design language is that we are free

to modify its compiler to suit our needs. Thus, we have implemented an
automatic translator that generates a functional representation in ACL2
of any simple pipeline, based on the compiler's internal parse tree. Our
oating-point multiplier will serve as an illustration.

2.1 LANGUAGE DEFINITION

The language is based on a class of identi�ers called signals, and a
class of character strings called numerals. A binary numeral has the
form bb1 : : : bk, where the bi are binary digits; decimal and hexadecimal
numerals similarly use the pre�xes d and h, although d may be omitted.
The natural number represented by a numeral � will be denoted as ��.
A circuit description includes input declarations, combinational as-

signments, sequential assignments, and constant de�nitions, which have
the forms

input s[� : 0]; (1.1)

s[� : 0] = E; (1.2)

s[� : 0] <= E; (1.3)

and

`define r � (1.4)

respectively, where � is a numeral, s is a signal, E is an expression of size
��+1 as de�ned below, and r may be any identi�er. We may abbreviate
s[0 : 0] as s.
Each signal s occurring anywhere in a description must appear in

exactly one of the three contexts (1.1), (1.2), and (1.3), and is called an
input, a wire, or a register, accordingly, of size �� + 1. In cases (1.2) and
(1.3), we shall say that E is the expression for s. Any signal may also
occur in an output declaration,

output s[� : 0]; (1.5)

Mechanical Veri�cation of a Floating-Point Multiplier 19

and is then also called an output.
The e�ect of a constant de�nition (1.4) is simply that any subsequent

occurrence of `r is taken as an abbreviation for �.
If s is a wire, E is the expression for s, and s0 is any signal, then

s depends on s0 i� either s0 occurs in E or some wire occurring in E
depends on s0. It is a syntactic requirement of the language that no wire
depends on itself.
Let I, O, W , R, and S denote the sets of inputs, outputs, wires,

registers, and signals, respectively, of a circuit description D. Then S is
the disjoint union I [W [R, and O � S. A mapping from I, O, or R to
N is called an input valuation, an output valuation, or a register state for
D, respectively. If R is empty, then D admits only the null register state
and we shall say that D is combinational ; otherwise, D is sequential.
Next, we de�ne the set of expressions of the language corresponding

to the circuit description D. For each expression E, we also de�ne the
size of E, as well as the value of E, valD(E;I;R), for a given input
valuation I and register state R:
(1) If � and � are numerals such that �� > 0 and �� < 2�� , then �'� is

a constant expression of size �� and

valD(�'�; I;R) = ��:

(2) If s is a signal of size n, then s is an expression of size n, and

valD(s;I;R) =

8<
:
I(s) if s 2 I
R(s) if s 2 R
valD(E;I;R) if s 2W and E is its expression.

(3) If s is a signal and � and � are numerals with �� � ��, then s[� : �]
is an expression of size ��� ��+ 1, and

valD(s[� : �]; I;R) = bits(valD(s;I;R); ��; ��):

We may abbreviate s[� : �] as s[�].

(4) If E is an expression of size n, then ~E is an expression of size n,
and

valD(~E;I;R) = 2n � valD(E; I;R) � 1:

(5) If E1 and E2 are expressions of equal size, then (E1 == E2) is an
expression of size 1, with

valD((E1 == E2);I;R) =

�
1 if valD(E1;I;R) = valD(E2;I;R)
0 if valD(E1;I;R) 6= valD(E2;I;R).

20 USING THE ACL2 THEOREM PROVER

(6) If E1 and E2 are expressions of size n, then (E1 & E2), (E1 | E2),
and (E1 ^ E2) are expressions of size n, with

valD((E1 & E2);I;R) = logand(valD(E1;I;R); valD(E2; I;R))

and similar de�nitions for the other two operators.
(7) If E1 and E2 are expressions of size n, then (E1 + E2) is an

expression of size n, with

valD(E1 +E2);I;R) = rem(valD(E1;I;R) + valD(E2; I;R); 2
n):

Multiplication is de�ned similarly.
(8) If E1 and E2 are any expressions of sizes of n1 and n2, respectively,

then fE1; E2g is an expression of size n1 + n2, with

valD(fE1; E2g;I;R) = 2n2valD(E1;I;R) + valD(E2;I;R):

For k > 2, fE1; : : : ; Ekg is an abbreviation for fE1; fE2; : : : ; Ekgg If
E1 = : : : = Ek and � is a numeral with �� = k, then we may further
abbreviate fE1; : : : ; Ekg as f� fE1gg.

(9) If B is an expression of size 1 and E1 and E2 are expressions of
size n, then (B ? E1 : E2) is an expression of size n, and

valD((B ? E1 : E2); I;R) =

�
valD(E1;I;R) if valD(B;I;R) 6= 0
valD(E2;I;R) if valD(B;I;R) = 0.

(10) If D, E1; : : : ; Ek are expressions of size n and F1; : : : ; Fk are
expressions of size m, then

F = case(D) E1 : F1; : : : Ek : Fk; endcase

is an expression of size m, and

valD(F;I;R) =

8<
:

valD(F1;I;R) if valD(D == E1;I;R) = 1
0 if valD(D == E1;I;R) = 0, k = 1
valD(F

0; I;R) if valD(D == E1;I;R) = 0, k > 1,

where

F 0 = case(D) E2 : F2; : : : Ek : Fk; endcase

The semantics of circuit descriptions are based on an underlying no-
tion of cycle. Let I1;I2; : : : be a sequence of input valuations and let
R1 be a register state for D. We shall think of each Ik as representing
the values of the input signals of D on the kth cycle of an execution,
and R1 as an initial set of register values. From these functions we shall

Mechanical Veri�cation of a Floating-Point Multiplier 21

construct a sequence of output valuations, O1;O2; : : : , representing the
output values produced by D on successive cycles.
First, we de�ne a function nextD, which represents the dependence of

the register state for a given cycle on the input valuation and register
state for tyhe preceding cycle. Given an input valuation I and a register
state R, the register state nextD(I;R) = R0 is de�ned as follows: if
s 2 R and E is the expression for s, then

R0(s) = valD(E;I;R):

Now, for each k � 2, let Rk = nextD(Ik�1;Rk�1). The output valu-
ations O1;O2; : : : are computed as follows: for each output signal s,

Ok(s) = valD(s; Ik;Rk):

2.2 SIMPLE PIPELINES

If D is combinational, then we may write valD(s; I) unambiguously,
omitting the third argument, and consequently, the output valuation Ok,
as de�ned above, is completely determined by Ik. Thus, the external
behavior of a combinational circuit may be described by a functional
dependence of outputs on inputs. The same is true of a certain class
of sequential circuits, which we describe below. For any circuit in this
class, there is a number n such that for each k � n, the output valuation
Ok is completely determined by the input valuation Ik�n+1.
We shall say that a circuit description D is an n-cycle simple pipeline

if there exists a function : S ! f1; : : : ; ng such that

(1) if s 2 I, then (s) = 1;

(2) if s 2W and E is the expression for s, then (s0) = (s) for each
signal s0 occurring in E;

(3) if s 2 R and E is the expression for s, then (s) > 1 and (s0) =
 (s)� 1 for each signal s0 occurring in E;

(4) if s 2 O, then (s) = n.

Note that a 1-cycle simple pipeline is just a combinational circuit.
The main consequences of the above de�nition are given by Lem-

mas 2..1 and 2..2 below. The proofs of these lemmas use an induction
scheme based on a well-founded partial ordering of the set of expressions
of D, de�ned as follows: For any expression E, let 	(E) be the max-
imum, over all signals s occurring in E, of (s), and let �(E) be the
maximum, over all signals s occurring in E, of the number of signals on

22 USING THE ACL2 THEOREM PROVER

which s depends. Then for any two expressions E1 and E2, E1 precedes
E2 i�

(a) 	(E1) < 	(E2), or

(b) 	(E1) = 	(E2) and �(E1) < �(E2), or

(c) 	(E1) = 	(E2), �(E1) = �(E2), and E1 is a subexpression of E2.

According to our �rst lemma, every n-cycle simple pipeline has the
property that the values of the inputs on any cycle determine the values
of the outputs n� 1 cycles later:

Lemma 2..1 Let I1; : : : ; In; I
0

1; : : : ; I
0
n be input valuations and let R1

and R0

1 be register states for an n-cycle simple pipeline D. For k =
2; : : : ; n, let Rk = nextD(Ik�1;Rk�1) and R

0

k = nextD(I
0

k�1;R
0

k�1). If
I1 = I 01, then for every output s of D,

valD(s; In;Rn) = valD(s; I
0

n;R
0

n):

Proof: We shall show that for all k, 1 � k � n, if E is any expres-
sion of D such that (s) = k for every signal s occurring in E, then
valD(E; Ik;Rk) = valD(E; I

0

k;R
0

k). The proof is by induction, based on
the partial ordering of expressions de�ned above. Assume that the claim
holds for all expressions that precede a given expression E. To show that
the claim holds for E as well, we shall examine the only nontrivial case:
E is a signal s.
If s is an input, then k = 1 and

valD(s;I1;R1) = I1(s) = I 01(s) = valD(s;I
0

1;R
0

1):

Thus, we may assume that s is a wire or a register. Let F be the
expression for s.
Suppose s is a wire. Then (r) = k for each signal r occurring in F .

Therefore, 	(s) = k = 	(F) and �(s) � �(F) + 1, hence F precedes s
and by our inductive hypothesis,

valD(s;Ik;Rk) = valD(F; Ik;Rk) = valD(F; I
0

k;R
0

k) = valD(s; I
0

k;R
0

k):

Finally, suppose s is a register. Then k > 1 and (r) = k� 1 for each
signal r occurring in F . Thus, 	(F) = k�1 < k = 	(s), so F precedes s,
and we may conclude that valD(F;Ik�1;Rk�1) = valD(F; I

0

k�1;R
0

k�1):
But since Rk = nextD(Ik�1;Rk�1),

valD(s;Ik;Rk) = Rk(s) = valD(F;Ik�1;Rk�1);

Mechanical Veri�cation of a Floating-Point Multiplier 23

and similarly,

valD(s;I
0

k;R
0

k) = R0

k(s) = valD(F;I
0

k�1;R
0

k�1): 2

Now, letD, I1; : : : ;In, andR1; : : : ;Rn be as described in Lemma 2..1.
Let O : O ! N be de�ned by O(s) = valD(s;In;Rn). Then according
to the lemma, O is determined by I = I1 alone, and we may de�ne
outD(I) = O. Thus, for an n-cycle simple pipeline, there is a natural
mapping from input valuations to output valuations.
If we are interested only in the mapping outD, then any n-cycle simple

pipeline may be replaced with a combinational circuit:

Lemma 2..2 Let D be an n-cycle simple pipeline, and let ~D be the cir-
cuit description obtained from D by replacing each sequential assign-
ment (1.3) by the corresponding combinational assignment (1.2). Then
~D is a combinational circuit description and outD = out ~D.

Proof: To prove that ~D is a combinational circuit description, it will
su�ce to show that ~D is a well-formed circuit description. If not, then
there must be signals s1; : : : ; sk such that s1 = sk and for i = 1; : : : ; k�1,
si occurs in the expression for si+1. But since (s1) � : : : � (sk) =
 (s1), we would then have (s1) = : : : = (sk), which would imply
that each si is a wire of D, contradicting the assumption that D is well-
formed.
Now, given an input valuation I for D (and thus for ~D), let O =

outD(I) and ~O = out ~D(I). We must show that O(s) = ~O(s) for every
output signal s. Let I1; : : : ; In be input valuations for D, where I1 = I,
and let R1; : : : ;Rn be register states such that Rk+1 = nextD(Ik;Rk)
for k = 1; : : : n � 1. Then O(s) = valD(s; In;Rn). On the other hand,
since ~D is combinational, ~O(s) = val ~D(s;I1). Thus, we may complete
the proof by showing that if E is any expression such that (s) = k for
every signal s occurring in E, then valD(E; Ik;Rk) = val ~D(E; I1):
Using the same induction scheme as in Lemma 2..1, we again note

that in the only nontrivial case, E is a signal s. If s is an input, then
k = 1 and

valD(s; I1;R1) = I1(s) = val ~D(s;I1):

If s is a wire of D, and hence of ~D, and F is the expression for s, then

valD(s;Ik;Rk) = valD(F;Ik;Rk) = val ~D(F; I1) = val ~D(s;I1):

In the remaining case, s is a register of D and a wire of ~D. If F is the
expression for s (in both contexts), then

valD(s;Ik;Rk) = Rk(s) = valD(F;Ik�1;Rk�1)

= val ~D(F; I1) = val ~D(s;I1): 2

24 USING THE ACL2 THEOREM PROVER

2.3 TRANSLATION TO ACL2

One of the functions of the RTL-ACL2 translator is to analyze the
dependencies among the signals of a circuit description to determine
whether it satis�es the de�nition of a simple pipeline. Once this is
established, an ACL2 function is constructed from each wire and register
de�nition, ignoring the distinction between the two, in accordance with
Lemma 2..2. This function computes the value of the signal for a given
input valuation in terms of the values of the signals that occur in its
de�ning expression. Thus, each RTL construct in the expression for the
signal is replaced with the corresponding ACL2 construct, as determined
by the de�nition of evaluation given in Subsection 2.1.
For example, the combinational assignment

sig_of[128:0] = {1'b0, carry_of, 127'b0} |

(add_of[128:0] & {1'b0, mask_of[127:0]});

of the circuit FMUL (Fig. 1.4) generates the de�nition

(defun sig_of (carry_of add_of mask_of)

(logior (cat carry_of 0 127)

(logand add_of mask_of)))

while the sequential assignment

sticky_of <= case(pc_C3)

`SNG : ~(prod[102:0] == 103'b0);

`DBL : ~(prod[73:0] == 74'b0);

endcase;

(Fig. 1.3) produces

(defun sticky_of (pc_c3 prod)

(cond ((equal pc_c3 0)

(if (equal (bits prod 102 0) 0) 0 1))

((equal pc_c3 1)

(if (equal (bits prod 73 0) 0) 0 1)))).

Finally, an additional function is de�ned for each output signal, which
binds each non-input signal in succession to its value for a given set of
input vaues, and returns the value of the output. For the circuit FMUL,
which has only one output, z, a single function is generated as follows:

(defun fmul (x y rc pc)

(let* ((sgnx (sgnx x))

Mechanical Veri�cation of a Floating-Point Multiplier 25

(sgny (sgny y))

(expx (expx x))

(expy (expy y))

(sigx (sigx x))

(sigy (sigy y))

(sgnz (sgnz sgnx sgny))

(exp_sum (exp_sum expx expy))

...

(carry_nof (carry_nof add_nof))

(sig_of (sig_of carry_of add_of mask_of))

(sig_nof (sig_nof carry_nof add_nof mask_nof))

(sigz (sigz overflow sig_of sig_nof))

(exp_of (exp_of exp_sum_c4 carry_of))

(exp_nof (exp_nof exp_sum_c4 carry_nof))

(expz (expz overflow exp_of exp_nof))

(z (z sgnz_c4 expz sigz)))

z)).

It is evident that this function accurate represents the dependence of
the output z on the inputs, i.e., if the bindings of x, y, rc, and pc

are given by an input valuation I, then the value computed by fmul is
outFMUL(I)(z).

3. CORRECTNESS OF THE MULTIPLIER

Let I be a �xed input valuation for FMUL. We shall adopt the conven-
tion of italicizing each signal to denote its value for I, e.g.,

valFMUL(sigz;I) = sigz

and since rc in an input,

valFMUL(rc; I) = I(rc) = rc:

Note that FMUL has four inputs: x and y are E-encodings of the numbers
to be multiplied, rc is a 2-bit encoding of the mode to be used in rounding
the result, and pc is a 1-bit encoding of the desired degree of precision,
corresponding to either single (24-bit) or double (53-bit) precision.
We would like to show that the circuit meets the main requirement

for IEEE compliance, as stipulated in the oating-point standard [IEEE,
1985]:

[Multiplication] shall be performed as if it �rst produced an intermediate
result correct to in�nite precision and with unbounded range, and then
rounded that result ...

Thus, the output z must satisfy the following:

26 USING THE ACL2 THEOREM PROVER

module FMUL;

//***

// Declarations

//***

//Precision and rounding control:

`define SNG 1'b0 // single precision

`define DBL 1'b1 // double precision

`define NRE 2'b00 // round to nearest

`define NEG 2'b01 // round to minus infinity

`define POS 2'b10 // round to plus infinity

`define CHP 2'b11 // truncate

//Parameters:

input x[79:0]; //first operand

input y[79:0]; //second operand

input rc[1:0]; //rounding control

input pc; //precision control

output z[79:0]; //rounded product

//***

// First Cycle

//***

//Operand fields:

sgnx = x[79]; sgny = y[79]; //signs

expx[14:0] = x[78:64]; expy[14:0] = y[78:64]; //exponents

sigx[63:0] <= x[63:0]; sigy[63:0] <= y[63:0]; //significands

//Sign of result:

sgnz <= sgnx ^ sgny;

//Biased exponent sum:

exp_sum[14:0] <= expx[14:0] + expy[14:0] + 15'h4001;

//Registers:

rc_C2[1:0] <= rc[1:0];

pc_C2 <= pc;

Figure 1.1 Module FMUL

Mechanical Veri�cation of a Floating-Point Multiplier 27

//***

// Second Cycle

//***

//Rounding Constants//

//Overflow case -- single precision:

rconst_sing_of[127:0] =

case(rc_C2[1:0])

`NRE : {25'b1, 103'b0};

`NEG : sgnz ? {24'b0, {104 {1'b1}}} : 128'b0;

`POS : sgnz ? 128'b0 : {24'b0, {104 {1'b1}}};

`CHP : 128'b0;

endcase;

//Overflow case -- double precision:

rconst_doub_of[127:0] =

case(rc_C2[1:0])

`NRE : {54'b1, 74'b0};

`NEG : sgnz ? {53'b0, {75 {1'b1}}} : 128'b0;

`POS : sgnz ? 128'b0 : {53'b0, {75 {1'b1}}};

`CHP : 128'b0;

endcase;

//General overflow case:

rconst_of[127:0] <= case(pc_C2)

`SNG : rconst_sing_of[127:0];

`DBL : rconst_doub_of[127:0];

endcase;

//No overflow:

rconst_nof[126:0] = rconst_of[127:1];

//Registers:

sgnz_C3 <= sgnz;

exp_sum_C3[14:0] <= exp_sum[14:0];

sigx_C3[63:0] <= sigx[63:0];

sigy_C3[63:0] <= sigy[63:0];

rc_C3[1:0] <= rc_C2[1:0];

pc_C3 <= pc_C2;

Figure 1.2 Module FMUL (continued)

28 USING THE ACL2 THEOREM PROVER

//***

// Third Cycle

//***

//The output of an integer multiplier actually consists of two vectors,

//the sum of which is the product of the inputs sigx and sigy. These

//vectors become available in the third cycle, when they are processed

//in parallel by three distinct adders. The first of these produces

//the unrounded product, which is used only to test for overflow.

//The other two include rounding constants, assuming overflow and no

//overflow, respectively. Thus, at the (hypothetical) implementation

//level, these three sums are actually generated in parallel:

prod[127:0] = {64'b0, sigx_C3[63:0]} * {64'b0, sigy_C3[63:0]};

add_of[128:0] <= {1'b0, prod[127:0]} + {1'b0, rconst_of[127:0]};

add_nof[127:0] <= prod[127:0] + {1'b0, rconst_nof[126:0]};

//overflow indicator:

overflow <= prod[127];

//Sticky bit:

sticky_of <= case(pc_C3)

`SNG : ~(prod[102:0] == 103'b0);

`DBL : ~(prod[73:0] == 74'b0);

endcase;

sticky_nof <= case(pc_C3)

`SNG : ~(prod[101:0] == 102'b0);

`DBL : ~(prod[72:0] == 73'b0);

endcase;

//Registers:

rc_C4[1:0] <= rc_C3[1:0];

pc_C4 <= pc_C3;

sgnz_C4 <= sgnz_C3;

exp_sum_C4[14:0] <= exp_sum_C3[14:0];

Figure 1.3 Module FMUL (continued)

Mechanical Veri�cation of a Floating-Point Multiplier 29

//***

// Fourth Cycle

//***

//Significand mask:

mask_of[127:0] =

case (pc_C4)

`SNG : (rc_C4[1:0] == `NRE) & ~sticky_of & ~add_of[103] ?

{{23 {1'b1}}, 105'b0} : {{24 {1'b1}}, 104'b0};

`DBL : (rc_C4[1:0] == `NRE) & ~sticky_of & ~add_of[74] ?

{{52 {1'b1}}, 76'b0} : {{53 {1'b1}}, 75'b0};

endcase;

mask_nof[126:0] =

case (pc_C4)

`SNG : (rc_C4[1:0] == `NRE) & ~sticky_nof & ~add_nof[102] ?

{{23 {1'b1}}, 104'b0} : {{24 {1'b1}}, 103'b0};

`DBL : (rc_C4[1:0] == `NRE) & ~sticky_nof & ~add_nof[73] ?

{{52 {1'b1}}, 75'b0} : {{53 {1'b1}}, 74'b0};

endcase;

//Carry bit:

carry_of = add_of[128];

carry_nof = add_nof[127];

//Significand and exponent:

sig_of[128:0] = {1'b0, carry_of, 127'b0} |

(add_of[128:0] & {1'b0, mask_of[127:0]});

sig_nof[127:0] = {1'b0, carry_nof, 126'b0} |

(add_nof[127:0] & {1'b0, mask_nof[126:0]});

sigz[63:0] = overflow ? sig_of[127:64] : sig_nof[126:63];

exp_of[14:0] = exp_sum_C4[14:0] + {14'b0, carry_of} + 15'b1;

exp_nof[14:0] = exp_sum_C4[14:0] + {14'b0, carry_nof};

expz[14:0] = overflow ? exp_of[14:0] : exp_nof[14:0];

//Final result:

z[79:0] = {sgnz_C4, expz[14:0], sigz[63:0]};

endmodule

Figure 1.4 Module FMUL (continued)

30 USING THE ACL2 THEOREM PROVER

Theorem 1 (correctness-of-fmul) Assume that x and y are normal
E-encodings, rc 2 f0; 1; 2; 3g, and pc 2 f0; 1g. Let

M =

8>><
>>:

near; if rc = 0
minf; if rc = 1
inf; if rc = 2
trunc; if rc = 3,

� =

�
24 if pc = 0
53 if pc = 1,

and A = rnd(x̂ŷ;M; �). If A is representable, then z is a normal en-
coding and ẑ = A.

The ACL2 formalization is straightforward:

(defun mode (rc)

(case rc (0 'near) (1 'minf) (2 'inf) (3 'trunc)))

(defun precision (pc) (case pc (0 24) (1 53)))

(defthm correctness-of-fmul

(let ((ideal (rnd (* (hat x) (hat y))

(mode rc)

(precision pc)))

(z (fmul x y rc pc)))

(implies (and (normal-encoding-p x (extfmt))

(normal-encoding-p y (extfmt))

(member rc (list 0 1 2 3))

(member pc (list 0 1))

(repp ideal (extfmt)))

(and (normal-encoding-p z (extfmt))

(= (hat z) ideal))))

:hints :::)

In the next subsection, we sketch an informal proof of Theorem 1,
illustrating the application of the library of Section 1.. Once again,
each lemma listed below includes the name of a corresponding ACL2
defthm event, which may be found in [Russino�, 1999c]. Finally, in
Subsection 3.2, we clarify the nature of this correspondence and describe
the methodology that we have developed to derive the formal theorem
correctness-of-fmul from the informal proof.

Mechanical Veri�cation of a Floating-Point Multiplier 31

3.1 INFORMAL PROOF

For convenience, we introduce several auxiliary variables. First, we
de�ne

sticky =

�
sticky of if overflow = 1
sticky nof if overflow = 0:

Each of the variables rconst, add, carry, mask, and sig is de�ned in the
analogous manner. We also de�ne

P =

�
128 if overflow = 1
127 if overflow = 0;

� = rem(sig; 2P);

and

M0 =

8<
:

minf; if M = inf and sgnz = 1
inf; if M = minf and sgnz = 1
M; otherwise:

Our �rst four lemmas may be derived by case analysis as immediate
consequences of these de�nitions:

Lemma 3..1 (CARRY-REWRITE) carry = add[P].

Lemma 3..2 (sig-rewrite) sig = (2P�1carry) | (add & mask).

Lemma 3..3 (mask-rewrite)

mask =

�
2P � 2P��+1 if M = near, sticky = add[P � �� 1] = 0
2P � 2P�� otherwise:

Lemma 3..4 (rconst-rewrite)

rconst =

8<
:

2P���1 if M0 = near
2P�� � 1 if M0 = inf
0 otherwise:

Lemma 3..5 (expo-prod) expo(prod) = P � 1.

Proof: Since x and y are normal encodings,

2126 � prod = sigx � sigy < 2128;

32 USING THE ACL2 THEOREM PROVER

and the lemma follows from Lemmas 1..2 and 1..3. 2

Lemma 3..6 (sig-prod) sig(prod) = sig(x̂)sig(ŷ)=2overflow.

Proof: By Lemma 3..5,

prod = 263sig(x̂)263sig(ŷ)

= sig(x̂)sig(ŷ)2�overflow2126+overflow

= sig(x̂)sig(ŷ)2�overflow2expo(prod):

The claim now follows from Lemma 1..15. 2

Lemma 3..7 (expo-xy) expo(x̂ŷ) = expo(x̂) + expo(ŷ) + overflow.

Proof: By Lemmas 1..15 and 3..6,

x̂ŷ = sgn(x̂)sig(x̂)2expo(x̂)sgn(ŷ)sig(ŷ)2expo(ŷ)

= sgn(x̂ŷ)
h
sig(x̂)sig(ŷ)=2overflow

i
2expo(x̂)+expo(ŷ)+overflow

= sgn(x̂ŷ)sig(prod)2expo(x̂)+expo(ŷ)+overflow:

The result now follows from Lemma 1..18. 2

Lemma 3..8 (sig-xy) sig(x̂ŷ) = sig(prod).

Proof: This is another consequence of the proof of Lemma 3..7. 2

Lemma 3..9 (sticky-exact) sticky = 0 i� prod is (�+ 1)-exact.

Proof: It is clear that in all cases, sticky = 0 i� 2P�(�+1) divides prod,
and the lemma follows from Lemmas 1..20 and 3..5. 2

Lemma 3..10 (add-rewrite) add = prod+ rconst.

Proof: By Lemmas 3..4 and 3..5, 0 � prod+rconst < 2P+2P = 2P+1,
hence by the de�nition of add,

add = rem(prod+ rconst; 2P+1) = prod+ rconst:2

Lemma 3..11 (sig-bit) sig[P � 1] = 1.

Proof: By Lemmas 1..9 and 3..2, we may assume carry = 0 and hence
by Lemmas 3..2, 3..3, 3..6, and 1..8,

sig[P � 1] = (add & mask)[P � 1] = add[P � 1] & mask[P � 1]

= add[P � 1]:

Mechanical Veri�cation of a Floating-Point Multiplier 33

But then since

2P�1 � prod � prod+ rconst = add < 2P+1

and carry = add[P] = 0, Lemma 1..3 implies add < 2P and hence, by
the same lemma, add[P � 1] = 1. 2

Lemma 3..12 (sig-add-expo) expo(sig) � expo(add) = P�1+carry.

Proof: If carry = 0, then

sig = add & mask � add < 2P ;

by Lemma 1..10, and Lemma 3..11 implies sig � 2P�1, hence

expo(sig) = expo(add) = P � 1:

On the other hand, if carry = add[P] = 1, then expo(add) = P , while
sig < 2P+1 by Lemma 1..13, hence expo(sig) � P . 2

Lemma 3..13 (rem-sig) sig is divisible by 2P�64.

Proof: Since 2P�64 dividesmask, the result follows from Lemmas 1..11
and 1..14. 2

Lemma 3..14 (sgnf-z) sgnf(z; E) = sgnz.

Proof: Note that

z = 279sgnz + 264expz + sigz;

where 0 � sgnz < 2, 0 � expz < 215, and 0 � sigz < 264. Thus,

sgnf(z; E) = z[79] = rem(bz=279c; 2) = rem(sgnz; 2) = sgnz:2

Lemma 3..15 (expf-z) expf(z; E) = expz.

Proof: As in the proof of Lemma 3..14,

expf(z; E) = z[78 : 64] = brem(z; 279)=264c = bexpz + sigz=264c

= expz:2

Lemma 3..16 (sigf-z) sigf(z; E) = sigz.

Proof: As in the proof of Lemma 3..14,

sigf(z; E) = z[63 : 0] = rem(z; 264) = sigz:2

34 USING THE ACL2 THEOREM PROVER

Lemma 3..17 (z-normal) z is a normal encoding.

Proof: It is clear that z 2 N and

sigf(z; E) = sigz = sig[P � 1 : P � 64]:

Thus, by Lemmas 1..6 and 3..11, sigz[63] = sig[P � 1] = 1, and hence
sigz � 263. 2

Lemma 3..18 (sgn-z) sgn(ẑ) = sgn(x̂ŷ).

Proof: By Lemma 3..14, sgn(ẑ) = (�1)sgnz. Thus, sgn(ẑ) = 1 ,
sgnz = 0, sgnx = sgny , sgn(x̂) = sgn(ŷ), sgn(x̂ŷ) = 1. 2

Lemma 3..19 (sig-z) sig(ẑ) = �=2P�1.

Proof: Since sig is divisible by 2P�64, so is � = rem(sig; 2P). Thus,

sigz = sig[P � 1 : P � 64] = b�=2P�64c = �=2P�64

and sig(ẑ) = sigz=263 = �=2P�1. 2

Lemma 3..20 (expo-z) expo(ẑ) = expo(x̂ŷ) + carry + 215k, for some
k 2 Z.

Proof: We have

expx = expf(x; E) = expo(x̂) + 214 � 1;

expy = expf(y; E) = expo(ŷ) + 214 � 1;

and by Lemma 3..7,

expz = rem(exp sum+ carry + overflow; 215)

= rem(expx+ expy + 214 + 1 + carry + overflow; 215)

= rem(expo(x̂) + expo(ŷ) + overflow + 214 � 1 + carry; 215)

= rem(expo(x̂ŷ) + 214 � 1 + carry; 215):

Hence, for some k 2 Z,

expf(z; E) = expz = expo(x̂ŷ) + 214 � 1 + carry + 215k:

But then

expo(ẑ) = expf(z; E)� (214 � 1) = expo(x̂ŷ) + carry + 215k:2

Mechanical Veri�cation of a Floating-Point Multiplier 35

Lemma 3..21 (rho-rewrite) � = rnd(prod;M0; �)2�carry.

Proof: We consider the following cases:

Case 1: carry = 0
Since sig < 2P by Lemma 3..12, we must show

sig = rnd(prod;M0; �):

Subcase 1.1: M0 = near
First suppose sticky = add[P � �� 1] = 0. Then Lemmas 1..4, 3..4,

and 3..10 imply

prod[P � �� 1] = 1;

and by Lemmas 3..9, 1..20, and 1..5, prod is (�+1)-exact but not �-exact.
Thus, by Lemmas 1..24, 1..26, 3..2, 3..3, 3..5, 3..10, and 3..12,

sig = (prod+ 2P���1) & (2P � 2P��+1)

= trunc(prod+ 2P���1; �� 1)

= near(prod; �)

= rnd(prod;M0; �):

In the remaining case, prod is either �-exact or not (� + 1)-exact, and
the same lemmas yield

sig = (prod+ 2P���1) & (2P � 2P��)

= trunc(prod+ 2P���1; �)

= near(prod; �)

= rnd(prod;M0; �):

Subcase 1.2: M0 = inf
By Lemmas 1..24 and 1..25,

sig = (prod+ 2P�� � 1) & (2P � 2P��)

= trunc(prod+ 2P�� � 1; �)

= away(prod; �)

= rnd(prod;M0; �):

Subcase 1.3: M0 = trunc or M0 = minf
Lemma 1..24 yields

sig = prod & (2P � 2P��)

= trunc(prod; �)

= rnd(prod;M0; �):

36 USING THE ACL2 THEOREM PROVER

Case 2: carry = 1
In this case, by Lemmas 3..1 and 3..12,

2P � add = prod+ rconst < 2P + rconst;

which, with Lemma 3..4, implies

0 � rem(add; 2P) < rconst < 2P��:

Applying Lemmas 1..14, 1..11, and 1..12, we have

rem(sig; 2P) = rem(2P�1 | (add & mask); 2P)

= 2P�1 | (rem(add; 2P) & mask)

= 2P�1 | (rem(add; 2P) & rem(mask; 2P��))

= 2P�1 | (rem(add; 2P) & 0)

= 2P�1:

Thus, it su�ces to show that rnd(prod;M0; �) = 2P .

Subcase 2.1: M0 = near
Since

prod+ 2P�1�� = prod+ rconst � 2P ;

we must have near(prod; �) = 2P .

Subcase 2.2: M0 = inf
Let a = 2P � 2P��. Then

prod � 2P � rconst = 2P � 2P�� + 1 > a;

and since a is �-exact,

away(prod; �) � a+ 2expo(a)+1�� = a+ 2P�� = 2P

by Lemma 1..21, and it follows that away(prod; �) = 2P .

Subcase 2.3: M0 = trunc or M0 = minf
This case is precluded by Lemma 3..4 and our earlier observation that

0 < rconst. 2

We may now complete the proof of Theorem 1. By Lemmas 3..5
and 3..8,

prod = sig(prod)2expo(prod) = sig(x̂ŷ)2P�1;

Mechanical Veri�cation of a Floating-Point Multiplier 37

and hence by Lemmas 3..19, 3..21 and 1..22,

sig(ẑ) = �=2P�1 = rnd(prod;M0; �)=2carry+P�1

= rnd(sig(x̂ŷ);M0; �)=2carry :

Now, applying Lemmas 3..20 and 1..22, we have

ẑ = sgn(ẑ)sig(ẑ)2expo(ẑ)

= sgn(ẑ)rnd(sig(x̂ŷ);M0; �)2expo(x̂ŷ)+215k

= sgn(ẑ)rnd(sig(x̂ŷ)2expo(x̂ŷ);M0; �)22
15k;

where k 2 Z. If sgnz = 0, thenM0 =M and by Lemma 3..14, sgn(ẑ) =
1. On the other hand, if sgnz = 1, then M0 = flip(M) and sgn(ẑ) =
�1. In either case, by Lemmas 1..23 and 3..18,

ẑ = rnd(sgn(ẑ)sig(x̂ŷ)2expo(x̂ŷ);M; �)22
15k

= rnd(sgn(x̂ŷ)sig(x̂ŷ)2expo(x̂ŷ);M; �)22
15k

= rnd(x̂ŷ;M; �)22
15k:

But since rnd(x̂ŷ;M; �) is representable, i.e.,

1� 2�14 � expo(rnd(x̂ŷ;M; �)) � 214;

and the same is true of ẑ, Lemma 1..19 yields

j215kj = jexpo(ẑ)� expo(rnd(x̂ŷ;M; �))j < 215;

and hence k = 0. 2

3.2 FORMAL PROOF

In the design of a formal computational model, the ACL2 user is often
faced with conicting criteria. For example, a model that is intended
primarily for formal analysis may not provide the desired execution ef-
�ciency. It is a common practice to de�ne two or more models to serve
distinct purposes and then prove them to be equivalent. This is the
approach that we take here.
The translation scheme described in Subsection 2.3 is conceptually

simple and provides an accurate representation of the RTL model that
may be executed fairly e�ciently. This is an important consideration in
many applications, as it allows the formal model to be validated against
the RTL through testing. However, this model is not amenable to formal
analysis|it would be awkward to attempt to use it directly to formalize

38 USING THE ACL2 THEOREM PROVER

the argument presented in Subsection 3.1. Every reference to a signal
would necessarily mention all the signals on which it depends, and the
derived properties of those signals would have to be listed repreatedly.
For example, a formal statement of Lemma 3..6 based on the de�nition

(defun prod (sigx_c3 sigy_c3)

(bits (* sigx_c3 sigy_c3) 127 0))

would have to include all relevant properties of sigx_c3 and sigy_c3

as explicit hypotheses.
For the purpose of veri�cation, therefore, we shall use an alterna-

tive translation scheme, and establish a method for converting theorems
pertaining to the resulting model to theorems about the original model.
Using our multiplier as an illustration, we begin by de�ning two func-
tions, representing the constraints on inputs and desired properties of
outputs, respectively:

(defun input-spec (x y rc pc)

(and (normal-encoding-p x (extfmt))

(normal-encoding-p y (extfmt))

(member rc (list 0 1 2 3))

(member pc (list 0 1))

(repp (rnd (* (hat x) (hat y))

(mode rc)

(precision pc))

(extfmt))))

(defun output-spec (x y rc pc)

(let ((z (fmul x y rc pc)))

(and (normal-encoding-p z (extfmt))

(= (hat z)

(rnd (* (hat x) (hat y))

(mode rc)

(precision pc))))))

(in-theory (disable input-spec output-spec))

Next, we introduce constants corresponding to the inputs, constrained
to satisfy the input speci�cation:

(encapsulate ((x* () t) (y* () t) (rc* () t) (pc* () t))

(local (defun x* () (encode 1 (extfmt))))

(local (defun y* () (encode 1 (extfmt))))

(local (defun rc* () 0))

(local (defun pc* () 1))

(local (in-theory (disable input-spec*)))

Mechanical Veri�cation of a Floating-Point Multiplier 39

(defthm input-spec* (input-spec (x*) (y*) (rc*) (pc*))))

Constants are then de�ned corresponding to all remaining signals. In
fact, for convenience, these functions are automatically generated by our
translator and placed in a separate �le. This �le contains, for example,

(defun sgnx* nil (sgnx (x*)))

and

(defun z* nil (z (sgnz_c4*) (expz*) (sigz*))).

Formal versions of the lemmas appearing in Subsection 3.1, based on
these constant functions, may now be proved in a natural way by faith-
fully following their informal proofs (see [Russino�, 1999c]). Thus, we
obtain the following theorem:

(defthm z*-spec

(and (normal-encoding-p (z*) (extfmt))

(= (hat (z*))

(rnd (* (hat (x*)) (hat (y*)))

(mode (rc*))

(precision (pc*)))))

:rule-classes())

Now, our goal is to derive the theorem correctness-of-fmul from
z*-spec. First, we establish this relationship between the two models:

(defthm fmul-star-equivalence

(equal (z*)

(fmul (x*) (y*) (rc*) (pc*)))

:rule-classes nil)

The last two theorems now yield the following:

(defthm output-spec*

(output-spec (x*) (y*) (rc*) (pc*))

:hints (("goal" :in-theory (enable output-spec)

:use (z*-spec fmul-star-equivalence))))

The next step is critical, employing functional instantiation:

(defthm fmul-input-output

(implies (input-spec x y rc pc)

(output-spec x y rc pc))

:hints

(("goal" :in-theory (enable input-spec*)

:use ((:functional-instance output-spec*

40 USING THE ACL2 THEOREM PROVER

(x* (lambda ()

(if (input-spec x y rc pc)

x (x*))))

(y* (lambda ()

(if (input-spec x y rc pc)

y (y*))))

(rc* (lambda ()

(if (input-spec x y rc pc)

rc (rc*))))

(pc* (lambda ()

(if (input-spec x y rc pc)

pc (pc*))))))))

:rule-classes ())

The �nal theorem now follows easily:

(defthm correctness-of-fmul

(let ((ideal (rnd (* (hat x) (hat y))

(mode rc)

(precision pc)))

(z (fmul x y rc pc)))

(implies (and (normal-encoding-p x (extfmt))

(normal-encoding-p y (extfmt))

(member rc (list 0 1 2 3))

(member pc (list 0 1))

(repp ideal (extfmt)))

(and (normal-encoding-p z (extfmt))

(= (hat z) ideal))))

:hints (("goal" :in-theory (enable input-spec output-spec)

:use (fmul-input-output))))

Exercise: The hypothetical implementation of our oating-point mul-
tiplier relies on the e�cient computation of the sum of three bit vectors
(see the comments in Fig. 1.3), using several logical operations (which
are executed in constant time) and a single addition. In order to estab-
lish the correctness of this computation, prove that for all x; y; z 2 N,

x+ y + z = x ^ y ^ z + 2 [(x & y) | (x & z) | (y & z)] :

Exercise: A rounding mode used in the AMD Athlon oating-point
adder, called sticky rounding, is de�ned as follows, for x 2 Q� and
n 2 N� :

(a) sticky(x; 1) = sgn(x)2expo(x).

Mechanical Veri�cation of a Floating-Point Multiplier 41

(b) If n > 1 and x is (n�1)-exact, then sticky(x; n) = x.
(c) If n > 1 and x is not (n�1)-exact, then

sticky(x; n) = trunc(x; n� 1) + sgn(x)2expo(x)+1�n:

Derive the following properties of sticky rounding:
(1) Let M be an IEEE rounding mode, � 2 N� , n 2 N, and x 2 Q� . If
n � � + 2, then

rnd(x;M; �) = rnd(sticky(x; n);M; �):

(2) Let x; y 2 Q such that y 6= 0 and x + y 6= 0. Let k; k0; k00 2 Z such
that k0 = k + expo(x)� expo(y), and k00 = k + expo(x+ y)� expo(y).

(a) If k > 0, k0 > 0, k00 > 0, and x is k0-exact, then

x+ trunc(y; k) =

�
trunc(x+ y; k00) if sgn(x+ y) = sgn(y)
away(x+ y; k00) if sgn(x+ y) 6= sgn(y);

(b) If k > 1, k0 > 1, k00 > 1, and x is (k0 � 1)-exact, then

x+ sticky(y; k) = sticky(x+ y; k00):

References

[Gordon, 1995] Gordon, M. (1995). The semantic challenge of Verilog
HDL. In Tenth Annual IEEE Symposiom on Logic in Computer Sci-
ence. IEEE Computer Society Press.

[IEEE, 1985] IEEE (1985). Standard for binary oating point arith-
metic. IEEE Standard 754-1985.

[Russino�, 1995] Russino�, D. (1995). Speci�cation and veri�cation of
gate-level vhdl models of synchronous and asynchronous circuits. In
B�orger, E., editor, Speci�cation and Validation Methods. Oxford Uni-
versity Press.

[Russino�, 1998] Russino�, D. (1998). A Mechanically Checked Proof
of IEEE Compliance of a Register-Transfer-Level Speci�cation of the
AMD-K7 Floating-Point Multiplication, Division, and Square Root
Instructions. London Mathematical Society Journal of Computation
and Mathematics, 1:148{200.

[Russino�, 1999a] Russino�, D. (1999a). A Mechanically Checked Proof
of Correctness of the AMD-K5 Floating-Point Square Root Microcode.
Formal Methods in System Design, 14:75{125.

[Russino�, 1999b] Russino�, D. (1999b). An acl2 library of
oating-point arithmetic. http://www.cs.utexas.edu/users/-

moore/publications/others/fp-README.html.

[Russino�, 1999c] Russino�, D. (1999c). Mechanical veri�cation
of register-transfer logic: A oating-point multiplier. http://-

www.cs.utexas.edu/users/moore/acl2-book-99/russinoff/-

index.html.

43

